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Abstract

The pretrain-finetune paradigm has demonstrated remarkable efficacy in various
natural language processing tasks. However, while this method has proven effective
in enhancing single-task performance, achieving robust performance in multi-task
settings presents a set of distinct challenges, such as single-task overfitting and
catastrophic forgetting. In this study, we examine the multi-task performance
of pretrained language models on three downstream tasks: sentiment analysis,
paraphrase detection, and semantic textual similarity. We employ BERT as our base
model and incorporate a variety of optimization techniques, including interleaved
training and gradient surgery, to improve the model’s generalization capabilities.
Our evaluation demonstrates significant improvements achieved by our proposed
methods, elevating the collective performance from a baseline score of 0.647 to
0.787. Furthermore, we conduct a comparative analysis between the performance
of single-task and multi-task fine-tuning, highlighting the effectiveness of multi-
task learning in improving performance of language models by leveraging shared
representations across tasks.

1 Key Information to include

The mentor of this project is Jingwen Wu. There is no external collaborator or mentor.

2 Introduction

In recent years, the advent of transfer learning has profoundly transformed the realm of natural
language processing (NLP) (Ruder et al.,[2019)). This paradigm shift is epitomized by the two-stage
process known as the pretrain-finetune approach, which first leverages unsupervised learning to
train models with vast amount of text corpora, enabling them to learn intricate linguistic structures,
nuanced sentence semantics, and capture the complex interplay between words and their contexts.
Subsequently, these pretrained models can be fine-tuned utilizing comparatively small, task-specific
datasets, allowing them to efficiently adapt their sophisticated knowledge to specific downstream
applications and render robust performance (Devlin et al [2019}|Gao et al., 2022). Despite these
advances, training these models for multi-task settings faces numerous challenges. First, imbalanced
multi-task fine-tuning can lead to single-task overfitting, where the model becomes overly specialized
in one task at the expense of others, compromising its ability to generalize effectively across multiple
domains (Crawshaw, [2020). Another significant hurdle is the issue of catastrophic forgetting, where
the model’s performance on previously learned tasks deteriorates as it is fine-tuned on new tasks
(Serra et al.| 2018)). Moreover, parameter updates for multiple objectives can suffer from gradient
conflict, hindering the progress of training and potentially leading to suboptimal convergence (Yu
et al., [2020).

In this work, we explore methods to overcome the challenges in multi-task learning through a case
study that focuses on the fine-tuning of the pretrained BERT model (Devlin et al.,[2019) for three
downstream tasks: Sentiment Analysis (SA), Paraphrase Detection (PD), and Semantic Textual
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Similarity (STS). Our implementation features an additional pretraining stage, which leverages
contrastive learning-based supervised and unsupervised learning objectives (Chen et al., 2020;|Gao
et al.| [2022)) to adapt the pretrained BERT model with the domain-specific data in our study. To
combat the potential of single-task overfitting and catastrophic forgetting, we incorporate a novel
interleaved training strategy coupled with circular data sampling, ensuring balanced learning across
different tasks. We also explore numerous approaches to mitigate conflicting parameter updates,
including adversarial degularization (Jiang et al. |2020), gradient surgery (Yu et al.| 2020), and
gradient clipping (Zhang et al., 2020). Furthermore, we leverage Low-rank Adaptation (LoRA)
(Hu et al., [2021)) to train multiple task-specific models with specialization in individual tasks using
reduced computational resources. Our evaluation demonstrates significant improvements from our
proposed methods, elevating the collective score of the three tasks from 0.647 to 0.787. Moreover, our
experiments show that multi-task learning on the same model surpasses the performance of training
each task on a separate model, highlighting the potential of multi-task learning in enhancing the
performance and generalization capabilities of language models.

3 Related Work

Language Pretraining. Learning universal language representations through pretraining has signifi-
cantly enhanced performance across numerous tasks in NLP, including natural language inference,
named entity recognition, and question answering (Devlin et al., 2019). Various pretraining objectives
have been proposed, each designed to capture different aspects of language understanding. One
notable example is the Masked Language Model (MLM), employed by BERT (Devlin et al.l 2019).
In this approach, random tokens within a sentence are obscured and the model is tasked with inferring
these hidden words based solely on the surrounding context, thereby training the model to develop a
deep understanding of the relationships between words and their contexts. Another prominent tech-
nique in representation learning is contrastive learning, exemplified by SimCLR (Chen et al., 2020)
and SimCSE (Gao et al.| [2022), which maps semantically similar examples closer in the embedding
space and pull dissimilar ones further apart. This objective effectively captures the locality between
semantically similar sentences and helps the model learn more meaningful and robust representations.

Multi-task Learning. Multi-task learning is a training paradigm in which models are trained to
perform multiple tasks simultaneously. However, this approach introduces distinct challenges that
require specialized optimizations to address effectively, as demonstrated by (Crawshaw|(2020). One
crucial optimization technique in multi-task learning is the use of regularization. For instance, Jiang
et al.[(2020) propose the SMART learning framework, which leverages Adversarial Regularization
combined with Momentum Bregman Proximal Point Optimization to prevent models from overfitting
the training data failing to effectively generalize. Another promising direction of optimization in
multi-task learning is Gradient Surgery, exemplified by Gradient Episodic Memory (Lopez-Paz and
Ranzato}, 2022)) and PCGrad (Yu et al.,[2020). The main idea behind these works is to replace a task
gradient that conflicts with another by a modified version that minimizes the conflict. For instance,
PCGrad achieves this by projecting a task gradient onto the normal plane of the conflicting gradient.

Parameter-efficient Fine-tuning. Parameter-efficient fine-tuning techniques have gained significant
attention in the field of deep learning, particularly in light of the growing scale of model sizes and
associated computational cost. Among these techniques, Low-Rank Adaptation (LoRA) (Hu et al.,
2021) has emerged as a popular approach that significantly reduces the computational and memory
requirements of fine-tuning by injecting trainable rank decomposition matrices into specific layers of
a pre-trained model. Specifically, for each selected layer of the model, LoRA introduces low-rank
matrices that decompose the original weight matrix, allowing for more efficient fine-tuning. During
the fine-tuning phase, the original weight matrices of the model remain unchanged, and instead,
the outputs from the low-rank matrices are used to adjust the activations of the layers in the model,
providing a more computationally efficient means of adapting the model to new tasks.

4 Approach

In the multi-task setting of our study, the proposed model is required to perform three distinct tasks
simultaneously: (1) Sentiment Analysis, which involves classifying the polarity of a given text, i.e.,
determining whether the expressed opinion in the text is positive, negative, or neutral; (2) Paraphrase
Detection, which entails ascertaining whether two given sentences convey the same meaning and



can be considered paraphrases of each other; and (3) Semantic Textual Similarity, which requires
the model to assign a numerical score to quantify the degree of semantic similarity between two
sentences, with higher scores indicating greater similarity in meaning.

Baseline. For our baseline implementation, we employ the BERT},,sc model (Devlin et al.|[2019) with
pretrained weights. Given that the inputs for the three tasks consist of one or more sentences, we
utilize the embedding of the first token ([CLS]) as the representative embedding for each sentence,
as it is designed to capture the overall meaning of the input. Our initial approach involves using
pretrained BERT to produce an embedding for each input sentence separately. Depending on the
specific task, the output embeddings are then concatenated and passed through a corresponding
linear layer to produce the final output logits, allowing the model to make task-specific predictions.
Regarding the choice of loss functions, we employ cross entropy for sentiment analysis, as it is
well-suited for multi-class classification tasks; binary cross entropy for paraphrase detection, given
its binary classification nature; and Mean-Squared Error (MSE) for semantic textual similarity, as the
similarity scores are continuous numerical values. In each epoch, training is performed sequentially
over the three datasets.

Cross Encoding. We speculate that the design of the baseline method, wherein the final linear layer
are solely responsible for mapping the concatenated embeddings to the output logits, may impose
limitations on the model’s performance. To address this potential drawback, we experiment with the
cross encoding technique, which involves concatenating the input sentences upfront and utilizing
the combined input to generate a unified embedding. Specifically, we concatenate both the input ids
and the attention masks of the two sentences, with the former separated by the [SEP] token and the
latter by a mask of 1. By employing this technique, the model is able to consider the interaction
between the sentences from the initial stages of processing, enabling it to extract features that are
more indicative of the underlying semantic relationships.

Interleaved Training with Sampling. In our initial approach, the training process iterates over
the individual datasets of the three tasks sequentially, which we speculate could lead to the later
training steps overwriting the updates from previous tasks. This problem is further exacerbated by the
significant imbalance in training dataset sizes among the three tasks (for instance, 8,543 and 283,012
training samples for SA and PD, respectively), causing a notable disparity in the learning process. To
address these potential issues, we adopt an interleaved training approach that equalizes the number of
batches based on the largest dataset. For each epoch, we sample an equivalent amount of data from
the smaller datasets to match the number of batches in the largest dataset. This method aims to ensure
balanced learning across tasks, thereby enhancing the model’s ability to generalize effectively across
multiple tasks without any one task dominating the training process due to its larger dataset size. We
also set the new loss function as the sum of the individual task losses, as

L= £sa + Ade + Ests (1)

, where L, Lpq, and Ly represent the losses for sentiment analysis, paraphrase detection, and
semantic textual similarity, respectively. This interleaved training strategy not only ensures a more
balanced representation of each task during the training process but also proves to be computationally
more efficient, as it allows for a more consistent and synchronized update of the model’s parameters
across all tasks.

Contrastive Learning. In our exploration of enhancing the model’s performance, we have experi-
mented with an additional pretraining step through the use of contrastive learning (Chen et al.| [2020),
which aims to map semantically similar examples (positive pairs) closer in the embedding space
while pulling dissimilar ones (negative pairs) further apart. For a batch of data of size NV, the loss
function with respect to a positive pair (z;, ;") is defined as
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where 7 is the temperature hyperparameter, h; and b are the generated embeddings of x; and ;"
respectively, and sim refers to the cosine similarity function ﬁ\bbr Our implementation of contrastive
learning-based pretraining consists of both a supervised and unsupervised stage. Inspired by SimCSE
(Gao et al.,|2022), we utilize dropout as a noise mechanism to generate different but semantically
similar pairs of sentences as positive examples, with negative pairs being the different sentences from
the same batch. This approach allows us to perform contrastive learning in an unsupervised manner.



Moreover, we have discovered that many sentence pairs in the PD and STS datasets exhibit semantic
similarity with ground truth verification. For instance, if two sentences are labeled as paraphrases of
one another, they can be naturally defined as a positive pair. Leveraging this insight, we filter out
positive input pairs from the PD and STS datasets based on their labels and use them for contrastive
learning. By incorporating this additional pretraining step, we aim to enhance the model’s ability to
capture the semantic relationships between sentences, ultimately leading to improved performance
across all three tasks in the multi-task learning framework.

Gradient Surgery. A critical challenge in multi-task learning is that the directions of gradient for
different tasks may conflict with one another, thereby making it difficult for the model to effectively
learn multiple tasks simultaneously (Crawshaw) 2020). To mitigate this potential problem, we have
explored integrating the gradient surgery technique proposed by Yu et al.|(2020) into our model.
This method resolves conflicts between gradients by subtracting a gradient by its projection onto the
gradient of another task, as illustrated in Equation (3), where g; and g; are the gradients of tasks i and
j respectively. We apply gradient surgery on the parameter updates within the BERT module, as this
module is shared across all three tasks. Specifically, within each batch during training, we update the
gradient for each task by projecting it onto the normal plane of the other two tasks and performing the
subtraction. By aligning the gradients in this manner, we aim to promote more harmonious updates
during the training process, ensuring that the gradients for each task interfere minimally with the
others.
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Adversarial Regularization. In an effort to enhance the generalization capability of our multi-task
learning framework, we have experimented with incorporating the Smoothness-Inducing Adversarial
Regularization technique, inspired by the SMART learning framework (Jiang et al.l [2020). This
regularization introduces an additional term AsR(#) to the standard task-specific training loss £(8),
where \; > 0 is a tuning parameter that specifies the weight of the regularization term, and Rs(9) is
defined as
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with € > 0 being a tuning parameter. The choice of the loss function /5 depends on the task type.
Following the original choice in SMART, we opt for the symmetric Kullback-Leibler divergence loss
(Joyce, 201 1)) for classification tasks and the MSE for regression tasks. The adversarial nature of the
regularization encourages the model to learn features that are less sensitive to small perturbations in
the input, thereby improving its ability to generalize well to unseen data.

Gradient Clipping. Gradient clipping is a widely employed technique in the training of deep neural
networks, serving as a complementary method to standard gradient descent. The objective of gradient
clipping is to limit the norm of the gradient to a predefined value ¢ > 0 at every iteration of the
training process. This is achieved by scaling the gradients by
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where g represents the gradient vector. By restricting the magnitude of the gradients, gradient clipping
effectively mitigates the potential issue of gradient explosion, a phenomenon particularly prevalent in
recurrent neural networks, as elucidated in (Goodfellow et al., 2016)). In the context of our multi-task
learning setting, gradient clipping helps prevent aggressive updates for individual tasks and ensures
that the updates for each task are balanced and controlled, thereby promoting a more stable and
effective learning process.

Mixture of Low-Rank Experts. In multi-task settings, fine-tuning a dedicated model for each
specific task can effectively train the model to specialize in that task and potentially maximize
performance. However, the fatal downside of this approach is the requirement of a separate model for
each task, which significantly increases the number of trainable parameters and training time. To
mitigate these challenges while still leveraging the benefits of specialized fine-tuning, we introduce
the Mixture of Low-rank Experts, a novel approach that utilizes Low-Rank Adaptation (LoRA)
to efficiently fine-tune a task-specific model for each task. Here we will update the weight of
corresponding layer into:

W =W, +BA ©6)



where W, represents the weight matrix obtained from pre-training, and A and B are the parameters
introduced during fine-tuning. Specifically, in our model we will decompose three weight matrices in
each BERT layer - interm_dense, attention_dense, and out_dense - into two low-rank matrices
each. This decomposition allows for more efficient fine-tuning, as the model only needs to update the
parameters in the low-rank matrices. The approach enables the model to maximize the performance in
each task while maintaining a manageable number of trainable parameters and avoiding a prolonged
training time.

S Experiments

Data. In this study, we employ three datasets corresponding to the three tasks under investigation.
For sentiment analysis, we employ the Stanford Sentiment Treebank (SST-5) (Socher et al.| | 2013)),
which contains 11,855 single sentences extracted from movie reviews. Each phrase in the dataset
is labeled as negative, somewhat negative, neutral, somewhat positive, or positive. For paraphrase
detection, we use the Quora Question Pairs (QQP) (Fernando and Stevensonl, |2008) dataset, which
consists of 404,304 pairs of sentences. Each pair is labeled as either a paraphrase of each other or
not. Finally, for semantic textual similarity, we utilize the Semantic Textual Similarity Benchmark
(STS-B) (Agirre et al., 2013), which contains 8,631 sentence pairs. Each pair in the STS-B dataset is
assigned a similarity score between 0 and 5. Each dataset is divided into TRAIN, DEV and TEST
subsets.

Evaluation method. For sentiment analysis and paraphrase detection, we utilize prediction accuracy
as the primary evaluation metric. In the case of the semantic textual similarity task, we employ the
Pearson correlation coefficient as the evaluation metric. This measure assesses the linear relationship
between the predicted similarity scores and the ground truth scores, with higher values indicating
a stronger positive correlation and hence better performance in capturing the semantic similarity
between sentence pairs. we normalize the correlation coefficient from its original range of -1 to 1 to a
range of 0 to 1 as its score. The overall score for a model is measured by the collective performance
of the three tasks, as illustrated by Equation (7).

1 1 1 Correlati 1
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Experimental details. In our experimental setup, we implement the BERT architecture and utilize
pretrained weights identified by "google-bert/bert-base-uncased" from the Hugging Face Transformers
library. To ensure a fair comparison between the various techniques, we maintain a consistent set of
hyperparameters during the model exploration stage, employing a batch size of 8, a hidden dimension
of 768, a dropout rate of 0.3 for the hidden layers, and a learning rate of le-5 with full model
fine-tuning. For optimization, we use the default Adam optimizer configuration with 5; = 0.9,
B2 = 0.99, and weight decay = 0. For Mixture of Low-Rank Experts with LoRA, we set the rank of
matrices as 256 and alpha = 32. All models are fine-tuned with the entire model without parameter
freezing. We train each model with 10 epochs, as we observe the loss typically converges before
reaching this point. We select the checkpoint with the highest overall score on the DEV dataset
for each model. Once the best-performing model is identified based on the initial experiments, we
conduct an additional hyperparameter tuning stage to further refine its performance.

Results. In Table|l] we present a comprehensive comparative analysis of the performance metrics
achieved by various methods across the three tasks: sentiment analysis (SA), paraphrase detection
(PD), and semantic textual similarity (STS). The cross encoding technique, which involves concate-
nating input sentences upfront to generate a unified embedding, significantly improves the baseline
performance, particularly for the STS correlation score, resulting in a substantial increase from
0.374 to 0.881. Further enhancement is observed when the interleaved training strategy coupled
with sampling is employed, leading to an overall score improvement of 1.7, reaching 0.778. This
improvement demonstrates the effectiveness of ensuring balanced learning across the tasks. Building
upon the foundation of cross encoding and interleaved training, we investigate the impact of applying
several techniques, among which adversarial regularization, contrastive learning, and gradient clip-
ping result in improvement of the overall score, with scores of 0.781, 0.783, and 0.787, respectively.
Gradient surgery, with a score of 0.777, does not demonstrate effectiveness in this setting. Notably,
gradient clipping yields the most significant performance improvement, elevating the score to 0.787.
Additionally, we explore the combination of contrastive learning-based pretraining with gradient



# Trainable SA PD STS | Overall
Model Parameters | Acc. Acc. Corr. Score
Baseline 112M 0.450 | 0.805 | 0.374 | 0.647
CE 112M 0.453 | 0.889 | 0.881 0.761
CE + Interleaved 112M 0.496 | 0.898 | 0.878 0.778
CE + Interleaved + Surgery 112M 0.495 | 0.894 | 0.883 | 0.777
CE + Interleaved + Regularization 112M 0.500 | 0.900 | 0.883 | 0.781
CE + Interleaved + Contrastive 112M 0.509 | 0.900 | 0.883 0.783
CE + Interleaved + Clipping 112M 0.518 | 0.901 | 0.883 | 0.787
CE + Interleaved + Clipping + Contrastive 112M 0.521 | 0.901 | 0.873 0.786
CE + Mixture + Clipping 336M 0.515 | 0.904 | 0.877 | 0.786
CE + Mixture + LoRA + Clipping 81M 0.499 | 0.886 | 0.846 | 0.769
| Best-model Test Performance [ [ 0523 1 0.901 [ 0.879 [ 0.788 |

Table 1: Performance comparison of various models on the DEV dataset and the best-performing
model’s evaluation on the TEST dataset. The models under consideration include Cross Encoding
(CE); Interleaved Training with Sampling (Interleaved); Gradient Surgery (Surgery); Adversarial
Regularization (Regularization); Gradient Clipping (Clipping); Contrastive Learning (Contrastive);
and Mixture of Low-Rank Experts (Mixture).

Learning Rate SA PD STS
le-3 0.253 | 0.631 | 0.040 Dropout Rate | SA PD STS
le-4 0.402 | 0.832 | 0.822 0.1 0.505 | 0.901 | 0.882
le-5 0.518 | 0.901 | 0.883 0.2 0.517 | 0.901 | 0.883
Se-5 0.458 | 0.873 | 0.868 0.3 0.518 | 0.901 | 0.883
le-6 0.504 | 0.888 | 0.878

Table 2: Best-model performance with various learning rates and dropout rates

clipping during the fine-tuning stage; however, the performance does not surpass that of gradient
clipping alone. In the hyperparameter tuning stage, presented in Table[2] we tested the performance
of the best model (CE + Interleaved + Clipping) for different learning rates and dropout rates, finding
that the default hyperparameters with a learning rate of le-5 and a dropout rate of 0.3 result in the
best performance. Finally, we applied our best model, validated on the DEV dataset, to the TEST
dataset and achieved a score of (0.788, which essentially maintains the same level as the score on the
DEV dataset, demonstrating the generalization capability of our model.

We also examine the performance of training each task individually. Interestingly, paraphrase
detection (PD) achieves a higher single-task score of 0.904 compared to the multi-task learning
score of 0.901. For sentiment analysis (SA) and semantic textual similarity (STS), both scores are
lower than those obtained through multi-task learning. We attribute this observation to the smaller
dataset sizes of SST-5 and STS-B for SA and STS, respectively, compared to the larger QQP dataset
for PD. In the multi-task learning setting, both SA and STS benefit from the knowledge learned
from the QQP dataset, resulting in improved performance. However, since PD already has the
largest dataset to learn from, it does not experience a substantial benefit from multi-task learning.
The number of trainable parameters in the single-task learning objective is 336M, triple that of the
multi-task learning paradigm. To reduce the number of trainable parameters, we employ Low-Rank
Adaptation (LoRA), resulting in 81M parameters, which is smaller than that of the base BERT
model. However, the performance after applying LoRA drops noticeably, achieving only 0.769. This
observation highlights the effectiveness of multi-task learning, which leverages a single model to
achieve more robust performance compared to training individual models separately, while also being
more parameter-efficient.

6 Analysis

Sentiment Analysis. Figure|la|shows the distribution of our model’s predictions of the sentiment
classes of the DEV dataset compared to the ground truth labels. While the model achieves high
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Figure 1: Model performance decomposition for Sentiment Analysis.

Sample ‘ True ‘ Predicted ‘ Characteristics
"I did not dislike the film, but it was far 2 3 Negation
from great."

"Not only unfunny, but downright 0 3 Negation
repellent.”

"Oh great, another movie about 2 4 Irony or Sarcasm
superheroes. Just what we needed."

Table 3: Failure cases for sentiment analysis

accuracy in the positive and negative cases, the error rate in the intermediate sentiment classes, namely
somewhat negative, somewhat positive, and neutral categories, is noticeably higher. Specifically,
the model predicts more somewhat negative and somewhat positive instances than the true labels,
while predicting fewer in the neutral class. We attribute this observation to two contributing factors:
firstly, the imbalanced training data distribution illustrated in [lc| which shows significantly more
samples in somewhat negative and somewhat positive, likely causing the model to become biased
towards these categories; and secondly, the model’s suboptimal performance on sentences with more
complicated semantics, such as double negatives and sarcasm. Table [3| presents two examples where
the model generates incorrect predictions. The first sentence expresses a double negative tone with
the phrase "did not dislike," while the second sentence employs sarcasm. These complex linguistic
phenomena pose challenges for the model in accurately capturing the intended sentiment. Despite
these limitations, Figure [Tb|reveals that the majority of the misclassified instances are only one class
away from the true label, indicating that the model possesses a reasonable level of understanding,
even in cases where it fails to predict the exact sentiment class.

Paraphrase Detection. Our model overall exhibits commendable performance for the paraphrase
detection task, achieving an accuracy of 90.1% with a false positive rate of 8.67% and a false negative
rate of 11.72%. Upon analyzing the failed cases, we observed that the model tends to predict "true"
for sentence pairs that share a significant number of identical words, even when these pairs often
express different or opposite meanings. Table [3] presents several examples with similar sentence
wordings and structures that mislead the model into believing they are paraphrases of each other. This
observation suggests that the model may have a higher reliance on word-level matching rather than
comprehending the underlying semantics and nuances of the sentences. Addressing this limitation
may requiring further scaling of the model size or using more effective learning objectives that
encourages the model to distinguish similar sentences with different semantic meaning.

Semantic Textual Similarity. Figure [2a] visualizes our model’s predictions compared to the ground
truth using a confusion matrix, with similarity scores divided into 5 buckets of width 1. Ideal
predictions would result in a high density along the diagonal axis of the confusion matrix. Our
model performs well for scores between 0-1, 3-4, and 4-5, with over 60% of predictions matching
the ground truth labels. However, for scores in the 1-2 and 2-3 ranges, the model’s performance is
suboptimal, with less than 50% of predictions falling within the same buckets as the ground truth.
This observation suggests that our model is more adept at recognizing highly similar sentences as well
as extremely dissimilar sentences, but struggles when distinguishing between somewhat similar and
somewhat dissimilar relationships. The imbalanced training dataset, with more samples in the 0-1,
3-4, and 4-5 ranges, likely contributes to this discrepancy. Addressing this imbalance by incorporating



Sentence 1

Sentence 2

Specific Reason

"How would Hillary Clinton
be as a president?"

"What would Hillary Clinton
do as the president?"

Topic Consistency but Differ-
ent Focus

"How do warm and cold
fronts form?"

"How does a cold front
form?"

Similar Structures with Dif-
ferent Contexts

Table 4: Failure cases for paraphrase detection

Sentence Similarity Distribution on Training Data
07 1593

Normalized Confusion Matrix on STS Dataset

Count

similarity Scores

(a) Semantic similarity confusion matrix (b) Distribution of sentence similarity scores

Figure 2: Model performance decomposition for Semantic Textual Similarity

diverse training samples across all score ranges could potentially improve the model’s performance
in distinguishing similarities and dissimilarities between sentence pairs.

7 Conclusion

In this work, we present a comprehensive exploration of various methods to address the challenges
in multi-task learning, focusing on a case study involving the fine-tuning of the pretrained BERT
model for three distinct downstream tasks: sentiment analysis, paraphrase detection, and semantic
textual similarity. Our evaluation demonstrates the effectiveness of our proposed approaches in
improving the collective performance of the multi-task learning objective. Moreover, our comparative
analysis of the results obtained from single-task training and multi-task fine-tuning reveals that the
latter approach achieves higher scores in individual tasks than the scores obtained from specialized
fine-tuning. This finding underscores the effectiveness of multi-task learning in leveraging shared
representations and knowledge across related tasks, ultimately leading to improved generalization
and performance.
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9 Ethical Considerations

‘We outline two ethical considerations related to our project.

Data Privary in Language Model Training. While there is an increasing trend of governmental
restrictions and public attention towards data privacy in the context of training language models, it
remains a fundamentally difficult problem to precisely detect whether a third-party model has used
private or copyrighted datasets in their training stage. In our project, we have leveraged pretrained
weights for the BERT model; however, except for the training data listed in the original BERT paper,



it is beyond our capabilities to ascertain whether this model has been trained with private data. This
problem is exacerbated when Al practitioners use pretrained weights from untrustworthy third parties,
who may be motivated to use grey-area data to improve the performance of their model, potentially
leading to the leaking of user private data.

Abusive Use of Model. The abusive use of the model is another crucial ethical consideration. While
our study focuses on utilizing language models to perform sentiment analysis on sentences, which can
be useful in applications such as detecting hate speech on social media platforms, the technology can
also be intentionally adapted to incorrectly categorize or tolerate certain biases. Due to the difficulty
in tracing the training process, the owners of the model can find excuses to evade responsibility for
their abusive use of the model. To mitigate this risk, it is imperative to ensure that models deployed
for public use or used for public platforms are thoroughly inspected.
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