
StudentBERT: Multitask Training with Teacher
Models

Stanford CS224N Default Project

Shang Jiang
Department of Computer Science

Stanford University
zcyy2022@stanford.edu

Shengtong Zhang
Department of Mathematics

Stanford University
stzh1555@stanford.edu

Abstract

In this project, we explore a variety of techniques that significantly improve the
performance of minBERT — a pretrained language model — on three downstream
tasks: sentiment analysis, paraphrase detection, and sentence similarity. We find
that applying Cross-Encoding on sentence inputs, Round Robin as training schedule,
SIAR as regularization and Model Merging as overall training approach yields the
biggest improvement on the model’s performance. We achieve a score of 0.79 on
the test dataset without ensembling, and hold 14th on the test leaderboard at the
time of writing.

1 Key Information to include
• Mentor: Olivia Lee
• External Collaborators (if you have any): N/A
• Sharing project: N/A
• Team contributions: The team members contributed equally to the project code and report.

2 Introduction

In recent years, large language models (LLMs) like BERT and ChatGPT has found numerous
applications. Since it is prohibitively expensive to train an LLM from scratch, most applications take
an off-the-shelf pre-trained LLM and finetune it on specific downstream tasks. To reduce the cost of
finetuning and model inference, we often wish to finetune a single LLM to perform multiple tasks
simultaneously. Data scarcity is common for domain-specific applications.

In this CS224N default project, we finetune a pre-trained minBERT model on three downstream
tasks: sentence sentiment classification (SST), paraphrase detection (PARA), and sentence similarity
(SEN). Our main challenges include

1. PARA and SEN are sentence pair tasks, while minBERT models are designed to take only
one input sentence. Finding the best way to deal with this discrepancy is a non-trivial task.

2. SST and SEN suffer from data-scarcity, with less than 10,000 training samples for each of
them. Aggressive fine-tuning for these two tasks can easily lead to over-fitting and poor
generalization Jiang et al. (2020).

3. While PARA and SEN are similar tasks, SST is very different from them. It is a notoriously
difficult optimization problem Yu et al. (2020) to learn a shared embedding that performs
well for different tasks.

We experiment with several approaches for dealing with these challenges. We encode the sentence
pair tasks using cross-encoding (CE), merging the two sentences into one before passing it to the

Stanford CS224N Natural Language Processing with Deep Learning



model. We use Smoothness-Inducing Adversarial Regularization(SIAR) Jiang et al. (2020) to increase
model robustness and mitigate overfitting. We employ a Round Robin (RR) Training Schedule to
train over multiple tasks simultaneously. Furthermore, we develop a Model Merging(MM) approach,
inspired by knowledge distillation Hinton et al. (2015), to reduce tradeoff and train a single minBERT
embedding with high performance across multiple tasks.

3 Related Work

Sentence Pair Tasks Cross-encoding is the same approach used in the original BERT paper Devlin
et al. (2019). A parallel approach is bi-encoding, pioneered by Reimers and Gurevych (2019) for
pre-trained LLMs. In their approach, the two sentences are separately passed into BERT models
with tied weights to produce embeddings u and v. They are then passed to either a cosine similarity
function or a Siamese network to produce the final similarity score. Bi-encoding allows exceptional
performance for pair-regression tasks, where the objective is to find two most similar sentences
among a pool of n sentences. However, our experiments show that bi-encoding performs poorly for
our specific PARA and SEN tasks, so we stick with cross-encoding.

SIAR The adversarial regularization technique lies at the intersection of two active fields of
machine learning: preventing overfitting and defending against adversarial attacks. Many alternative
approaches have been developed to prevent overfitting in data-sparse finetuning. For example,
Howard and Ruder (2018) propose learning rate tuning tricks including discriminative fine-tuning
(where different layers are tuned with different learning rates) and slanted triangular learning rates
(where learning rates first increases then decreases). Another major development is Low-Rank
Adaptation(LoRA) Hu et al. (2022), where the parameters of each layer are restricted to a low rank
perturbation.

There is a large body of works on how adversaries can manipulate the input of large language models
to create malicious output. For example, just last year Zou et al. (2023) show attacks that inject
objectionable contents into commercial LLMs including ChatGPT, Bard and Claude. The authors of
SIAR Jiang et al. (2020) test SIAR-trained models on an adversarial dataset ANLI Nie et al. (2020)
and report improvement over the default BERT model. We point out that more effective approaches
such as explanation prompting Kavumba et al. (2023) have been developed.

Training Multiple Tasks Perhaps the most straightforward way to maximize model performance
across multiple tasks is the sum-of-loss approach, where the optimization objective is simply the sum
of the loss function of each individual task. Our baseline model applies a direct gradient descent
on this optimization objective. Yu et al. (2020) introduces gradient surgery as a better algorithm
to optimize the sum-of-loss objective, though unfortunately we do not have time to attempt this
approach.

We cannot find a published work that analyses our round-robin training approach. Teams from
previous years Le and Lin (2024); Zhang and Duan (2024) have found this approach to be useful.

Model Merging Model merging is a relatively new concept in the study of LLMs Goddard et al.
(2024). In our case, we are interested in merging multiple large language models with identical
architecture and initialization that have been fine-tuned to different tasks (Section 2.2.1 of Goddard
et al. (2024)). Our approach, which regularizes the student model by the KL divergence with a teacher
models, is pioneered by Kim and Rush (2016) in the knowledge distillation(KD) literature for neural
machine translation. This approach is used by Khanuja et al. (2021) to merge multiple monolingual
LLMs into a single multilingual LLM. Recently, Gu et al. (2024) adapts Kim and Rush (2016)’s work
to LLMs by replacing the KL divergence with the reverse KL divergence. Their work focuses on
training a smaller language model with a larger language model, and they do not mention model
merging in their work. We believe that our application of Model Merging to the default project is an
original idea.

Other approaches to model merging are based on weight averaging, such as linear averaging of
weights and Drop And REscale (DARE) Yu et al. (2023).

2



4 Approach

Our project uses the default minBERT model which follows the architecture in the original BERT
paper Devlin et al. (2019): it consists of a word embedding layer and 12 BERT encoder layers. Each
BERT encoder layer has a multiheaded attention mechanism, an additive & normalization layer with a
residual connection, a feed-forward layer, and another additive & normalization layer with a residual
connection. This model is denoted as Bert(·). It outputs a D = 768 dimensional embedding vector.
To finetune the minBERT model, we add on top of the base minBERT model three attached heads
HSST, HPARA, HSEN for the three downstream tasks.

We do not consider model ensembling and voting, where multiple minBERT models are used to
handle different tasks. Indeed, such approaches would double the training and inference costs in
practice. Instead, we focus on exploring how a single minBERT model can generate good embeddings
for the three tasks simultaneously.

4.1 Baseline Model

We want to set a relatively high bar for our baseline so that we can explore more advanced techniques
for further improvement. For our baseline model, we use cross-encoding and sum-of-loss. We next
provide a complete description of our baseline architecture, loss function and training method.

The SST tasks is a single sentence sentiment classification task with C = 5 classes, so our choice of
HSST is a D × C dense linear layer. Given input sentence s, our model outputs logits

ŷSST(x) = HSST(Bert(x)).

The PARA and SEN tasks are sentence pair tasks with a single output logit. The heads HPARA and
HSEN are both two-layer dense linear networks with a hidden layer of size 32 and a single output. We
further use a ReLU function to ensure that the output of SEN is non-negative. For input sentences
x1, x2, our model outputs the logits

ŷPARA(x1, x2) = HPARA(Bert(x1 + [SEP] + x2)),

ŷSEN(x1, x2) = ReLU(HSEN(Bert(x1 + [SEP] + x2))).

For each task s ∈ {SST,PARA,SEN}, our ground-truth (gt) loss function can be described as

Ls,gt =
1

n

n∑
i=1

ℓs,gt(yi, ŷs(xi))

where {(xi, yi)}ni=1 are the labeled training samples. As SST and PARA are classification tasks, we
choose ℓs,gt to be the Cross-Entropy loss for SST and Binary Cross-Entropy(BCE) loss for PARA.
For SEN, given that the evaluation metric is the correlation coefficient which captures linearity, we
use the Mean-Squared Error(MSE) loss function as ℓs,gt. In the baseline we simply take Ls = Ls,gt

as the loss function for each task.

Finally, we train our baseline model by performing gradient descent on the sum of three losses

L = LSST + LPARA + LSEN.

4.2 SMART Regularization

To mitigate overfitting, we implement Smoothness-Inducing Adversarial Regularization (SIAR)
following Jiang et al. (2020). For the readers’ convenience, we restate their algorithm.

For each task s, SIAR adds a “smoothness-inducing adversarial regularizer" Ls,siar to the ground-
truth loss function Ls,gt

Ls = Ls,gt + λsLs,siar

where λs is a tunable parameters. Ls,siar is defined in terms of the model parameter θ as

Ls,siar(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥∞<ϵ

ℓs(ŷs(x̃i; θ), ŷs(xi; θ))

3



where ℓs is a measure of divergence. For SST and PARA, the model outputs a probability distribution,
so following Jiang et al. (2020), ℓs is chosen as the symmetrized KL-divergence

ℓs(ỹ, y) = DKL(ỹ∥y) +DKL(y∥ỹ).

For SEN, the model outputs a linear measure of similarity, so ℓs is chosen as the MSE loss

ℓs(ỹ, y) = (ỹ − y)2.

Jiang et al. (2020) suggests augmenting SIAR with Bregman Proximal Policy Optimization(BPPO).
However, we find that BPPO does not work well with Round-Robin training, so we decide to not use
it in our final model (we do use it when training a teacher model for MM below.)

4.3 Round-Robin(RR) Training

We implement Round-Robin training as a better alternative to sum-of-loss training (see section 5.4).
Each epoch, we first iterate through the entire SST dataset, optimizing only LSST. We then repeat
this on the PARA and the SEN datasets. After running this process for enough epochs, we take the
best model, and run a few more epochs of fine-tuning on the SST head HSST only.

4.4 Model Merging (MM)

In the Model Merging approach, we first train three models each to optimize the performance on a
single task – SST, PARA or SEN. Then we use these three models as the teacher models to jointly
train a new student model. The performances of the three teacher models are detailed below.

To make the student model learn from the teacher models, we introduce a new loss function Ls,teachers .
In each epoch for each task s, we sample a mini-batch of training data and pass it the student and
teacher models. Then we measure the divergence between the predictions from the student model
and from the teacher model, using the same loss function ℓs as in SIAR

Ls,teacher(θ) =
1

n

n∑
i=1

ℓs(ŷs(xi; θ), ŷs(xi; θteacher)).

Our final loss function for each task s ∈ {SST,PARA,SEN} looks like

Ls = Ls,gt + λsLs,siar + γLs,teachers

where recall that Ls,gt is the ground-truth loss function, Ls,siar is the SIAR regularization, γ is the
tunable parameter for teacher-student loss, and teachers is the teacher model for the task s.

5 Experiments

5.1 Data

We use the default datasets provided for the project with no extra data.

• Stanford Sentiment Treebank (SST-5) dataset consists of 11,855 single sentences from
movie reviews extracted from movie reviews. Each phrase has a label of negative, somewhat
negative, neutral, somewhat positive, or positive. The dataset has 8,544 train examples,
1,101 dev examples, and 2,210 test examples.

• Quora Question Pairs (QQP) dataset consists of 404,298 question pairs with labels indicating
whether particular instances are paraphrases of one another. The dataset has 283,010 train
examples, 40,429 dev examples, and 80,859 test examples. In the earlier stages of the
project, we sample a subset of QQP consisting of 32,000 training examples. We write
SMALL whenever we use this smaller dataset.

• SemEval STS Benchmark dataset consists of 8,628 different sentence pairs of varying
similarity on a scale from 0 (unrelated) to 5 (equivalent meaning). The dataset has 6,040
train examples, 863 dev examples, and 1,725 test examples.

4



5.2 Training and Evaluation

For all experiments unless noted otherwise, we use the default AdamW optimizer with the default
learning rate of 1e− 5. We use the default batch size of 8 and train until the model converges.

We use the default evaluation metrics provided in the project handout. Specifically, For SST and
PARA, we compute the accuracy computed between true labels and predictions. For SEN, we use the
Pearson correlation coefficient between the true values and predictions. The formula for the overall
score is

1

3
· SST+

1

3
· PARA+

1

6
· (SEN+ 1).

5.3 Bi-encoding vs. Cross-encoding

On SMALL, we compare the bi-encoding approach of Reimers and Gurevych (2019) with our baseline
cross-encoding approach. The result shows the clear advantage of cross-encoding.

SST PARA SEN Overall
Baseline 0.502 0.841 0.862 0.758
Bi-Encoding 0.508 0.769 0.768 0.720

5.4 SIAR Hyperparameter Experiment

For SIAR, we experiment with different values of the hyperparameter λs. For each experiment we
use Cross-Encoding and set the max number of epochs as 20. The table below summarizes the dev
accuracies (SMALL) of the three tasks under different λs values.

λs SST PARA SEN Overall
0.01 0.486 0.838 0.857 0.751
0.1 0.484 0.848 0.855 0.753
0.5 0.494 0.832 0.858 0.752
2 0.520 0.833 0.870 0.763
3 0.530 0.826 0.867 0.763
5 0.510 0.798 0.867 0.747

The result shows that the performance is best when λs = 2 or λs = 3. Furthermore, λs = 3 performs
better when we only consider the data-scarce tasks SST + SEN, which are the tasks where SIAR is
expected to be more useful. Therefore, we choose to use λs = 3 in our full dataset training.

5.5 Sum-of-Loss vs. Round-Robin Experiment

We identify a few limitations of the sum-of-loss approach.

• The sum-of-loss approach requires loading batches for all three tasks simultaneously in
each training epoch. Due to our limited GPU resources, this often results in CUDA out-of-
memory errors. Although we attempted to reduce the batch size, this adjustment led to a
longer and less efficient training process.

• We observed that the dev accuracy of PARA is capped, regardless of the number of training
epochs. We believe this occurs because the sum-of-loss method averages the losses of all
three tasks, which prevents any single task from reaching its optimal performance level.

Based on these limitations, we decide to experiment with Round-Robin approach. The table below
compares their performances.

SST PARA SEN Overall
SIAR + Sum-of-Loss 0.530 0.872 0.873 0.779
SIAR + RR(before SST tuning) 0.477 0.897 0.869 0.770
SIAR + RR 0.518 0.897 0.870 0.783

During the round robin phase, we observe a tradeoff between SST and PARA dev accuracy. We
believe this is due to the following reasons:

5



• PARA and SEN are similar tasks, so they mutually enhance each other’s performance.
Because we use MSE loss for the SEN task, its loss is larger, and we observe that the model
for the SEN task converges very fast within the first few epochs. This in turn benefits the
PARA task.

• PARA has much more data compared to SST, resulting in significantly more iterations for
PARA training in each epoch. Training on the PARA task optimizes the model’s parameters
in a way that is highly advantageous for PARA’s predictions.

5.6 Model Merging Experiment

Finally, we implement our model merging approach. We first train three teacher models, designed to
maximize performance on each specific task.

• SST: We train on the SST dataset alone using SIAR and BPPO.

• PARA: We train on PARA and SEN datasets jointly using SIAR and Round-Robin.

• SEN: We train PARA and SEN datasets jointly using SIAR, Round-Robin, and a random
sample of the PARA training dataset per epoch.

Then we train a single student model using SIAR, Round Robin, and our model merging algorithm
defined in Section 4.4. Below we compare the performance of our models between the teacher models
and the student model.

SST PARA SEN Overall
SIAR + RR 0.518 0.897 0.870 0.783
Teachers 0.550 0.904 0.878 0.798
SIAR + RR + MM 0.544 0.899 0.875 0.794

5.7 Summary of Results

The table below summarizes the dev dataset accuracies of our key approaches.

Approach SST PARA SEN Overall
Baseline 0.510 0.881 0.859 0.773
SIAR 0.530 0.872 0.873 0.779
SIAR + RR 0.518 0.897 0.870 0.783
SIAR + RR + MM 0.544 0.899 0.875 0.794

Our best model is the last model that uses Cross-Encoding, SIAR, Round-Robin and Model Merging
approaches. The test dataset accuracy of our best model is

SST PARA SEN Overall
SIAR + RR + MM (Test) 0.533 0.897 0.872 0.790

6 Analysis

6.1 Sentiment Classification Analysis

To understand why the performance on SST is much worse than the other two tasks, we create a
confusion matrix of SST predictions.

We observe that:

• The model is good at differentiating between good (class 0 or 1) and bad (class 3 or 4)
reviews.

• The model is NOT good at predicting a review is neutral when it’s truly neutral.

• The model is NOT good at differentiating class 0 from class 1.

• The model is NOT good at differentiating class 3 from class 4.

6



0 1 2 3 4
0 62 69 6 62 0
1 44 204 27 14 0
2 10 77 72 58 12
3 2 23 35 158 61
4 0 7 4 56 98

Table 1: Confusion matrix for SST dev. Each value at position (i, j) is the number of examples with
true class i that were predicted to be class j.

We read some of the movie reviews in the SST training dataset ourselves together with logits predicted
by our model. See Table 2 for an example. Surprisingly, we find that we often agree more with
the model’s logits than with the ground truth labels. Because of the ambiguous nature of these
movie reviews and the subjectivity of human evaluation, the model’s performance on the SST task is
expected.

6.2 Model Merging Analysis

The regular loss function captures the difference between the predictions and the ground truth labels
of the training data, which are discrete. The teacher-student loss function captures the difference
between the predictions from the student and the logit outputs from the teacher models, which are
float numbers. The latter provides richer information than the "hard" labels in the former. As an
analogy, learning from the ground truth is like reading a solution manual that only tells you the
answer, while learning from the teacher model is like learning the solution from a TA. There are a
few implications:

• The logits from the teacher models is a more accurate labeling of the training data compared
with the ground truth labels. For example, in a binary classification task, 70% of human
annotators think the sentence is positive and the remaining 30% think it as negative. The
ground truth label is 1, but a good teacher model’s logit can capture the 70% vs 30%
distribution information that the "hard" label does not.
In our scenario, the SST dataset is very noisy, and we can easily find several examples where
the teacher logits paint a more accurate picture than the provided labels. See Table 2.

• The additional teacher-student loss function is more "sensitive". For example, without the
additional loss function, the student model may be able to correctly predict the label and the
regular loss function gets smaller, so the student model slows down the learning. But it may
not correctly capture the true distribution of the data. With the additional teacher-student
loss function, the student can continue learning and improving.

• The additional loss function provides regularization, ensuring that the student model does
not diverge too much from any of the teacher models and avoid overfitting the training data.

Sentence Label Logits
the rock is destined to be the 21st century ’s
new “conan” and that he ’s going to make a
splash even greater than arnold schwarzenegger,
jean-claud van damme or steven segal.

3 [-1.66, -1.12, -0.43, 2.15, 2.31]

dramas like this make it human . 4 [-1.94, -0.85, 0.73, 2.51, 0.84]
you should pay nine bucks for this : because you
can hear about suffering afghan refugees on the
news and still be unaffected.

2 [0.45, 1.21, 1.42, -0.53, -1.72]

Table 2: SST training samples where the teacher model’s logits are more reasonable than the ground
truth label. The first sentence appears more positive than the second, yet the labels indicate otherwise.
The third sentence leans on the negative side, yet is labeled 2(neutral).

7



6.3 Paraphrase Detection Analysis

We look at some examples in the dev dataset, and we find that our model incor-
rectly predict some sentence pairs as paraphrases when they are not. For example, the
pair of sentences how hard is it to double major in mechanical engineering and
physics? and is it wise to double major in mechanical engineering and physics
considering my interests? are not paraphrases. Another example is the pair of is
it possible to see who has viewed my profile page? and can you see who viewed
your profile on quora?. These examples show that the model is limited in understanding the
different semantic meanings the two sentences convey when they have very similar structures.

6.4 Sentence Similarity Analysis

Our model achieves a strong correlation. There are a few cases where the prediction differs signifi-
cantly from the label due to named entity recognition issues. For example, in the pair of sentences
carney sets high bar to change at boe and carney sets high bar to changes at
bank of england, the label is 5 because boe is the acronym for bank of england. But the
model does not have such information and it thinks the two terms are distinct entities, and it gives
a prediction score of 2. Another example is the pair of sentences amazon launches new device
for streaming video and amazon unveils new fire tv streaming video box. The la-
bel score is 4, since “fire tv streaming video box" refers to the “device" in the first sentence. But the
model fails to establish such relationship and gives the pair a score of 2.6.

7 Conclusion

In this paper, we present effective training approaches that enhance the multitask learning capabilities
of the minBERT model. We experimented with various techniques, including Cross-Encoding,
Round-Robin training, SMART regularization, and Model Merging, demonstrating that our model’s
performance surpasses the baseline across all three downstream tasks. Our analysis also highlights
the model’s limitations in understanding nuanced differences between sentences. Due to the limited
timeframe of the project, we could not explore all our ideas. For future work, we would like to see
experiments with ideas like dynamical loss weights, Multiple Negatives Ranking Loss Learning, and
LoRA to achieve even better results.

8 Ethics Statement

We identify several ethical challenges when the model is applied to user facing applications:

• In the scenario where sentiment classification is employed on social media platforms for
feed recommendation, if the model incorrectly classifies a negative post as positive and
recommends it to users, the users may be exposed to hate speech or other negative contents
in the post. Reading such content may have a negative impact on users’ mental health. A
strategy to mitigate the risk is to have human evaluators reading the posts manually and
removing negative posts from users’ feeds.

• In the same vein, our model is not robust against an adversarial attacker. Such attackers
might exploit this to trick the model’s classification system and inject misinformation or
hate speech into the feed of users. We may attempt some techniques in Jain et al. (2023) to
mitigate such attacks.

• If SemEval is applied to search engine optimization, and a user searches sensitive informa-
tion, the SemEval algorithm might recommend factually incorrect texts that are semantically
similar to the query. For example, if the user searches medical advice, SemEval might
recommend a false advertisement or a passage promoting misinformation. To safeguard
against such issues, we should not use exclusively SemEval for recommendation algorithms.
Instead, we should combine SemEval with an algorithm that can identify texts from author-
itative and reliable sources, and include a warning about potential misinformation in the
search output.

8



References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of

deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers), pages 4171–4186. Association for Computational Linguistics.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. 2024. Arcee’s mergekit: A toolkit for merging
large language models. CoRR, abs/2403.13257.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2024. Minillm: Knowledge distillation of large
language models.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in a neural network.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classifica-
tion. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 328–339.
Association for Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022. Lora: Low-rank adaptation of large language models. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh
Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. 2023. Baseline
defenses for adversarial attacks against aligned language models. CoRR, abs/2309.00614.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2177–2190, Online. Association for Computational Linguistics.

Pride Kavumba, Ana Brassard, Benjamin Heinzerling, and Kentaro Inui. 2023. Prompting for
explanations improves adversarial NLI. is this true? yes it is true because it weakens superficial
cues. In Findings of the Association for Computational Linguistics: EACL 2023, Dubrovnik,
Croatia, May 2-6, 2023, pages 2120–2135. Association for Computational Linguistics.

Simran Khanuja, Melvin Johnson, and Partha P. Talukdar. 2021. Mergedistill: Merging language
models using pre-trained distillation. In Findings of the Association for Computational Linguistics:
ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of
ACL, pages 2874–2887. Association for Computational Linguistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-level knowledge distillation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages 1317–1327. The Association for Computational
Linguistics.

Jack Le and Febie Lin. 2024. Bert and beyond: A study of multitask learning strategies for nlp.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020.
Adversarial NLI: A new benchmark for natural language understanding. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July
5-10, 2020, pages 4885–4901. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-
IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 3980–3990. Association for
Computational Linguistics.

9

https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.48550/ARXIV.2403.13257
https://doi.org/10.48550/ARXIV.2403.13257
http://arxiv.org/abs/2306.08543
http://arxiv.org/abs/2306.08543
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/V1/P18-1031
https://doi.org/10.18653/V1/P18-1031
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2309.00614
https://doi.org/10.48550/ARXIV.2309.00614
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.162
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.162
https://doi.org/10.18653/V1/2023.FINDINGS-EACL.162
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.254
https://doi.org/10.18653/V1/2021.FINDINGS-ACL.254
https://doi.org/10.18653/V1/D16-1139
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/final-projects/FebieJaneLinJackPLe.pdf
https://doi.org/10.18653/V1/2020.ACL-MAIN.441
https://doi.org/10.18653/V1/D19-1410
https://doi.org/10.18653/V1/D19-1410


Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. 2023. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. CoRR, abs/2311.03099.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

Yaohui Zhang and Haoyi Duan. 2024. Semantic symphonies: Bertrilogy and bertriad ensembles.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. 2023. Universal and transferable
adversarial attacks on aligned language models. CoRR, abs/2307.15043.

A Ideas that don’t work

As a reference to future students, we identify a few approaches we tried that result in no significant
improvement.

• Architecture modification: We tried changing the activation function of our heads. We also
try to change the pooling method of minBERT by adding two [CLS] tokens at the start,
using the embedding of one for SST and the other for PARA and SEN. We feel that adding
more layers to the model would only exacerbate overfitting.

• Loss weighting: In the sum-of-loss approach, we tried adding weights to the loss function
of each task

L = w1LSST + w2LPARA + w3LSEN.

• Hyperparameter Tuning: We tried tuning the learning rate and batch size of our model.

10

https://doi.org/10.48550/ARXIV.2311.03099
https://doi.org/10.48550/ARXIV.2311.03099
https://proceedings.neurips.cc/paper/2020/hash/3fe78a8acf5fda99de95303940a2420c-Abstract.html
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/final-projects/HaoyiDuanYaohuiZhang.pdf
https://doi.org/10.48550/ARXIV.2307.15043
https://doi.org/10.48550/ARXIV.2307.15043

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline Model
	SMART Regularization
	Round-Robin(RR) Training
	Model Merging (MM)

	Experiments
	Data
	Training and Evaluation
	Bi-encoding vs. Cross-encoding
	SIAR Hyperparameter Experiment
	Sum-of-Loss vs. Round-Robin Experiment
	Model Merging Experiment
	Summary of Results

	Analysis
	Sentiment Classification Analysis
	Model Merging Analysis
	Paraphrase Detection Analysis
	Sentence Similarity Analysis

	Conclusion
	Ethics Statement
	Ideas that don't work

