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Abstract

We identify a combination of modifications to BERT that performs best across
a range of NLP tasks: sentiment analysis (SA), paraphrase detection (PD), and
semantic textual similarity (STS). As a baseline, we build minBERT, a simplified
BERT model. We improve this model by implementing combinations of extensions
and adjustments: 1) SBERT[1] to improve sentence embeddings and efficiency;
2) LoRA[2]] to improve efficiency; 3) proportional batch sampling from BERT
and PALs Section 4.1[3]] to reduce overfitting, and 4) additional fine-tuning data.
We make hyperparameter adjustments within these extensions where applicable to
maximize the performance of each individual extension. We find that performance
is maximized by majority vote ensembling the predictions of multiple model
variations where SBERT is combined with proportional batch sampling. LoRA
increases efficiency via reducing trainable parameters, but decreases performance.
Additional finetuning data has mixed effects on performance.

1 Team Contributions

All team members contributed to each project stage. Yichen and Ria built most of minBERT. Yichen
built the LoRA extension. Senyang built the SBERT and additional data extensions and combined the
SBERT and proportional batch sampling extensions. Ria built the proportional batch sampling and
ensembling extensions. Senyang conducted qualitative analysis on tasks. See Appendix for details.

2 Introduction

BERT [4] (Bidirectional Encoder Representations from Transformers) generates contextual word
representations from tokenized inputs and has achieved state-of-the-art results in NLP tasks.

Since its introduction, many improvements (“extensions”) on BERT have been put forward. However,
it appears less work has been done to find the best combinations of these extensions to improve
performance on a specific set of tasks. We leverage combinations of extensions to improve upon
vanilla BERT’s performance on three downstream tasks: sentiment analysis (SA), paraphrase detection
(PD), and semantic textual similarity (STS).

As a baseline, we build minBERT, a simplified BERT model outlined in the default project handout.
We improve this model by implementing the following extensions and adjustments: 1) SBERT[1] to
improve sentence embeddings and efficiency; 2) LoRA[2]] to improve efficiency; 3) proportional batch
sampling from BERT and PALs Section 4.1[3]] to reduce overfitting, and 4) additional fine-tuning
data. Within these individual extensions, we test hyperparameter adjustments where applicable.

We selected these particular extensions to balance one another, as discussed in Related Work.

Performance is maximized by majority vote ensembling predictions of the following model variations:
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SBERT + annealed proportional batch sampling

SBERT + annealed proportional batch sampling + additional finetuning data
SBERT + square root proportional batch sampling + additional finetuning data
SBERT + square root proportional batch sampling

SBERT

Al

We also find that LoRA increases efficiency by decreasing trainable parameters, but decreases
performance. Additional finetuning data yielded mixed effects.

3 Related Work

We research extensions that may balance one another in combination. SBERT tends to overfit,
addressed by proportional batch sampling. These increase runtime, addressed by LoRA. The original
SBERT paper leverages additional finetuning data, and additional data usually improves performance.

3.1 SBERT

NLP models like BERT require both sentences to be processed simultaneously, which results in
substantial computational burden. Matching the most similar sentence among 10,000 sentences
requires ~50 million inference computations - roughly 65 hours of processing time with BERT.

To address these challenges, Reimers and Gurevych (2019)[[1] propose Sentence-BERT (SBERT),
which modifies the pretrained BERT model by employing siamese and triplet network structures
to generate semantically meaningful sentence embeddings. These embeddings can be efficiently
compared using cosine similarity, reducing the search time for similar sentence pairs from 65 hours to
~5 seconds while maintaining the accuracy of BERT, greatly improving the efficiency of the model.

3.2 BERT and PALs

Traditional fine-tuning of BERT for each task separately can be computationally expensive and
resource-intensive. To address this, Stickland and Murray (2019)[3] propose Projected Attention
Layers (PALs). Task-specific attention layers are added to the pre-trained BERT model, facilitating
learning task-specific features more efficiently and improving performance on NLP tasks.

However, PALs were not the only innovation introduced in this paper. We adopt their proportional
batch sampling method, training the model on tasks with probability proportional to the tasks’ dataset
sizes, ensuring balanced learning across all tasks. This approach aims to mitigate overfitting on tasks
with fewer training examples and reduce under-training on tasks with more extensive datasets.

3.3 LoRA

Most NLP models require pre-training on general tasks and fine-tuning on specific sub-tasks. As
model scales increase, retraining becomes prohibitively expensive. Low-Rank Adaptation (LoRA)[2]
improves fine-tuning efficiency by reducing the number of trainable parameters.

LoRA freezes initial weight matrices from pre-trained models, inserting two trainable rank-
decomposition matrices into each layer to learn sub-task features. Despite fewer trainable parameters,
LoRA matches or exceeds traditional full fine-tuning performance across models like ROBERTa,
DeBERTa, GPT-2, and GPT-3, enhancing fine-tuning efficiency without compromising model quality.

4 Approach

1. We build our baseline model minBERT on top of provided starter code. We test small
adjustments in sentence embedding formation to select the better-performing baseline.

2. We implement the following extensions individually (ideas are not our own, implementa-
tion/code is our own): 1) SBERT[1]], 2) LoRA[2], 3) proportional batch sampling[3], and 4)
additional fine-tuning data. We adjust hyperparameters as relevant in individual testing.



3. We create models that combine the better-performing extensions, SBERT and proportional
batch sampling. We test including additional finetune data on these.

4. We ensemble the outputs of the top five performance models. We submit the ensemble and
the best non-ensembled model to the test set leaderboard (all prior testing was on dev set).

4.1 Baseline

Our baseline is minBERT as outlined in the default final project handout, with no additional data for
training. All three downstream tasks use the embedding corresponding to the [CLS] token. For PD
and STS tasks, we test adding vs concatenating the two sentence pair embeddings to produce a single
embedding, selecting the better performer for our baseline. We feed the embedding to another linear
layer to obtain the final logits for prediction. We use multi-class cross-entropy loss for all three tasks.

4.2 SBERT

Sentence-BERT [1]] modifies the pretrained BERT using a Siamese network structure to derive
semantically meaningful sentence embeddings that can be compared using cosine-similarity.

For classification tasks (e.g. PD), we concatenate sentence embeddings v and v with the element-wise
difference |u — v|, multiply it by the trainable weight W;, and apply softmax to obtain predictions.
‘We optimize cross-entropy loss.

o = softmax(Wy(u, v, |[u — v|))

For regression tasks (e.g. STS), we directly compute the cosine similarity between two sentence
embeddings. We then optimize for mean-squared error (MSE). Since cosine similarity ranges from -1
to 1, we scale it to range from O to 5 to match the SemEval STS Benchmark Dataset.

In addition, for PD and STS, we emulate using the average of BERT output vectors as the embedding,
instead of using the output vector from the [CLS] token as in our baseline model.

4.3 Additional data for fine-tuning

SBERT][/1] uses additional data from a Natural Language Inference (NLI) dataset for fine-tuning. As
in the original paper, we perform additional fine-tuning using the ALL-NLI dataset, a concatenation
of the Stanford Natural Language Inference (SNLI) Corpus and the Multi-Genre Natural Language
Inference (MultiNLI) Corpus. We fine-tune with a 3-way softmax classifier objective function.

44 LoRA

Low-Rank Adaptation (LoRA) [2] was first proposed to enhance fine-tuning efficiency without
increasing inference latency. The core hypothesis behind LoRA is that the changes in weights during
model adaptation possess a low "intrinsic rank."

We utilize and adapt the LoRA library developed by the original team. The LoRA library provides
implementations for convolution, embedding, and linear layers. In this project, we only replace the
linear layers in minBERT, leaving the embedding layers unchanged. We believe that embedding
layers function more as lookup tables rather than dense layers, which LoRA is designed to modify.

We implement LoRA for every linear layer in the Transformer architecture to reduce the number
of trainable weights in fine-tuning. For each weight matrix W, € R%*¥ from the linear layers in
the pre-trained model, LoRA processes its update by decomposing AW into two low rank matrices,
B € R™" and A € R"™*, with rank » < min(d, k). During fine-tuning, W, is frozen and stays
unchanged, while A and B contain trainable parameters and receive gradient updates. Thus, in
fine-tuning stage, the modified forward pass in LORA becomes:

h=Wyx + AWz = Wyx + BAx

By implementing such decomposition, LoRA can fine-tune a pre-trained model much more efficiently
(especially for large-scale models) when compared to traditional fine-tuning approaches, while
freezing the pre-trained weight matrix Wy helps preserve the original model quality.


https://huggingface.co/datasets/sentence-transformers/all-nli

4.5 Proportional task-based sampling from BERT and PALs

BERT and PALs[3] suggests proportional batch sampling to balance overfitting on tasks with fewer
examples and under-training on tasks with more.

Our minBERT baseline samples batches equally across datasets. With proportional batch sampling,
batch sampling probability p; is proportional to the number of training examples N; raised to some
o p; < N2

We test square root sampling (o = 0.5) and annealed sampling (a« = 1 — 0.8 g:ll) where « changes

with each epoch e relative to the total epochs E to train with more even probability in later epochs.

Our original* implementation calculates dataset weights proportional to their sizes and scales them
for rounds of size r. Each epoch samples batches from datasets according to these weights until the
desired batch quantity b is reached. For example, if » = 50, and the weights for Datasets 1, 2, and 3
are 0.2, 0.6, and 0.2, respectively, they are sampled 10, 30, and 10 times per round until b is reached.

We test this method individually and combined with SBERT, using square root and annealed sampling.

4.6 Optimizing modifications:

1. Independent testing: We test each larger extension (SBERT, LoRA, proportional batch
sampling, additional finetune data) independently. We adjust hyperparameters.

2. Combinatorial testing (combined model): Based on these results, which showed that
SBERT and proportional batch sampling improve performance, we create original combined
SBERT + proportional batch sampling models, with and without additional finetuning data.

3. Combinatorial testing (ensembling outputs): We test majority vote ensembling the ouputs
of the top five performance models (idea from TA Timothy Dai, our original implementa-
tion/code). We average the predictions, rounding to the nearest integer for PD and SA.

5 Experiments

5.1 Data

* SA: Stanford Sentiment Treebank (SST) dataset. Input: a phrase extracted from movie
reviews. Output: a label in 1 of 5 categories (negative, somewhat negative, neutral, somewhat
positive, or positive).

* PD: Quora Dataset. Input: a question pair. Output: a label indicating paraphrase status.

* STS: SemEval STS Benchmark Dataset. Input: a sentence pair. Output: a similarity score
scaled from O (unrelated) to 5 (equivalent meaning).

* Additional data: ALL-NLI dataset. Input: a sentence pair. Output: a label indicating their
relations in one of three categories (entailment, neutral, or contradiction).

5.2 Evaluation method

* Performance SA and PD: accuracy

* Performance STS: Pearson correlation of the true similarity values against the predicted
similarity values

* Performance Overall: (SA accuracy + (STS correlation + 1)/2 + PD accuracy) / 3

* Efficiency: Number of trainable parameters

5.3 Experimental details

All experiments use a Nvidia T4 GPU. We use batch size of 8 and dropout probability of 0.3. The
learning rate is le-3 when fine-tuning only the last layer (for testing sentence embedding adjustments
for the baseline) and le-5 when fine-tuning the full model. All models are trained for 10 epochs.


https://huggingface.co/datasets/sentence-transformers/all-nli

5.3.1 SBERT

For PD and STS, we adjust the loss function and the MLP projection layer according to the SBERT
structure mentioned in[4.2] We do not change the architecture of the output head for SA because
SBERT only considers comparison between two sentences.

5.3.2 Additional finetune data

To fine-tune on the ALL-NLI data, we add another output head to our multitask BERT classifier that
takes embeddings from two sentences and outputs a label in 1 of 3 categories: entailment, neutral or
contradiction. We first fine-tune the model on the ALL-NLI dataset for 1 epoch using the additional
output head, and then fine-tune on the datasets for SA, PD and STS just like the other models.

5.3.3 Proportional batch sampling

We test optimal round size 7 by evaluating dev set performance after 1 epoch when av = 0.5 (square
root sampling). We test r = 10, 50, 100 and find that accuracy is maximized when r = 50.

Holding » = 50 constant, we run the full model using square root sampling where o = 0.5 and
annealed sampling where o« = 1 — 0.8 &=

1
E-1°
534 LoRA

In our implementation of LoRA, we replace most linear layers in the original BERT model with their
corresponding LoRA linear layers. However, we do not modify the last few projection and prediction
layers, as their output dimensions are too small (< 10). This small size negates the need to reduce
trainable parameters using LoRA in these layers.

We explore the trade-off between overall model quality and the rank used in all LoRA layers. We
briefly experiment with different learning rates, finding a learning rate of 1e-5 most effective for
model learning. We test ranks of 6, 10, 16, 20, 30, and 50 for all LoRA layers during fine-tuning.

5.3.5 Combination models

Since SBERT and proportional batch sampling consistently improve overall performance, we test
combinations of these extensions, with/out additional finetune data: SBERT + proportional batch
sampling (annealed), SBERT + proportional batch sampling (annealed) + additional data, SBERT +
proportional batch sampling (square root), and SBERT + proportional batch sampling (square root) +
additional data. We submit the best-performing combination model to the test set leaderboard.

5.3.6 Ensemble

We test majority vote ensembled outputs of the top 5 performing models and the top 3 performing
models. We submit the ensemble to the test set leaderboard.

5.4 Results
5.4.1 Baseline

Concatenating embeddings performs better than adding. Fine-tuning the whole model yields much
higher accuracy than only fine-tuning the last layer. In comparative analysis, we use the baseline
version with highest accuracy (concatenates the embedding and fine-tunes the whole model).

54.2 SBERT

SBERT improves PD (+0.023) and STS (+0.265) performance. This is expected: SBERT designs
an embedding more suitable for similarity analysis between two sentences. SA performance is
unchanged. This is expected since the model architecture for this task is the same as the baseline: we
use the [CLS] token as the embedding and use the same linear layer to get the logits for prediction.



Experiment Model Version iiﬁ;ﬁg: Dev SA acc | Dev PD acc | Dev STS corr Per?(;]:r;aa&ce
Last layer/add 5,383 0.395 0.368 0.230 0.459
Baseline Last layer/concat 6,919 0.396 0.368 0.276 0.467
Full model/concat | 109,489,159 0.466 0.796 0.354 0.646
SBERT N/A 109,490,695 0.465 0.819 0.619 0.698
Baseline
N +Additional data 109,493,770 0.431 0.774 0.331 0.624
Additional SBERT
Data +Additional data 109,497,610 0.491 0.782 0.615 0.694
Proportional Square root 109,489,159 0.498 0.816 0.321 0.658
Batch Sampling Annealed 109,489,159 0.500 0.811 0.320 0.657
Rank =6 1,004,544 0.254 0.604 0.214 0.488
Rank = 10 1,674,240 0.291 0.764 0.305 0.569
LoRA Rank = 16 2,678,784 0.290 0.759 0.270 0.561
Rank =20 3,348,480 0.309 0.747 0.251 0.561
Rank = 30 5,022,720 0.277 0.764 0.263 0.558
Rank = 50 8,371,200 0.261 0.435 0.276 0.445
SBERT
+ prop sampling 109,490,695 0.493 0.893 0.647 0.737
(square root)
SBERT
+ prop sampling | 109,490,695 0.513 0.900 0.644 0.745
(anneal)
SBERT
* prop sampling | 9 407 61 0.498 0.896 0.65 0.740
(square root)
Combination + additional data
SBERT
Models + prop samplin
PIop SAMPINE | 109 497 610 0.503 0.898 0.659 0.744
(anneal)
+ additional data
Ensemble Top 3 models N/A 0.512 0.904 0.72 0.759
Top 5 models N/A 0.512 0.904 0.72 0.759

Table 1: Performance (accuracies) and efficiency (trainable parameters) of all models on the dev set.

Experiment Model Test SA acc | Test PD acc | Test STS acc Overall
Performance
Ensemble Ensemble 0.521 0.901 0.707 0.759
(5 models)
Combination ST
+prop sampling 0.503 0.898 0.606 0.735
Models
(anneal)

Table 2: Accuracies of selected models on the test set.

5.4.3 Additional finetune data

Fine-tuning on the ALL-NLI data yields mixed results, improving overall performance for the SBERT
+ square root proportional batch sampling model, but worsening performance otherwise. This is
notable, as additional finetune data is expected to improve performance. This suggests that the
auxiliary NLI task was not helpful for our target tasks. We might need to adjust the hyperparameters
during additional finetuning, such as batch size, learning rate, and epoch size, to get better results.




5.4.4 Proportional Batch Sampling

Proportional batch sampling improves performance on SA (+0.033) and PD (+0.018), raising overall
performance (+0.012), but decreases STS performance (-0.034). This likely results from differences
in dataset sizes and sampling strategies.

The Quora dataset for PD (283,003 examples) is much larger than the SA and STS datasets (8,544
and 6,040 examples). In the baseline model, this imbalance likely causes under-training on PD
and overtraining on SA and STS. Proportional batch sampling corrects this by balancing dataset
contributions, thus improving PD and SA performance.

However, proportional batch sampling disrupts the STS performance, possibly because the baseline
model’s CombinedLoader sequential sampling allows STS data to drive gradient updates later in train-
ing, stabilizing this task’s performance. Proportional sampling rotates datasets, preventing consistent
fine-tuning of STS data in later epochs. An alternative hypothesis is that larger gradient updates for
the baseline occur earlier in training (on PD and SA data), necessitating further investigation.

There is minimal difference between annealed and square root sampling. Square root sampling
slightly outperforms on PD (+0.005) and STS (+0.001), giving a slight overall boost (+0.001).
Annealed sampling slightly outperforms on SA (+0.002). This contradicts the original findings[3]],
where annealed sampling outperformed, though our results may be within a margin of error.

54.5 LoRA

LoRA significantly reduces trainable parameters, requiring less memory for the optimizer during fine-
tuning. Selecting an inappropriate rank—too high (e.g., 50) or too low (e.g., 6)—Ileads to suboptimal
performance, potentially due to limited expressiveness and slow convergence, respectively.

Our best LoRA version (rank = 10) achieves comparable accuracy for PD (0.796 baseline vs. 0.764
LoRA) and slightly lower for STS (0.354 baseline vs. 0.305 LoRA), but shows noticeable degradation
for SA (0.466 baseline vs. 0.291 LoRA).

LoRA performs well in simpler tasks like PD but worse in complex tasks like SA and STS. SA
requires understanding subtle nuances and context, needing more detailed parameter adjustments
than LoRA provides. LoRA’s modification of only a subset of parameters is insufficient for such
tasks. Therefore, we exclude LoORA when combining extensions for optimal model quality.

5.4.6 Combination models

All combination models of SBERT + proportional batch sampling outperform the individual models.
Since SBERT tends to exacerbate overfitting, it makes sense that pairing it with proportional batch
sampling, which balances over/underfitting based on dataset size, improves performance. It is notable
that annealed proportional batch sampling when paired with SBERT significantly outperforms the
same combination with square root sampling, while square root sampling outperformed annealed
sampling without SBERT.

5.4.7 Ensemble

Ensembles of the top five and top three models performed identically, outperforming all other models
overall and on all tasks except SA, where the solo SBERT + annealed proportional batch sampling
model led by +0.001. The ensemble outperformed this solo model on the test set: +0.018 on SA,
+0.003 on PD, +0.101 on STS, and +0.024 overall. It was surprising that both ensembles performed
the same and that including input from worse models improved results.

The ensemble’s performance boost likely comes from correcting outlier predictions in individual
models, leveraging different model strengths. The equal performance of the top 3 and top 5 ensembles
suggests the top 5 benefits from more models to correct outliers, while the top 3 benefits from only
better-performing models.

6 Analysis

Hypotheses for why each extension yielded its results are included in discussion of results above.



We discuss qualitative results for the best non-ensembled model: SBERT with annealed proportional
batch sampling, no additional data, without LoORA. We use a visualization tool called Learning
Interpretability Tool (LIT) [S], which provides visualizations such as saliency map (using LIME [6]])
and confusion matrix. We examine our best model’s performance on the downstream tasks.

6.0.1 Sentiment Analysis

Figure 2] shows an example of correct sentiment classification. The model is pretty confident (96.7%)
in its prediction. The salience map shows why the model makes this prediction. The words *although’,
"best’, and "popular’ influence the model’s predictions most. This interpretation makes sense because
"best’ and “popular’ are strongly positive words, and “although’ indicates the sentence is not giving
an absolute statement, hence the sentiment would be somewhat positive.

Figure 3] shows an example of incorrect sentiment classification. The model’s interpretation makes
less sense here. The source of error may be the model’s understanding the word ’desperate’ as
incorrectly correlated with the ’somewhat positive’ sentiment.

Figure ] shows the confusion matrix for the model’s predictions on the SA dev set. Most data points
are close to the diagonal, indicating the model’s predictions are mostly correct, but it may confuse
sentiment of nearby categories. The confusion matrix also shows the model’s most common mistake
is predicting ’positive’ as ’somewhat positive.” This makes sense because though it is easy to classify
a sentence as positive or negative, it is also hard even for humans to determine the absolute strength
of a sentence.

6.0.2 Paraphrase Detection

Figure[5]and Figure [6] show examples of correct and incorrect PD by the model. The salience map is
less interpretable here than with SA. In Figure [5| where the model correctly predicts a paraphrase,
some words that match each other have positive correlation with the prediction. In Figure[6| where the
model incorrecly predicts the sentences as not paraphrases, the word would’ in the second sentence
heavily influences the prediction, which makes little sense for a human interpreter. This may be a hard
sentence pair because the lengths of the two sentences are very different, despite being paraphrases.

6.0.3 Semantic Textual Similarity

Figure[7]and Figure [§|show an example where the predicted similarity is close or far from the true
similarity, respectively. In easy cases like figure[7] where the two sentences are the same except for a
few words, the model correctly gives a high similarity score. However, in cases like figure [§] where
some words appear in both sentences but the meaning is different, the model overestimates similarity.
This indicates our model’s embedding does not effectively capture meaning of the sentences, and
directly using cosine similarity between the sentence embedding is insufficient.

7 Conclusion

We explored enhancements to BERT on SA, PD, and STS tasks, using minBERT as a baseline. We
tested SBERT, proportional task sampling, LoRA, and additional training data, experimenting with
combinations and hyperparameters to optimize performance.

We found that majority vote ensembling our top five models achieved maximum performance.
Without ensembling, SBERT with annealed proportional batch sampling performed best. LoRA
reduced memory for fine-tuning and maintained performance in simpler tasks but was less effective
for complex tasks like SA and STS.

Our four-week time constraint given 20-hour runtimes limited our ability to incorporate more
sophisticated extensions. Limited GPU access restricted exploration of memory-intensive models.

Future work could improve our best model by integrating additional extensions to enhance per-
formance, potentially allowing for efficiency-focused extensions like LoRA. Alternatively, testing
DoRA, an improved LoRA-based architecture, could mitigate LoRA’s performance degradation.


https://github.com/PAIR-code/lit
https://github.com/PAIR-code/lit
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A Appendix

A.1 Team Contributions - Detail
Ria Calcagno

* Proposal: project description, new paper summary

* minBERT: optimizer.py, multitaskclassifier.py

* Milestone: abstract, proportional batch sampling info, editing
» Extension: proportional batch sampling, ensembling

* Final report: abstract; team contributions; introduction; summary, proportional sampling,
optimizing modifications subsections of approach section; evaluation method; proportional
sampling, combined models, and ensemble subsections of experimental details section;
additional data, proportional sampling, combined models, and ensemble subsections of
results section; additional data, proportional sampling, combined models, and ensemble
subsections of analysis section; ethical considerations; editing throughout (reduced 12 pages
to 8)

* Poster: formatting, project overview, datasets and metrics, background and related work
(SBERT and proportional sampling), methods and experiments, results

Yichen Jiang

* Proposal: original paper summary (had to change, originally wrote about BERT paper)
* minBERT: bert.py, classifier.py, debugging multitaskclassifier.py

¢ Milestone: future work, LoRA info

* Extension: LoRA

* Final report: related work, approach section LoRA subsection, experiments section LORA
subsection, LoRA part of analysis section, Ethical Consideration, editing

* Poster: analysis, references

Senyang Jiang



* Proposal: project description
* minBERT: debugging

* Milestone: finished SBERT extension in time for milestone, generated baseline data, experi-
ments

* Extension: SBERT, additional data, combining SBERT with proportional batch sampling

* Final report: approach/experiments for SBERT and additional data, experiments data, result
tables, qualitative analysis, references

* Poster: qualitative analysis, references, results

A.2 SBERT architecture diagram

‘ Softmax classifier ‘ 1.1
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‘ (u, v, Ju-v]) ‘ ‘ cosine-sim(u, v) |
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4 4 4 4
’ poollng ‘ ’ poollng ‘ | poollng | | poollng ‘
| BERT | I BERT | I BERT | | BERT |
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Figure 1: SBERT architecture with classification ob-  Figure 2: SBERT architecture at inference, for exam-
jective function, e.g., for fine-tuning on SNLI dataset. ~ ple, to compute similarity scores. This architecture is
The two BERT networks have tied weights (siamese  also used with the regression objective function.
network structure).

Figure 1: The architecture of the SBERT model from [[L]

A.3 Qualitative analysis visualizations

Classification Results & 1 Salience Maps ® v o
Class Score Target field: probas~ Class to explain: somewhat positive ~
negative 0.001

LIME (-
somewhat negative |0.000
neutral 0.022 although! german cooking does not come readiy to mind when considering the world ‘s best cuisine , mostly martha
somewhat positive | could make deutchland a popular destination for hungry tourists .
positive |n 010
P = The predicted label , T = The ground truth label @ signed -1 AN HEN" Gamma: 0.25 euml) 6 24

Figure 2: One example of correct sentiment classification. (a) Left shows classification results with
different probabilities. (b) Right shows salience map, indicating how much each input affects model’s
decision. Blue/green shows positive correlation, and pink/purple shows negative correlation.

A.4 Note on original implementation approach of proportional batch sampling

Developed with influence from conversations with various TAs, including Timothy Dai and Kaylee
Burns.
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Figure 3: One example of incorrect sentiment classification.

A sst:probas:class
negative somewhat negative neutral somewhat positive positive Total
negative 4.3% (47) 6.1% (67) 1.8% (20) 0.5% (5) 0.0% (0) 12.6% (139)
somewhat negative ~ 2.5% (27) 16.0% (176) 5.3% (58) 2.4% (26) 0.2% (2) 26.2% (289)
E neutral  0.4% (4) 5.0% (55) 7.7% (85) 7.3% (80) 0.5% (5) 20.8% (229)
somewhat positive  0.2%  (2) 0.9% (10) 4.5% (50) 17.0% (187) 2.7% (30) 25.3% (279)
positive  0.0% (@) 0.4% (4) 0.6% (7) 7.9% (87) 6.1% (67) 15.0% (165)

Total 7.3% (80) 28.3% (312) 20.0% (220) 35.0% (385) 9.4% (104)

Figure 4: Confusion matrix for sentiment classification. X-axis denotes predicted category, Y-axis
denotes true category.

Classification Results @ v Il Salience Maps @ v I
Class Score Target field: probas ¥ Class to explain: paraphrase v
not paraphrase 0.001

LIME L
paraphrase . -

sent1

how far away lis the quantum fom becoming a reality ?

sent2

quantum computation: how far away is the quantum | internet from becoming a reality ?

P = The predicted label , T = The ground truth label @ signed -1 MM WEMN Gamma: 0.25 el 6 23

Figure 5: One example of correct paraphrase detection.

Classification Results @ v I Salience Maps @ v o
Class Score Target field: probas ¥  Class to explain: not paraphrase ¥
not paraphrase 0866 P

LIME L2
paraphrase [ T

sent1

if you had the option to travel back in time to kil baby hifler , what would you do ?

sent2

wouid| you [Kill| baby [hitler ?

P = The predicted label, T = The ground truth label @ signed -1 MM HEN Gamma: 0.25 el 6 23

Figure 6: One example of incorrect paraphrase detection.

Regression Results Y I Salience Maps ® v
feld Groundiivth Score ey Target field: predicted_similarity v
predicted_similarity 5.0000 46199 -0.3801
LIME o~
sent1

a opens a |drawer and climbs linside .
sent2
a is opening a [dfawer| and climbing inside .

@ signed -1 I N Gamma: 0.25 exmly s [ 23]

Figure 7: One example of good similarity prediction.
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Regression Results. v Salience Maps @ ¢

Geld Soundiiruth) Score Eron Target field: predicted_similarity v
predicted_similarity 0.0000 4.0068 40068
LIME o~

sentl

wor (i8] [ D

sent2

" e

@ signed -1 I N Gamma: 0.25 o

:

Figure 8: One example of bad similarity prediction.

B Ethical Considerations

Our project primarily focused on experimenting with various published extensions and their com-
binations to optimize BERT model performance on basic NLP tasks such as sentiment analysis,
paraphrase detection, and semantic textual similarity. One might think that such basic, seemingly
neutral tasks would be free of ethical implications. However, it is crucial to recognize potential
downstream uses of these extensions and the resulting ethical concerns; these should be anticipated
and mitigated as much as possible upstream. As Al research advances towards artificial general
intelligence (AGI), where superior model performance on core tasks translates to any task, upstream
mitigation in basic tasks like those in our project becomes even more important.

Our baseline minBERT implementation built upon pretrained embeddings supplied with the default
project starter code. Caution is essential when building off pretrained embeddings, as previous
researchers and developers may not have exercised the same level of ethical consideration. For
instance, typical word embeddings have been found to associate European American names more
positively than African American ones, and certain axes of bias, such as religious bias, are less
frequently assessed [7]]. A more ethically thorough version of our project would involve assessing
potential biases in outputs generated by minBERT first without additional extensions, to decide
whether further pretraining measures are necessary.

One of our extensions involved supplying additional data during fine-tuning. Introducing new data
introduces risks of unvetted content, which might lead to learning biases or other unintended language
patterns from these “contaminated” datasets. This risk increases with the use of increasingly large
amounts of data, prioritizing quantity over quality. As noted in the CS 224N lecture, more colloquial
datasets generated from online posts (such as the Quora dataset used for our paraphrase detection
task) are proving more useful in NLP than more formal content such as from Wikipedia. The ethical
benefit here is that such data may contain a diversity of linguistic styles and dialects, rather than
the predominantly white, western, upper-class standard English used in much published English
literature. However, this less censored content may be at higher risk of containing non-politically-
correct, offensive, or stereotypical language and ideas. This underscores the importance of responsible
NLP development when incorporating large datasets, particularly those that may not be thoroughly
vetted. To mitigate unintended effects of additional datasets, it is essential to analyze their impact
using various tools and metrics, both quantitatively and qualitatively. For example, checking the
model’s accuracy on downstream tasks before and after adding new data, and using salience maps to
visualize how the model interprets inputs can ensure that the additional dataset has not introduced
significant bias compared to the other data. Further ethics research on our best-performing models
would use these tools to examine sentiment classification of sentences containing words associated
with disability, homosexuality, race, etc.

Another ethical issue arises with LoRA, one of our extensions, which makes training more efficient
but may compromise performance on complex emotional tasks like sentiment analysis, as evidenced
by our experimental results. This can impact downstream use: for example, reducing the number
of trainable parameters with LORA may lose language nuances crucial for accurately categorizing
sentiments in social media posts, potentially impacting decisions about content moderation. This
poses a risk that companies and institutions, as well as researchers on limited budgets and tight
deadlines, might prioritize cost- and time-saving measures over model quality, leading to models less
adept at understanding human emotions. Inaccurate emotion detection and consequent inappropriate
responses can be significant problems, especially as humans increasingly rely on Al for advice.
However, research from the Harvard Business Review shows that consumers currently rely more on
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Al for “utilitarian and functional” matters, preferring human advice for “experiential and sensory’
matters [8]. Our research with LoRA highlights the challenges researchers face in improving
efficiency while building ethical trust in Al for emotional, sensitive matters. A potential solution is
for reviews such as Stanford’s Ethics and Society Review to place more emphasis on performance in
complex tasks like sentiment analysis. Even if emotional tasks are not the main goal of one’s research,
including supplemental testing on such tasks may serve as a useful check for lurking inaccuracies
and biases that might not be evident in less emotionally oriented tasks but may nevertheless impact
downstream uses.

Despite the ethical concerns posed by some extensions in our project, one of our extensions offers a
potential solution. Proportional batch sampling can prevent the model from over-relying on certain
datasets. Adapting our algorithm via changes to our weights function provides an opportunity to guide
these types of models to emphasize fine-tuning with datasets that have undergone strict inspection
and are known to be "clean." This can help mitigate biases in the models and produce more ethically
reliable language models.
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