Fasting NLP:Slimming Down Models with QLoRA

Stanford CS224N {Custom, Default} Project

Ricardo Carrillo
SCPD
Stanford University
racr@stanford.edu

Abstract

Abstract

The field of Natural Language Processing (NLP) has seen rapid advance-
ments, with models achieving exceptional performance in tasks such as
sentiment analysis, paraphrase detection, and semantic similarity. How-
ever, these state-of-the-art models often contain hundreds of millions of
parameters, making adaptation to new tasks computationally challenging
and prone to overfitting. Finetuning Large Language Models (LLMs)
like the LLaMA model, with 65 billion parameters, is resource-intensive,
requiring over 780 GB of GPU memory for standard 16-bit finetuning.
The QLoRA (Quantized Low-Rank Adapter) method introduces a novel
approach by demonstrating the feasibility of finetuning a quantized 4-
bit model without performance degradation. QLoRA employs high-
precision quantization to reduce a pretrained model to 4-bit and incor-
porates a small set of learnable Low-rank Adapter (LoRA) weights, en-
hancing efficiency and cost-effectiveness while preserving performance.
Our adaptation of QLoRA utilized the to_NF4 function to quantize the
linear layer applied to LoRA, applied to all linear layers except those
involved in specific NLP tasks. We also integrated extensions such
as annealed sampling, Sentence Concat for Paraphrase detection and
Semantic Textual Similarity, and SST Pre-Training with MASKED LM.
Despite not employing double quantization, our method demonstrated
that efficient quantization and dequantization functions are critical for
computational speed. Our GPU memory usage was significantly reduced
from 3760 MB to 1783 MB, highlighting the efficiency of our approach.
Experimental results showed improvements: sentiment analysis accuracy
on the SST dev set to 0.506, paraphrase detection to 0.9, and semantic
textual similarity to 0.882. These findings suggest that sophisticated regu-
larization methods could further enhance model performance, especially
for tasks like Paraphrase Detection and Semantic Textual Similarity.

1 Key Information to include

TA mentor: Neil Nie, External collaborators (No), External mentor (No),
Sharing project (No)

2 Introduction

The field of Natural Language Processing (NLP) has witnessed rapid advancements
in recent years, with models achieving unprecedented performance in a variety
of tasks such as sentiment analysis, paraphrase detection, and semantic similar-
ity. However, these state-of-the-art models often encompass hundreds of millions
of trainable parameters, making their adaptation to new tasks computationally

Stanford CS224N Natural Language Processing with Deep Learning

challenging (Maziarka and Danell 2021)). Furthermore, these models are prone to
overfitting and struggle with data scarcity issues (Chen et al.| [2024)) (Chen et al.,
2021). Multitask Learning (MTL) has been proposed as an effective strategy to
enhance language representations, improve model generalization, and optimize re-
source utilization to address these challenges. Among the various models employed
for multitask learning in NLP, BERT (Bidirectional Encoder Representations from
Transformers) (Devlin et al, 2019) has emerged as a leading choice due to its
robust performance across a wide range of tasks. A plethora of methodologies
have been explored to tackle the challenges associated with large models, leading
to substantial improvements in BERT-based multitask models. Finetuning Large
Language Models (LLMs) is a potent strategy to augment their performance and
customize their behaviors to cater to specific tasks. However, the finetuning process
for extremely large models, such as the LLaMA model with 65 billion parameters,
is exceptionally resource-intensive, requiring over 780 GB of GPU memory for
standard 16-bit finetuning. While recent quantization methods have successfully
reduced the memory footprint of LLMs, these techniques are typically confined
to inference and fail during training. The QLoRA (Dettmers et al., [2023)) paper
introduce, a novel method that overcomes this limitation by demonstrating the fea-
sibility of finetuning a quantized 4-bit model without any performance degradation
for the first time. QLORA employs a high-precision quantization technique to
reduce a pretrained model to 4-bit, and subsequently incorporates a small set of
learnable Low-rank Adapter (LoRA) weights. This innovative approach not only
enhances the efficiency and cost-effectiveness of finetuning but also preserves the
high performance of large language models. As a result, QLORA opens up new
avenues for more practical and scalable applications in NLP. This paper presents
the design, implementation, and evaluation of QLORA, providing a comprehensive
understanding of its potential and implications for the NLP community. This new
model, together with the challenge of the magnitude of the most recent LLM’s and
their fine-tuning motivate us to explore the QLoRA method in this project as well
as some tools for tuning models with imbalance in their datasets.

3 Related Work

The Bidirectional Encoder Representations from Transformers (BERT) model,
introduced by (Devlin et al.,[2019), has achieved state-of-the-art performance in
numerous Natural Language Processing (NLP) tasks. This model significantly
mitigates the requirement for labeled data by pre-training on unlabeled data across
various tasks. Initially, BERT is trained on plain text for masked word prediction
and next sentence prediction tasks, a phase referred to as pretraining. Subsequently,
it is fine-tuned on a specific linguistic task with additional task-specific layers using
task-specific training data.

In 2019, Liu et al. proposed a multitask learning framework for BERT that concur-
rently learns to classify multiple text attributes, such as pairwise text classification
and text similarity. The lower layers, which are the text encoding layers, are shared
across all tasks, while the top layers are task-specific, integrating different types of
Natural Language Understanding (NLU) tasks.

QLORA, on the other hand, achieves high-fidelity 4-bit fine-tuning through two
proposed techniques—4-bit NormalFloat (NF4) quantization and Double Quanti-
zation. QLORA utilizes one low-precision storage data type, typically 4-bit, and
one computation data type, usually BFloat16. In practical terms, this implies that
whenever a QLORA weight tensor is utilized, the tensor is dequantized to BFloat16,
followed by a matrix multiplication in 16-bit.

Furthermore, (Stickland and Murray, |2019) proposed an innovative method for
scheduling training. Initially, the tasks are sampled proportionally to their training
set size. However, to avoid interferences, the weighting is reduced to enable tasks
to be sampled more uniformly. This approach ensures a balanced representation of
all tasks during the training process.

4 Approach

4.1 Annealed Sampling. In our evaluation of the base model, we observed signifi-
cant disparities in accuracy across different subtasks, we achieved SST Dev: 0.302,
Para Dev: 0.696 and STS Dev: 0.272. Paraphrase detection achieved the highest
accuracy, followed by semantic textual similarity, with sentiment classification
exhibiting the lowest performance. These discrepancies can be attributed to the
varying amounts of training data available for each task: 141,498 examples for
paraphrase detection, 8,544 for sentiment analysis, and 6,040 for semantic textual
similarity. This finding underscores a limitation of the base model’s round-robin
training approach. As noted by (Stickland and Murray,, 2019)), this method, which
samples batches from each dataset in a predetermined sequence, may deplete
smaller datasets prematurely, potentially hindering the training process. Annealed
sampling presents a viable solution by selecting tasks based on the dataset size,
modeled as:
p; < N

where p; represents the probability of selecting a batch from task ¢, and N; denotes
the number of training examples in task 7. We adopt (Stickland and Murrayl, [2019))
definition for a:

e—1

E-1
where e is the current epoch and F is the total number of epochs. This scheme
prioritizes training tasks with larger datasets at the onset of training. As training
progresses, the probability of selecting each task becomes more uniform, ensuring
that no task disproportionately dominates the training process. This approach
mitigates the risks of overfitting and underfitting, thereby enhancing the overall
model performance.
4.2.- Sentence Concat for Paraphrase detection and Semantic Textual Similar-
ity In the realm of Natural Language Processing, tasks such as Semantic Textual
Similarity and Paraphrase Detection necessitate the evaluation of a pair of input
sequences to yield a prediction. This presents a formidable challenge for models
like BERT, which are traditionally architected to process single input sequences.
Originally, we took the diagonal of the embedding multiplication as the similarity
between embeddings, with very low than expected results. To surmount this ob-
stacle, we use the bi-encoding strategy, as delineated by (Reimers and Gurevych|
2019), which independently processes each input sequence via BERT. Subse-
quently, the embeddings derived from each sequence are amalgamated to generate
a prediction pertinent to the sentence pair. The method of combination is contingent
on the task at hand: for paraphrase detection, the embeddings are concatenated
and a linear classifier is employed, while for semantic textual similarity, the cosine
similarity between the two embeddings is utilized as a measure of resemblance.

—JLX]

4.3 SST Pre-Training with MASKED LM After several iterations, we observed
that the SST accuracy remained around 0.5. To address this, we included a pre-
training phase using the same dataset before commencing the multi-task training.
This pre-training was conducted using MASKED LM, as suggested by Devlin et al.
Specifically, the method follows:

a=1-0.8

The training data generator chooses 15% of the token positions at random
for prediction. If the i-th token is chosen, we replace the i-th token with
(1) the [MASK] token 80% of the time, (2) a random token 10% of the

time, (3) the unchanged i-th token 10% of the time. Then, T; will be
used to predict the original token with cross entropy loss.

After implementing this method for approximately 20 epochs, the multi-task
training began. Despite increasing the training speed, this effort did not achieve the
expected improvement in accuracy performance.

4.4 QLoRA(Quantized Low-Rank Adapter) is an innovative approach to efficiently
finetune large language models (LLMs) while significantly reducing memory usage.
This method enables the finetuning of models with up to 65 billion parameters on a
single 48GB GPU, maintaining the performance of full 16-bit finetuning.

QLoRA introduces several key innovations:

1. 4-bit NormalFloat (NF4) Quantization: This data type is optimized for
normally distributed weights, ensuring equal value distribution across quanti-
zation bins. NF4 resizes the input tensor to fit a fixed range, preserving the
precision of the quantized data.

2. Double Quantization: This technique reduces memory usage by quantizing
the quantization constants. It applies a second layer of quantization, lowering
the bit requirement per parameter and saving memory.

3. Paged Optimizers: These optimizers handle memory spikes during gradient
checkpointing using NVIDIA’s unified memory feature, which automatically
transfers memory between CPU and GPU. This prevents out-of-memory errors
and allows efficient processing of large models on single GPUs.

QLoRA operates by backpropagating gradients through a frozen, 4-bit quantized
pretrained model into Low-Rank Adapters (LoRA). LoRA adapters are small sets
of trainable parameters that enhance the fixed pretrained model weights. During
finetuning, gradients pass through the fixed model weights to the adapters, which
are updated to optimize the loss function, maintaining high performance with
reduced memory overhead.

Our adaptation of QLoRA from scratch does not include all the functionalities
described in the original paper. We used the to_NF4 function to QLorize the linear
layer applied to LoRA, whose weights had to be quantized in the forward method.
The QLoRA paper suggests applying the method to all linear layers: “we find that
the most critical LORA hyperparameter is how many LoRA adapters are used in
total and that LoRA on all linear transformer block layers,” unlike LoRA, which
in its paper suggests applying LoRA only to the attention layers. In our case, we
applied the method to all linear layers except the ones included for the NLP tasks
(SST, PARA, STS).

Although we experimented with several custom functions to quantize and de-
quantize, we ultimately used methods from the Torchstone library: to_nf4 for
quantization and linear_nf4 for dequantization. Below, we show our forward
method inside the QLoRALayer class.

rd(self, x):

x .to(device)
.linear_weight = nn.Parameter(.linear_weight.to(device))
frozen_out = linear_nfu(x, .linear_weight).to(device)

lora_out = -lora_A(.lora_B(.dropout(x))).te(device)

frozen_out + (.alpha / .rank) * lora_out

Even though our method did not double quantize, it took almost twice as long
to run as our training without QLoRA, highlighting the importance of efficient
quantization and dequantization functions for computational speed. However, our
GPU memory usage was reduced from 3760 MB to 1783 MB, as monitored with
the nvidia-smi command on our VM.

Figure 1: NON-QLORA TRAINING
GPU MEMORY MEMORY

S Experiments
This section contains the following.

5.1 Data

For the First phase of the project we used Stanford Sentiment Treebank (SST)
(Socher et al.,|2013) and the CFIMDB dataset for Sentiment Analysis. SST has
215,154 phrases but we will use a subset of 11,855 samples: train (8,544), dev
(1,101), and test (2,210). CFIMDB has 2,434 samples: train (1,701), dev (245), and
test (488). For the second phase of the project where we develop the extensions, we
used The Stanford Sentiment Treebank Dataset (SST) consists of movie reviews
(9,645 examples) from Rotten Tomatoes. Specifically, we employ fine-grained
sentiment analysis, SST-5, where sentiments range from O (negative) - 4 (positive)
with train (8,544 examples), dev (1,101 examples), test (2,210 examples),.we have
available for Paraphrase Detection the Quora Dataset with 404,298 question pairs:
train (283,010), dev (40,429), and test (80,859). For Semantic Textual Similarity
(STS), we will use the SemEval STS Benchmark dataset with train (6,040), dev
(863), and test (1,725).

5.2 Evaluation method

For the tasks Sentiment Analysis and Paraphrase Detection, accuracy is the evalu-
ation metric evaluation, and for the Semantic Textual Similarity (STS) tasks, we
will use the Pearson correlation coefficient.

5.3 Experimental details

Report how you ran your experiments (e.g., model configurations, learning rate,
training time, etc.)

Figure 2: QLORA TRAINING GPU

TEST FINE-TUNE LR EPOCHS | SSTDEV | PARA DEV | STSDEV | DROPOUT
1 FULL MODE 1.00E-05 10 0.302 0.696 0.272 0.3
2 FINE TUNING | 1.00E-03 10 0.41 0.629 0.457 0.3
3 FULL MODE 1.00E-05 10 0.5 0.829 0.874 0.3
4 FULL MODE 1.00E-05 20 0.486 0.845 0.882 0.3
5 FULL MODE 1.00E-05 10 0.506 0.9 0.882 0.3
6 FULL MODE 1.00E-05 5 0.498 0.9 0.883 04
7 FINE TUNNING | 1.00E-03 3 0.393 0.67 0.284 0.3
8 FINE TUNNING | 1.00E-03 3 0.379 0.675 0.334 03
9 FULL MODE 1.00E-05 10 0.48 0.868 0.864 0.4
10 FULL MODE 1.00E-05 10 0.491 0.9 0.879 0.4

Table 1: Results for 10 Test Part 1/2

TEST | TYPE OF SAMPLING | BATCH | PARA PREDICTION | STS PREDICTION | PRE-TRAIN STS
1 ROUND ROBIND 8 MATRIX DIAGONAL | MATRIX DIAGONAL NO
2 ANNEALED SAMP. 8 MATRIX DIAGONAL | CONCATENATION NO
3 ANNEALED SAMP. 8 MATRIZ DIAGONAL | CONCATENATION NO
4 ANNEALED SAMP. 16 MATRIZ DIAGONAL | CONCATENATION NO
5 ANNEALED SAMP. 8 CONCATENATION CONCATENATION NO
6 ANNEALED SAMP. 8 CONCATENATION CONCATENATION NO
7 ANNEALED SAMP. 8 CONCATENATION CONCATENATION YES-PARTIAL
8 ANNEALED SAMP. 8 CONCATENATION CONCATENATION YES
9 ANNEALED SAMP. 8 CONCATENATION CONCATENATION YES
10 ANNEALED SAMP. 8 CONCATENATION CONCATENATION YES

Table 2: Resuls for 10 Tests Part 2/2

5.4 Results

Report the quantitative results that you have found. Use a table or plot to compare
results and compare against baselines.

* Our results reported in Test and Test Leaderboard are SST test accuracy:
0.503, Paraphrase test accuracy: 0.899, STS test correlation: 0.877. The
position in the Dev Leaderboard at the moment is 37th.

* The values are a little lower than expected especially for the SST case, I think
that the regularization method could have helped to improve the accuracy. The
time factor played a role.

* The topical time for a Full Mode Training was about 10 hours.

* The parameters changes because the New Lora Layers we have :Original pa-
rameter count: 109483778, QLoRA parameter count: 120115202, Parameter
increase after QLoRA: 9.71

6 Analysis

Analyzing the results shows that there is a lot of room to work on the Analysis
Sentiment SST dataset, starting with regularization. The accuracy percentage
with respect to the training set could reach 99.99% in the 5th epoch while the
accuracy with the dev set was still in the high 80’s, implying that regularization
was necessary. I thought that adding a higher dropout of 0.3 to 0.4 was like a
“brute force” measure for regularization but no, more sophisticated regularization
is needed. Also, better regularization could further improve Paraphrase Detection
and Semantic Textual Similarity.

7 Conclusion

An important finding was to use methods in the difficulty of handling unbalanced
datasets, also of the multiple fine-tuning techniques it is an art to find the techniques
with the most impact. A limitation to use QLoRA in all layers including the NLP
tasks, was the SCALE that was set to 64, changing it to degrade the accuracy and
make it dynamic could be a major commitment for the project time. The QLora
method may not have the expected speed impact depending on the quantization
library to NF4, future exploration on the creation of libraries to convert data types
could be interesting.

8 Ethics Statement

Challenges and possible Mitigations strategies As mitigating strategies, the use of
tools such as the one proposed by (Bolukbasi et al.,2016)) developing algorithms for
"debiasing" training corpora are fundamental. From my point of view promoting
the proper use of these models could be propelled from 3 areas of society, academia,
government regulatory framework, and private sector. The academia stimulating

research in this area, the government promoting with fiscal benefits the Non BIAS
Certification of Al Applications, and the private sector encouraging the creation of
an Ecosystem of Companies whose purpose is to certify third-party applications as
Non BIAS. The consumers would prefer a Non-BIAS Certified app.

References

Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam
Kalai. 2016. Man is to computer programmer as woman is to homemaker?
debiasing word embeddings.

Shijie Chen, Yu Zhang, and Qiang Yang. 2024. Multi-task learning in natural
language processing: An overview,

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
Qlora: Efficient finetuning of quantized llms.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert!
Pre-training of deep bidirectional transformers for language understanding.

Lukasz Maziarka and Tomasz Danel. 2021. Multitask learning using bert with
task-embedded attention. In 2021 International Joint Conference on Neural
Networks (IJCNN), pages 1-6.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks|

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1631-1642,
Seattle, Washington, USA. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention
layers for efficient adaptation in multi-task learning.

A Appendix (optional)

If you wish, you can include an appendix, which should be part of the main PDF,
and does not count towards the 6-8 page limit. Appendices can be useful to supply
extra details, examples, figures, results, visualizations, etc. that you couldn’t fit
into the main paper. However, your grader does not have to read your appendix,
and you should assume that you will be graded based on the content of the main
part of your paper only.

http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/1607.06520
http://arxiv.org/abs/2109.09138
http://arxiv.org/abs/2109.09138
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1109/IJCNN52387.2021.9533990
https://doi.org/10.1109/IJCNN52387.2021.9533990
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix (optional)

