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Abstract

Thanks to the recent advancements in language understanding, large language
models (LLMs) have become powerful tools able to understand and control web
browsers, in the form of grounded agents. Human demonstrations are needed,
however, to ground agents, posing scalability problems and becoming infeasible
as more complex tasks can involve hundreds of actions. Synthetic demonstrations
present a promising solution to this problem, and have been used to bootstrap LM
agents via Retrieval Augmented Generation (RAG). We introduce another way of
using synthetic demonstrations, which is for fine-tuning a language model to act as
an agent. We synthetically generate high-quality trajectories using MiniWOB++
environments including common building blocks of web interactions, such as
filling text boxes, using auto-complete, clicking buttons or check boxes, liking and
retweeting, picking dates, etc. and use them to build an observation->instruction
labeled dataset. By combining sub-tasks from different environments into a single
dataset, which we use to fine-tune a state of the art LLM, we achieve similar
performance to STeP in several MiniWOB++ tasks using a smaller fraction of
inference turns compared to BAGEL.

Mentor: Shikhar Murty

1 Introduction

The staggering diversity of websites and possible tasks presents a challenge in creating digital
agents. Humphreys Humphreys et al. (2023) developed a method centered on reinforcement learning
combined with behavioural priors informed by actual human-computer interactions to control
computers using natural language guidance. Advancements have been achieved in creating actions
by translating images from website observations Shaw et al. (2023) and fine-tuning models for
conversational browser control Lù et al. (2024). These methods, however, require human expert
demonstrations which are not scalable.

BAGEL Murty et al. (2024) creates synthetic demonstrations and uses them to bootstrap
agents using retrieval augmented generation. It developed an iterative method of exploration guided
by natural language and relabeling. STeP Sodhi et al. (2024) creates synthetic trajectories by
composing dynamic plans.

Various environments for simulating web interactions have been developed, such as Web-
Shop for simulating shopping websitesYao et al. (2022), WorkArena for knowledge worker tasks
Drouin et al. (2024), WebArena Zhou et al. (2023) for general web tasks in various types of sites,
ToolQA for allowing the use of tools such as calculators, databases and grpahs Zhuang et al. (2023),
and MiniWOB++ Shi et al. (2017) including various simplified environments covering a wide range
of tasks.

Drawing inspiration and ideas from this work, we propose a method for programmatically
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defining synthetic trajectories using MiniWOB++ environments, to assemble a dataset for LM
finetuning. We require considerably less LM prompting than BAGEL for creating synthetic
trajectories and by combining sub-tasks from several environments, we obtain a combinatorial
effect similar to STeP. Our fine-tuned model achieves similar performance to STep and BAGEL on
MiniWOB++, and has potential for generalizing to other environments.

2 Related Work

Work in the field of digital agents has addressed several issues such as enabling LLM reasoning to
create action plans, HTML summarization for allowing its inclusion in prompts, and multimodal web
navigation with instruction tuned foundation models.

WebGUM Furuta et al. (2023) creates a multimodal agent that observes both webpage screenshots
and HTML pages and outputs navigation actions such as click and type, by training an instruction-
finetuned language model and a vision encoder, outperforming prior works by a significant margin.
ReAct Yao et al. demonstrated that it’s possible to elicit reasoning behavior from LLMs by structuring
prompts in two phases, first reasoning and then acting. WebLINX Lù et al. (2024) created a model
that efficiently prunes HTML pages by ranking relevant elements. Our prompts draw from those
two concepts, introducing modifications to adapt them to our shorter timeframe and we finetune on
language only.

3 Approach

Following BAGEL, we selected ten Miniwob++ environments involving common web interactions
such as web search, autocomplete, picking dates, clicking tabs and checkboxes, social media,
email, booking flights and tic-tac-toe. We then created 100% successful (raw reward =1) synthetic
trajectories using a hybrid programmatic Document Object Model (DOM) search and single-action
LM prompt approach, which we used to build our labeled dataset, making sure that no repeated
random seeds were present. We test the finetuned model using random Miniwob++ seeds, by checking
that those seeds were not present in the training data.

Because our prompts required large context windows for DOM and image inputs, not supported by
open source language models, we used paid publicly available models of the Gemini Google (2023)
family for the baseline, creation of synthetic trajectories and fine-tuning, which we accessed through
GCP, .1. Although these models suited our needs, using them limited our usage to the credits received,
leading us to discard potentially better approaches.

3.1 Other approaches considered

Before setting into our course of action we tried alternate options, which deemed unsuccessful
due to the time and resource constrains of this project. Below is a summary discussion of our
experimentation, presented here for its potential value in a more resourceful setting.

• The method we initially planned to use for creating synthetic trajectories was BAGEL,
an iterative procedure to relabel a seed set of trajectories obtained from unconditioned
exploration using various LM policies. However, its iterative nature and reliance on inference
by the various policies for every action, as well as reliance on other packages such as pix2act
Shaw et al. (2023), made it too time consuming and costly for the scope of this project.

• The environment we initially chose for creating the trajectories was WebShop, an online
shopping simulation environment, in order to see how BAGEL could generalize to envi-
ronments other than the ones it targeted, namely Miniwob++ and ToolQA. However, the
installation of all packages and dependencies proved to be non-trivial and couldn’t fit in the
timeframe of this project.

• Other interesting environments we considered for generalization and therefore explored were
ToolQA, WebArena and WorkArena. ToolQA allows LLMs to use external tools for question
answering, such as databases, calculators and graphs. WebArena has a variety of real-life

1Also, a credit donation by Google tipped the scales between choosing Gemini vs. its close competitor,
OpenAI’s GPT-4o.

2



website environments beyond shopping and what’s available on Miniwob++. WorkArena
allows agents to interact with company knowledge-bases, forms, service catalogs, etc. to
perform knowledge-worker tasks on the ServiceNow platform ser. Unfortunately, all of
them required non-trivial installation timeframes, which exceeded this project’s scope.

• For reducing DOM sizes we considered Dense Markup Ranking (DMR) and other methods
proposed in WebLINX Lù et al. (2024). DMR converts HTML into a simplified DOM
representation to allow prompting of smaller LMs, which wouldn’t be possible with a
complete HTML file. Since Miniwob++ environments don’t provide HTML updates and
only DOM are available for each action, adapting it to our need of just reducing the DOM
size would have required modification of their large codebase, rendering it outside of the
scope of this project’s timeframe. In 3.3 we develop a simplified method.

We also tried using a Llama3-70B AI@Meta (2024) model, but switched to Gemini because of its
additional capabilities.

3.2 Synthetic Trajectories

We produced 60 baseline trajectories and started with 100 training trajectories for each Miniwob++
environment. We used Gemini 1.5 Pro, which allows multi-turn conversations, thus the context was
kept for the duration of the trajectory. We also leveraged multimodal prompts including images.

For simplicity, we limit the action space of our trajectories to two actions: click and type,
being these the basic building blocks for any web interaction.

3.2.1 Baseline Trajectories

The baseline trajectories were created with a ReAct inspired prompt similar to the instruction-
following policy BAGEL prompt, using the Miniwob++ random utterances generated when resetting
the environment. Unlike in BAGEL, where the same prompt is used for every action in a given
trajectory, we start with a detailed prompt and follow up with simpler prompts, since our LM can
keep the context of the conversation. Also, we added a set of rules of interaction to help ground the
agent.

A trajectory starts with an initial observation of the environment which is incorporated into
the prompt in the form of an image and a list of DOM elements, as shown in A.1.1. The model’s
response is collected in a format specified in the prompt, to allow information extraction using simple
regex expressions. The information needed to activate the next state is the type of action (click or
type), the element number on which to perform the action, and the actual text to enter, in the case of
typing text. Once the new state is activated, we send a follow-up prompt to the LM A.1.2, which
includes the DOM elements corresponding to the new current state. This process continues until the
task is completed and/or the environment times out and closes.

Despite our efforts to provide rules to the model, it seldom followed them, resulting in
poor completion rates and consistently occurring errors in common areas. The environments with
the most problems were book-flight, choose-date, search-engine and use-autocomplete. In these
environments, our baseline agent had a 0% success rate, missing 83% of possible states. The biggest
problem was the failure to click on text boxes before input, found in all 4 environments 96% of the
time. clicking on autocomplete was also a problem 98% of the time, clicking on the datepicker 97%
of the time, and using arrows to navigate the calendar forward and backward was a problem 100% of
the time. Also, for search-engine it wasn’t able to count the results to arrive at the desired rank. Some
of these errors are illustrated in 1.

Other environments such as social-media, email-inbox and tic-tac-toe had errors too, but
those occurred only with certain goals, so the agent was able to complete some of the trajectories for
those. In social-media, it failed when the requested option was not on the main screen but a menu
needed to be clicked. In email-inbox it did well with liking or starring messages, but never clicked
the reply or forward buttons. In social-media-some it did well when only one click was needed, but
failed when needing to count more clicks. In tic-tac-toe, it wasn’t able to win any game.

The complete results and comparison are in 1.
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3.2.2 Training Trajectories

We aim to produce training data that includes all possible states for every environment, and that
means a large number of successful synthetic trajectories. For example, if the agent never clicks on
the "Forward" button, it would never produce the state in which the email writing screen is shown,
so that state will be missing in our training dataset. Having discarded BAGEL as a possibility for
creating synthetic trajectories for this project, we used the following procedure for each environment
to ensure that we can reach our goal of a large number of successful training trajectories:

• Identified the actions needed to complete the task

• Took into account the information from the errors found in the baseline to guide successful
completion

• Created simple python code to dynamically search and identify the DOM elements involved
in any given random instruction

• Prompted the LM including the DOM elements for single tasks that couldn’t be predicted,
required judgement, or required complex search algorithms A.1.3

This method resulted in FAST creation or synthetic trajectories with 70% less prompting than the
baseline and at least 80% less prompting than BAGEL.

Figure 1: This example illustrates the type of errors in our baseline trajectories, which were obtained
by prompting the LM for each action. Comparing it to the train trajectories created programmatically,
we see that it’s missing states would be needed for training because of failing to click on the search
button (this is an uncommon error though, but because the seeds are random, it’s hard to get two
equal seeds to compare). After we finetuned the first model, we sought to improve a second version
by providing actions with more background. Although the improved trajectory makes more sense, it
didn’t improve the results, see 1
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3.3 Dataset Creation

We save the training trajectories individually in pickled python dictionaries for ease or analysis.The
supervised fine-tuning task on Gemini 1.0 Pro-002 requires a JSONL dataset in which each JSON
line represents a message containing the user prompt and the desired response. Our training prompt
consists on a goal sentence paired with the list of DOM elements representing the state of the
environment (observation) for input and the corresponding instruction for output. We didn’t include
images due to the fact that this model, the only one in the Gemini family available for fine-tuning
on GCP, is not multi-modal. Each example corresponds to one action of the trajectory, however the
overall goal is the same for each individual action of the trajectory. The token limit for the goal and
DOM part was 8,192 tokens, and a large percentage of examples our dataset exceeded it.

Aiming to keep all the information required for the task, we removed unneeded elements, achieving
an average 66% token count reduction. Removals were as follows:

• Foreground and background color definitions are needed for actions such as typing text,
where the border color changes to indicate if the box has been clicked or not, or to indicate
incorrect inputs. While colors may be relevant in many of our training environments, we
hope that the text part will suffice to clarify those actions.

• Flags are used to to indicate the state of elements, such as if they are clickable or if they have
been clicked or not. We hope to include that information in the text part of the example, so
we removed flags for most environments. In the social-media-some task however, showing
the already clicked buttons is crucial, so we leave the flags and we eliminate the trajectories
that exceed the limit, which correspond to web-pages with a larger number of items, and
we hypothesize that this may not have any impact on the quality of the dataset (only 7% of
trajectories exceeded the limit) To compensate, we include additional trajectories to reach
the number of 100, as in the other environments.

• We make all remaining arrays integer to eliminate extra characters and convert all arrays
with only one element to scalars.

• After converting the DOM elements from a dictionary to a JSON string, we also eliminate
all quotes, convert the arrays to lists and remove variable type names.

Figure 2: In our first dataset we aimed for 100 trajectories per environment. However, we can see that
the number of examples is imbalanced because of the different number of tasks for each trajectory.
To mitigate this imbalance, aside from other improvements, we increased the number of examples in
the lower performing environments that had the least examples. We also see the results of the token
reducing measures presented in this section.

3.4 Fine-tuning

We perform parameter efficient fine-tuning (PEFT) of Gemini 1.0 Pro-002 from a GCP n1-standard-4
managed notebook, using the supervised fine-tuning module of Vertex AI (vertexai.preview.tuning.sft).
We train for 4 epochs with a learning rate of 0.001 and a learning rate multiplier of 1.
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4 Experiments

4.1 Data

We initially created a training dataset including approximately 100 successful trajectories for each of
the MiniWOB++ environments. We check for duplicate trajectories both at the time of creating the
trajectories and at the time of building the dataset (each single run of 100 trajectories checks itself
for duplicates, but sometimes we had to stop, or run additional times due to not enough trajectories
having positive rewards or other issues). The number of examples per environment varies due to the
variable number of tasks in each environment. Our first dataset included 4580 examples, but after
seeing the imbalance in number of examples across environments, due to the variable number of tasks
per trajectory, we increased the number of examples for the lowest performing environments with the
lowest example counts, which yielded a total of 5934 examples in the improved dataset, as shown in
2. More details on the trajectories included and dataset creation methodology can be found in 3.2.2
and 3.3.

4.2 Evaluation method

Following BAGEL, we test the fine-tuned model on 50+ MiniWOB++ random seeds per environment.
Before each test we check against the training seeds in order to ensure that each random seed in the
test was not used in the training dataset. We analyze the 500+ resulting trajectories, calculate the
average completion rate for each environment and compare it to our baseline and available existing
benchmarks for fine-tuned models. For the environments where benchmarks are not available, we
compare them to our baseline and BAGEL.

Additionally, we perform a qualitative analysis of the lowest scoring environments and discuss
common errors.

4.3 Experimental details

We started by training small models on single environments, which allowed us to investigate
and correct issues related to those individual environments. We then trained a model with all
environments except two of them and tested to see how it generalized to those environments. After
analyzing the results of this first round (FAST), we hoped to improve them by providing background
from the previous action in each action description (more on this in 5) and mitigate the imbalance by
adding more trajectories. We generated improved trajectories for several environments and used them
to train an "improved" model (FAST-I).

We trained an ablation (FAST-A), in which we removed all trajectories from two environ-
ments, search-engine and click-checkboxes-soft to investigate generalization to unknown
environments.

Duration of training was about an hour per individual environment included in the dataset, with a total
of ten hours when training for all environments. GCP offered no GPU options in their fine-tuning
and the machine configuration used once the job is launched is unknown. The fine-tuned models are
hosted on GCP and they can be accessed through GCP’s service offerings.

4.4 Results

Table 1 shows a comparison of results including our baseline, BAGEL, STeP, our first dataset (FAST),
a second "improved" dataset and ablation.

FAST improved over STeP and came close to BAGEL on email-inbox. Also, it came slightly
ahead of BAGEL on tic-tac-toe, use-autocomplete, book-flight and showed a large (69% absolute)
improvement in search-engine. These results show that this approach’s worked.

FAST-A aimed to investigate the generalization potential of this approach. The fact that it came close
to BAGEL in search-engine is an indication of it being worth more research.

FAST-I came as a result of trying to improve on the first run. The main improvements were doubling
the number of trajectories for social-media, social-media-some, tic-tac-toe and use-autocomplete.
Also, search-engine had increased trajectories by 20%, all of them in an attempt to have a more
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balanced dataset. Another improvement was to include precedence in every action, and this was done
for book-flight, choose-date, social-media-some, use-autocomplete and search-engine. The tic-tac-toe
actions were also improved to make a clear difference when there are already two Xs in a row,
instead of having a generalized statement. As we can see, the "improvements" in action precedence
resulted in 0 successful trajectories. Also, email-inbox drastically dropped in performance, which we
hypothesize could be explained by the drop in its percentage of examples in the dataset.

Environment Baseline BAGEL STeP FAST FAST-A FAST-I
click-tab-2-hard 32 100 100 90 86 90

social-media 35 70 - 60 63 59
email-inbox 30 100 90 100 98 58

social-media-some 5 80 - 25 24 19
tic-tac-toe 6 40 - 44 39 52

use-autocomplete 0 45 - 54 51 0
book-flight 0 15 90 40 22 0
choose-date 0 40 100 10 2 8

search-engine 0 25 100 94 20 0
click-checkboxes-soft 31 90 54 50 18 60

Table 1: Completion Rates for MiniWOB++ Environments

5 Analysis

The worst-performing environment for FAST is choose-date. Looking at the distributions of train and
test dates doesn’t explain it 5.

Figure 3: Training Trajectory for choose-date in July
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Figure 4: Testing trajectory for choose-date in July

Looking at the trajectories and we realize the agent is very confused about the final destination. We
hypothesize that attaching the goal to each prompt is most relevant in this particular environment.
The training dataset had the goal attached to each input, and logically it should be included in the
input when prompting. This presents an opportunity for further work improving this model.

Further analysis is needed to elucidate the exact causes of the sharp decrease in performance to zero
success in FAST-I for the affected environments, and this should be prioritized in further work.

6 Conclusion

Our endeavour to create a dataset of synthetic trajectories to fine-tune a language model as an agent
was successful, with completion rates on MiniWOB++ paralleling SOTA in many of the environments
tested. We found that there are opportunities for improvement by attaching the goal to the testing
prompt, which can achieve even better results. Investigating the sharp drop in performance to zero in
the affected environments may uncover further opportunities for improvement. A possible explanation
may be a "diluting" effect comparable to adding more categories to a classification dataset, and would
create the need for an increased number of examples. Future work could test that hypothesis by
training on a larger number of examples, as our increases may not have been sufficient.

7 Ethics Statement

The development of digital agents by fine-tuning language models or other means has the potential of
replacing millions of workers by making them obsolete, requiring them to re-train for new careers
or else become unemployed. Even before that, developing ways to create synthetic trajectories
to assemble fine-tuning datasets will result in decreased demand for workers. Governments and
organizations can help mitigate these impacts by establishing lifelong learning programs to re-skill
and up-skill workers, creating safety nets, job transition programs and providing tax incentives for
training. Educational institutions, governments and private companies can establish partnerships for
aligning training programs with market needs.
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A Appendix

A.1 Baseline Prompts

A.1.1 Modified Bagel Instruction-Following Policy Prompt

You are a web-agent capable of executing the following kinds of tasks on a webpage:

1. Click on *description* : This action will click on element that matches *description*.
Examples:
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• Click on the red button
• Click on the first result in the autocomplete pop up menu
• Click on a date in the calendar
• Click on the scroll bar to scroll up and down
• Click on a left arrow to go to a previous
• click on a right arrow to go to the next
• Click on an input field before entering text

The action code for the clicking action is CLICK-ELEMENT
2. Type *text* on *description*: This action will type *text* into the web element matching

*description*. The action code for typing is TYPE-TEXT

You are given the following goal:
{Random utterance from MiniWOB++ environment’s reset}

You observe the following image from the web-page HTML:
{Image from MiniWOB++’s environment state (observation) }

Start by thinking about what action you should take next. Write down all the different
choices and then, choose the best answer taking into account the following rules:

• RULES FOR INTERACTING WITH DOM ELEMENTS:
• Datepicker: If the month displayed is the desired month, select the desired day by clicking

on a number. If the month desired is before or after the month displayed, use the right and
left arrows to navigate to the correct month.

• Text input box: click on it before and after entering text, click on first autocomplete option
after typing.

• Autocomplete: select an option by clicking on it

Provide your answer for the ONE next action in the following format:

Action description:

Once you identified next action to take, look at the DOM elements from the web-page HTML:
{List of DOM elements from MiniWOB++’s environment state (observation) }

and identify the ref number of the element on which you need to perform the action. Write your
answer in the following format:

Action code:(choose either TYPE-TEXT or CLICK-ELEMENT)
Dom element ref number:
Text: (only for TYPE-TEXT action code)

A.1.2 Follow-Up Prompt Within Trajectory

After performing these actions:
{List of actions already performed}

Start by thinking about what action you should take next. Write down all the different
choices and then, choose the best answer taking into account the previously given rules.

Provide your answer for the ONE next action in the following format:

Action description:

Once you identified next action to take, look at the DOM elements from the web-page
HTML: {List of DOM elements from MiniWOB++’s environment state (observation) }

and identify the ref number of the element on which you need to perform the action. Write your
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answer in the following format:

Action code:(choose either TYPE-TEXT or CLICK-ELEMENT)
Dom element ref number:
Text: (only for TYPE-TEXT action code)

A.1.3 Single-Task Prompt for Programmatic Trajectories

You are a web-agent capable of reasoning to make decisions based on the information you are given.
You are able to click on website buttons to select the best option based on the criterion provided. For
example, you are able to compare durations, to select the shortest flight.

You are given the following goal:
{Random utterance from MiniWOB++ environment’s reset}

You observe the following DOM elements from the web-page HTML:
{List of DOM elements from MiniWOB++’s environment state (observation) }

Start by comparing the different choices available and then find the best answer. Provide
your answer for the ONE next action in the following format:

Action description:

Once you identified the next action to take, identify the ref number of the element on which you need
to perform the action. Write your answer in the following format:

Dom element ref number:

A.2 Month Distribution in choose-date

Figure 5: Testing trajectory for choose-date in July
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