
Fine-tune miniBERT for multi-task learning
Stanford CS224N Default Project

Geo Zhang
Department of Energy Science and Engineering

Stanford University
gmzhang@stanford.edu

Abstract

This project investigates the effectiveness of fine-tuning BERT (Bidirectional En-
coder Representations from Transformers) (Devlin et al., 2018), a pre-trained
model, on multi-task learning. We employ miniBERT, which comprises 12 layers
and a total of 110 million parameters, to simultaneously address three distinct
linguistic challenges: sentiment analysis, paraphrase detection, and semantic tex-
tual similarity. The training and evaluation are based on the Stanford Sentiment
Treebank (SST), the Quora Dataset (Para), and the SemEval STS Benchmark (STS),
respectively. Accuracy metrics are utilized for sentiment analysis and paraphrase
detection, while the Pearson correlation coefficient assesses semantic textual simi-
larity. Our experimental approach includes building a sentence-BERT (Reimers and
Gurevych, 2019) adaptation with different loss functions and sentence-concatenate
multitask BERT with different fine-tuning approaches. Sentence-concatenating
helps BERT model extract the inner correlation between sentences, contributing to
the performance on the Para and STS tasks. Both sequential and parallel fine-tuning
of three tasks are explored. We adopted the sequential strategy with sentence-
concatenate as our baseline. Furthermore, we experiment with the complexity of
task-specific heads, incorporating additional layers and projected attention layers
(PALs) Stickland and Murray (2019)), as well as employing additional regulariza-
tion. Our findings indicate that a sentence-concatenation structure with task-specific
heads and epoch-wise learning rate decay significantly enhances performance. This
study not only underscores the versatility of miniBERT in multitask learning but
also advances our understanding of fine-tuning strategies for downstream tasks.

1 Key Information to include

• Mentor: Timonthy Dai

• External Collaborators (if you have any): N/A

• Sharing project: N/A

2 Introduction

One of the main challenges in deep learning is the high data requirements and computational
costs. Transfer learning, which involves fine-tuning a pretrained model for specific tasks, provides
an effective solution. However, when dealing with multiple tasks, a key decision is whether to
allocate a separate model to each task or to use a shared model for various tasks. Multitask learning
(MTL) is particularly beneficial in this context. For example, in situations with limited storage on
lightweight devices, a single multipurpose model can efficiently manage multiple tasks at minimal
cost. Additionally, MTL closely resembles human learning processes, where individuals build upon
existing knowledge and skills rather than starting from scratch. This makes MTL a more natural and
efficient approach to learning.

Stanford CS224N Natural Language Processing with Deep Learning



In this project, we utilize the BERT model (Devlin et al., 2018), a pre-trained language model from the
transformers architecture known for generating high-quality context embeddings based on extensive
pre-training on large corpus. BERT’s simplicity and effectiveness have made it popular for various
natural language processing (NLP) tasks, including text classification (Sun et al., 2019), although
initial studies predominantly focused on single-task applications. Our investigation aims to enhance
BERT’s embeddings across multiple tasks through multi-task fine-tuning. We focus on three tasks:
sentiment analysis, paraphrase detection, and semantic textual similarity. The project is structured
into several key components: (1) We implement a Sentence-BERT architecture with multiple loss
functions to optimize MTL performance. (2) We explore sentence-concatenation approaches and
experiment with sequential and parallel multitask fine-tuning strategies. (3) We introduce complexity
into the task-specific heads and implement learning rate decay to enhance performance.

3 Related Work

BERT has achieved remarkable results across a range of downstream NLP tasks. In the original paper
by Devlin et al. (2018), BERT was fine-tuned for 11 different NLP tasks, including those in the General
Language Understanding Evaluation (GLUE) benchmark. Sun et al. (2019) provided a comprehensive
overview of BERT fine-tuning methodologies and strategies for various text classification tasks. Zhang
et al. (2019) explored several fine-tuning techniques in few-sample scenarios. When it comes to
fine-tune multi-tasks, which is a relatively underexplored aspect of BERT fine-tuning. Zhang and
Yang (2021) and Crawshaw (2020) offer insights into MTL, discussing architectures, optimization
methods, and task relationship learning in this context. Sentence-BERT, introduced by Reimers
and Gurevych (2019), employed a Siamese network architecture with two BERT encoders sharing
weights and custom loss function designs for sentence-pair inputs, making it well-suited for handling
many sentence input scenarios.

4 Approach

4.1 The sentence-BERT model

For the first sentiment analysis task, we extract the sentence embedding from the pre-trained BERT
model, using only the [CLS] token, and connect it to a task-specific head to determine the appropriate
sentiment score. This structure is relatively simple to implement. For the input of sentence pairs for
comparison, following a similar scheme, we use a Sentence-BERT (SBERT) model (Reimers and
Gurevych, 2019), which is designed to produce semantically meaningful sentence embeddings for
similarity comparison. The structure is illustrated in Fig. 1. The input consists of two sentences,
which generate a pair of sentence embeddings through identical BERT encoders. We compare
these embeddings using similarity measures such as cosine similarity, and employ a loss function to
quantify and fine-tune the model.

Figure 1: Sentence-BERT architecture for sentence pair inputs; where the same BERT are used to
generate sentence embeddings.

2



Cosine-similarity is a very common measure for vector embeddings. The cosine-similarity between
the two sentence embeddings u and v is computed as,

COSINE-SIM (u, v) =
u · v

∥u∥2∥v∥2
. (1)

comparing it with the similarity score provided with data set, which ranges from 0 to 5, we scale up
the COSINE-SIM (u, v) by 5 and using mean-squared-error loss as the objective function suggested
by Reimers and Gurevych (2019),

L (u, v, ŷ) =
1

n
Σn

i=1 (ŷi − COSINE-SIM (ui, vi))
2
. (2)

To enhance the embedding generation performance of BERT in the paraphrase detection task, we
adopted the Multiple Negative Ranking (MNR) loss function introduced by (Henderson et al., 2017).
This loss function is designed for datasets in the form (ui, vj), where i = j are similar pairs and
i ̸= j are dissimilar pairs. We made slight modifications to adapt it for our paraphrase detection task,
using samples with the true label ŷi = 1,

L (u, v) = −Σn
i=1 log

eSIM(ui,vi)

Σn
j e

SIM(ui,vj)
, (3)

In this context, the similarity between paraphrase pairs ui and vi should be maximized, while the
similarity between non-paraphrase pairs ui and vj will be minimized.

4.2 Multitask fine-tuning scheme

Instead of the Sentence-BERT approach, we also explore another scheme illustrated in Figure 2. We
believe that concatenating a pair of sentences and feeding them into BERT for similarity tasks can
enhance the model’s understanding of the relationship between the two sentences. When sentences
are concatenated, BERT’s attention mechanism can then focus on relevant parts of both sentences
simultaneously, allowing words or phrases in one sentence to directly influence the representation of
words or phrases in the other sentence. This leads to a more accurate similarity assessment.

Figure 2: Concatenate a pair of sentences and input into BERT for similarity analysis.

In the MTL fine-tuning process, one question is how to arrange the order of different tasks. Here we
probe the two routines: training sequentially and parallelly. An illustration of these routines is shown
in Fig. 3.

Sequential Training Routine: In the sequential training routine, we switch between tasks at the end
of each sub-epoch. An epoch consists of multiple sub-epochs, each dedicated to a different task.

Parallel Training Routine: In the parallel training routine, we switch between tasks at the end of
each batch, recording the total loss for three different tasks. Within one epoch, we train all three tasks
simultaneously without focusing the model specifically on any single task.

3



Figure 3: Sequential or parallel routines of fine-tuning BERT for MTL

4.3 Task-specific Adaptions

The original idea was proposed due to the fine-tuning process involving many parameters, if we could
freeze the transferred BERT layers and only fine-tune the lastly added task-specific layers, that would
save a lot of resources (Stickland and Murray, 2019). Also, due to the inherent differences between
tasks, using task-specific heads to adapt to different tasks can significantly enhance multi-task learning
performance. In this case, We experimented with two simple schemes to evaluate their effectiveness.

In the first scheme, we added a simple linear layer on top of the BERT model. This layer acts as a
task-specific head, providing a direct mapping from the BERT embeddings to the output space of each
task. The simplicity of this approach ensures minimal computational overhead and facilitates faster
training. We further experimented by adding an additional linear layer followed by a normalization
layer to see whether a more complex head would lead to better results.

In the second scheme, we explored the use of a projected attention layer on top of BERT as Stickland
and Murray (2019). Different tasks often require different representations and mappings. Task-
specific heads allow the model to tailor its output layer to the unique requirements of each task,
improving overall performance.

By employing these schemes, we aim to determine whether a more complex task-specific head can
better interpret the embeddings produced by BERT, ultimately leading to improved performance in
MTL.

5 Experiments

5.1 Data

The datasets employed for this project are the default project provided as shown in 1. Owing to
the extensive size of the Quora dataset, we initially reduced the training subset to one-third of its
original size at random to facilitate the test of various fine-tuning methodologies. Subsequently, for
the generation of final results, the complete dataset was utilized.

5.2 Evaluation method

Our evaluation methods adhere to the guidelines outlined in the default project handout. For the
sentiment analysis (SST) and paraphrase detection (Para) tasks, we employ classification accuracy
as the evaluation metric, defined as the ratio of correct predictions to the total number of examples:

accuracy =
true predictions

number of examples . For the semantic textual similarity (STS) task, we utilize the

4



Table 1: Provided datasets for the default projects with three downstream tasks.

Task Datasets Size Labels
Train: 8,544 examples

Sentimental analysis Stanford Sentiment Treebank (SST) Dev: 1,101 examples Movie reviews with 0, 1, ..., 5 categorical labels
Test: 2,210 examples

Train: 283,010 examples
Paraphrase detection Quora Dataset Dev: 40,429 examples Sentence pairs labeled as True (1) or False (0)

Test: 80,859 examples
Train: 6,040 examples

Sentence similarity SemEval STS Benchmark Dataset Dev: 863 examples Similarity score from 0 to 5
Test: 1,725 examples

Pearson Correlation Coefficient (PCC) to measure the correlation between the actual similarity scores
and the predicted ones. The equation writes as,

r (y, ŷ) =

∑
(yi − ȳ)(ŷi − ¯̂y)√∑

(yi − ȳ)2
∑

(ŷi − ¯̂y)2
(4)

where r ranges from −1 to 1, yi indicates predicted label while ŷ is the true score.

5.3 Experimental details

For all our experiments, we fine-tuned the entire model (BERT along with additional components
tailored for specific tasks) using a learning rate of 1 × 10−5. Each model was trained over 10
epochs with a default batch size of 8. To save the training cost for the paraphrase detection task, we
employed a reduced training set, as previously described, to evaluate the effectiveness of different
fine-tuning methods. The comparison revealed that the results from the smaller Quora dataset closely
approximated those from the full dataset, with single-task accuracies of 0.857 and 0.870, respectively.

Initially, each task was equipped with a task-specific head atop BERT, receiving the hidden state of
the [CLS] token as input. In our first experiment, we implemented a sentence-BERT framework using
cosine-similarity mean squared error (MSE) and multiple negative ranking (MNR) loss functions.
This configuration allowed for the input of two sentences into BERT to produce separate embeddings,
which were then compared directly. We trained the tasks sequentially within each epoch.

Subsequently, we shifted from the sentence-BERT method to a concatenation approach, where
sentences were combined prior to input into BERT. This produced a single embedding from which the
relationship between the two sentences was inferred using the [CLS] token’s hidden state. The loss
function is simply mean-square-error and AdamW optimizer is adopted. Furthermore, we assessed the
performance impact of training tasks in a sequential versus parallel arrangement, details of which are
elaborated in the Approach section. We also explored increasing the complexity of the task-specific
heads by adding an additional hidden layer with 256 units, implementing normalization, and integrat-
ing a projected attention layer. Ultimately, an epoch-wise learning rate decay strategy—halving the
learning rate each epoch is tested on different models.

5.4 Results

The performance scores on our development dataset are detailed in Table 2. We explore the multi-task
fine-tuning routines discussed in Section 5.3 and compare these results against both our baseline and
single-task fine-tuning methods. The baseline involves using a BERT model fine-tuned sequentially
on tasks with concatenated sentences.

Our observations indicate that the sequential multi-task fine-tuning routine can produce embeddings
that lead to performance on par with that of single-task fine-tuning across each downstream task, as
well as with the parallel multi-task fine-tuning approach. Additionally, we note varying impacts of the
increased complexity in task-specific heads across different datasets within the multi-task framework.
The role of the learning rate also proves crucial in influencing the outcomes.

Our best results were achieved using the enhanced base model, by adding an additional hidden layer
to the SST-head and implementing a learning rate decay strategy during training on the complete
Quora dataset. The outcomes on the test leaderboard are detailed in Table 3. A comprehensive
analysis of these results is provided in the subsequent Section 6.

5



Table 2: Dev accuracy/Pearson correlation results with different experiments.

Method Dev. SST Dev. Para Dev. STS
multitask BERT + Cos-Sim for STS + MNR for Para 0.480 0.666 0.740
BERT + concat sentences (single task performance) 0.510 0.857 0.858
Multitask parallel + concat sentences 0.502 0.850 0.869
Multitask sequential + concat sentences (base model) 0.513 0.850 0.875
Base model + additional hidden layer (256) 0.498 0.839 0.873
Base model + on-top Projected Attention Layer 0.488 0.841 0.869
Base model + lr decay (0.5) 0.517 0.857 0.867
Base model + hidden + lr decay (0.5) 0.520 0.855 0.865
Base model + hidden layer on SST + lr decay + full Quora 0.520 0.885 0.867

Table 3: Final results on the test set (leaderboard)

Test SST Test Paraphase Test STS Test mean
Score 0.518 0.886 0.874 0.780

6 Analysis

Initially, a sentence-BERT methodology incorporating cosine-similarity MSE loss and MNR loss
was employed, with the outcomes displayed in the first row of the table. A significant enhancement
was achieved by transitioning from sentence-BERT to a sentence concatenation approach. This
change notably improved the accuracy of the paraphrase (Para) detection task from 0.666 to 0.857
and increased the Pearson correlation coefficient for the semantic textual similarity (STS) task from
0.740 to 0.858. Rather than merely comparing the embeddings of the two sentences, concatenating
them—with a [SEP] token inserted between—allowed BERT to leverage the contextual information
of the preceding sentence to better encode the following one. Subsequently, we integrated the three
tasks (sentiment analysis (SST), Para, and STS) into a sequential multitask framework, which served
as the base model. The training for each task was carried out sequentially within a sub-epoch,
starting with the sentiment analysis (SST) task, followed by the paraphrase (Para) detection task, and
concluding with the semantic textual similarity (STS) task. This sequence constituted one full epoch
before the models were evaluated on the development set. This strategy enhanced the performance of
the SST task, with accuracy improving slightly from 0.510 to 0.513, and more noticeably for the STS
task, from 0.858 to 0.875. However, it detrimentally affected the performance of the Para task. These
results suggest that multitask training can have mixed effects, where the tasks may either positively
or negatively influence each other’s performance.

From our experiments with multi-task fine-tuning routines, we observed that the sequential multi-task
fine-tuning approach produced robust embeddings, yielding performance comparable to that of paral-
lel multi-task fine-tuning for each tasks. Contrary to our initial expectations, the knowledge learned
from tasks trained earlier did not diminish during the training of subsequent tasks as anticipated.
Initially, we suspected that earlier task knowledge would be forgotten as later tasks were learned.
This is maybe due to training multi-tasks parallel will introduce a new issue: the combined loss from
all tasks was not sufficiently sensitive to improvements in any single task.

We also investigated whether employing a more complex task-specific head layer could better capture
underlying relationships. Surprisingly, very complex heads, such as Projected Attention Layers
(PALs), did not enhance performance. In contrast, the addition of a simple linear layer followed by
normalization significantly improved performance on the SST task. This suggests that capturing the
nuances of sentiment requires a more sophisticated interpretation of the [CLS] token’s hidden state,
which was effectively provided by this simpler modification.

The learning rate plays a crucial role in model performance; a large learning rate can cause drastic
parameter changes, leading to oscillating results that fail to improve. Implementing a decaying
learning rate strategy helps to fine-tune the adjustments to the parameters more gradually, facilitating
the achievement of optimal performance. This approach ensures that the learning rate decreases over
time, preventing the model from overshooting the minimum of the loss function and promoting a
more stable convergence.

6



There were also several experiments conducted that are not detailed in the results. One such
experiment involved the implementation of the Sandwich Layer Norm, as introduced by Ding et al.
(2021). This technique adds additional normalization both before and after the multi-head attention
layer and the feed-forward layer. Contrary to expectations, this modification actually deteriorated
the performance in our tests. We believe that the reason for this decline is the incompatibility
between the pretrained model parameters and the modified structure of BERT. This suggests that
even minor structural changes, such as the addition of a normalization layer that does not introduce
new parameters, can significantly impact the pretrained model’s effectiveness.

7 Conclusion

In this project, our fine-tuning of BERT for MTL revealed several key findings:

Sentence Concatenation significantly improved paraphrase detection (Para) and semantic textual
similarity (STS) tasks by enabling BERT to encode richer contextual relationships between sentences.
Sequential Multitask Training, contrary to our expectations, did not lead to forgetting earlier tasks.
Task-specific head layers needs to be designed specifically, a complex task-spefiic head like PAL did
not guarantee enhanced performance. Instead, a simple linear layer with normalization significantly
improved the score on SST task, indicating that a simpler modification could be more effective. A
decaying learning rate strategy was essential for optimal performance. A large learning rate can cause
overshoot, while a gradually decreasing rate facilitates stable convergence.

Despite these findings, there are many unexplored fine-tuning approaches for improving BERT’s
performance on MTL. In the future, we plan to investigate different techniques to identify those that
generally enhance BERT’s performance.

References
Michael Crawshaw. 2020. Multi-task learning with deep neural networks: A survey. arXiv preprint

arXiv:2009.09796.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
Zhou Shao, Hongxia Yang, et al. 2021. Cogview: Mastering text-to-image generation via trans-
formers. Advances in Neural Information Processing Systems, 34:19822–19835.

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, László Lukács, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response
suggestion for smart reply. arXiv preprint arXiv:1705.00652.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, pages
5986–5995. PMLR.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classifica-
tion? In Chinese computational linguistics: 18th China national conference, CCL 2019, Kunming,
China, October 18–20, 2019, proceedings 18, pages 194–206. Springer.

Yu Zhang and Qiang Yang. 2021. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 34(12):5586–5609.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. 2019. Ernie:
Enhanced language representation with informative entities. arXiv preprint arXiv:1905.07129.

7


	Key Information to include
	Introduction
	Related Work
	Approach
	The sentence-BERT model
	Multitask fine-tuning scheme
	Task-specific Adaptions

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

