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Abstract

Large language models (LLMs) exhibit a wide variety of strengths, raising the
question of whether a system can be constructed to harness the abilities of mul-
tiple LLMs in tandem. To address this, we developed Hivemind, an architecture
comprising a classifier model and a network of other, specialized models. The
classifier is trained to determine which model in the network is best equipped to
process a given user input, subsequently passing the input to the selected model
and relaying the output back to the user. We evaluated Hivemind’s efficacy by
finetuning pretrained models to specialize in answering questions from various
subject categories (STEM, humanities, social sciences, "other") in our network.
We additionally trained a classifier to pass multiple-choice question inputs to the
appropriate specialized model. Our experimentation and results found that Hive-
mind performs significantly better than a non-finetuned vanilla model in terms of
answering questions correctly. However, further alternations to the dataset and the
fine-tuning process of the models in the network are necessary to fully demonstrate
its potential.

1 Key Information to include
• Mentor: Ryan Li
• Team Contributions: All three team members contributed equally and to all aspects of the

project, including data acquisition and formatting, finetuning, and the final project writeup.
In terms of specific contributions, Matthew finetuned the classifier and network models and
wrote scripts to calculate the scores of the models, Matt gathered and formatted training
and evaluation data and wrote scripts for the random architectures, and Ramya ran early
experiments, gathered and formatted training and evaluation data, and created the tables and
graphs of results.

2 Introduction

A major strength of pretrained large language models is that they can be finetuned for various tasks.
From the broad function of "question answering" to the niche specialization of "obtaining textual
descriptions of the lyrics, melody, and musical components of various songs" Doh et al. (2024), there
are endless possibilities of what models and frameworks can be created. One drawback of finetuning,
however, is those models finetuned for very specific tasks may not perform strongly on tasks that do
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not fall within that niche, while models finetuned for more general tasks require immense amounts of
data to perform most effectively.

Multi-agented systems are a relatively new phenomenon in the field of machine learning. Broadly
speaking, multi-agent systems enable a group of agents, or programs capable of perceiving the
environment around them and operating accordingly, to collaborate and collectively perform better
than they would have individually. One of the first and most well-known multi-agented systems
is called Autogen, an architecture that enables agential customization and conversation Wu et al.
(2023). Autogen’s framework is unique in that it allows agents to provide feedback for one another
and cooperate to improve. Similar research has further explored the capabilities of multi-agented
systems.

On a finer level, multi-agented systems necessitate the implementation of task classification. They
must be able to accurately determine what tasks should be assigned to what agent(s). In this study,
we examine the effectiveness of this task classification by constructing a customizable multi-model
architecture called Hivemind that, given a list of models, is able to determine which model an input
should be passed to for optimal results. To test Hivemind’s efficacy and determine what design
implications should be kept in mind when plugging models into the architecture, we finetune several
Llama3-8b models to be specialized in solving problems belonging to certain subject groupings: one
for STEM, one for humanities, one for social sciences, and one for "other" (accounting, business,
clinical studies, etc) Meta AI (2024b). To accomplish this, we utilize the Massive Multitask Language
Understanding (MMLU) dataset, which consists of multiple-choice questions and answers in a wide
variety of subjects Liang (2024). These finetuned models form our network. We then train a central
Llama3-8b model to be our "classifier" model, finetuning it on the MMLU dataset to be able to
classify questions as one of the above four categories Meta AI (2024b). Our results indicate that
Hivemind performs significantly better than a non-finetuned baseline model but on par with the
individual models in the network, suggesting that, while the finetuned classifier architecture has
potential, certain guidelines must be followed to optimize potential.

3 Related Work

Llama 3 Due to the recent and rapid advancements in large language models (LLMs) such as
ChatGPT and GPT-4, many major companies have begun exploring the potential of developing
their own LLMs Achiam et al. (2023). Recently, Meta AI released Llama 3, which improved on
reasoning from the previous versions of Llama Meta AI (2024b). As compared to the previous Meta
AI Llama 2 model, the architecture of Llama 3 allows for increased efficiency in encoding language,
greatly increasing the performance of the model Meta AI (2023). Through this model, we are able to
fine-tune multiple versions for specific tasks, ideally enabling the model to be superior in its category.

Multi-Agent Systems As mentioned earlier, multi-agent systems involve a network of agents
working together and communicating with one another to optimize task performance. Autogen
distinguishes itself from other similar architectures due to its customizable and conversible agents, its
conversation programming between agents, and its unique prompting techniques.Wu et al. (2023) It
has shown remarkable accomplishments in the areas of math problem-solving, retrieval-augmented
code generation, decision-making, and even conversational chess. Autogen’s achievements are
impressive, and their success in the field of multi-model systems is partially what’s motivated us to
explore that realm ourselves. Further papers have also explored the ideas of multi-agent systems
in coordination games, enhancing text quality similar to human preferences, and problem solving
Agashe et al. (2023); Chan et al. (2023); Rasal (2024).

4 Approach

We experimented with multiple approaches to select the models in our Hivemind architecture and
determine appropriate datasets to train them on. Initially, we aimed to analyze Hivemind’s propensity
for creating a network of models designed to complete coding tasks. We selected several models
finetuned for code generation and discussion, each with certain specialties such as code completion or
Python programming. We aimed to finetune our classifier model route each input to the appropriate
model. However, we encountered difficulties in locating data to finetune the classifier on as each
model would often perform similarly, if not identically, on the same input. In our initial approach, we
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ran inputs through all models in the network and manually labeled which outputs were strongest. This
method proved to be slow and subjective. We also considered using an LLM-as judge but concluded
that this method would also be susceptible to bias.

To solve this issue, we elected to create a network of models, each finetuned on a specific subject
domain: STEM, humanities, social sciences, or "other". We trained our classifier model to determine
which of these domain-specific models each input should be passed to. We utilized a dataset of
multiple-choice questions labeled with both answers and subjects. This process, as detailed in Figure
1, enabled us to effectively train our classifier model.

Figure 1: Overview of the Hivemind Architecture, detailing the flow from the User Input to the
Classification Model which selects the model from the Model Bank to the Output.

4.1 Division of Subjects

The MMLU dataset contained questions from 57 different subjects. We organized them into four
categories to distinguish the data each finetuned model would be trained on and denote the correct
assignments for the classifier model. The four categories were STEM, humanities, social sciences,
and "other". A comprehensive list of these divisions can be found in the Appendix (Figure 7).

4.2 Network Models

We finetuned four Meta-Llama-3-8b models on different portions of the MMLU dataset, one on each
of the four categories marked above. Datasets were prepared by solely including each multiple-choice
question and the corresponding answer, excluding any additional information. Due to resource and
time constraints, each model was finetuned on roughly 3000 data points, except for the humanities
model, which was finetuned on about 4,700. While this disparity was unintentional, subsequent
results suggest that this alteration was insignificant. We utilized the following finetuning statistics for
each of the individual models.

n_epochs = 4,
n_checkpoints = 1,
batch_size = 8,
learning_rate = 1e-5

We selected the default number of epochs when finetuning, as when analyzing checkpoints we
deduced this was the best way to maximize performance without expending too much time and
money. Due to the relatively small dataset size, we also wanted to prevent overfitting. For similar
reasons, we also went with a relatively small batch size of 8 (the minimum for Llama-3 8b) and an
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average learning rate of .00001. Selecting these more conservative parameters also helped us avoid
memory overload.

4.3 Classifier Model

The classifier model was a Meta-Llama-3-8b model trained on the same questions as the network
models. Rather than pairing each multiple-choice question with its respective answer, each multiple-
choice question was paired with its respective category (STEM, humanities, social sciences, or other).
This is because the classifier’s job is to decide which model it should be passed to rather than respond
to the inputs directly. It was trained on the same questions as above, meaning there were about 13,700
data points. Due to the dataset size not being larger by too much and the classifier model being the
center of the architecture, we utilized the same finetuning statistics as listed above.

4.4 Pipeline

We finally constructed a pipeline that brings this architecture together. Users are prompted to provide
an input, which is relayed to the classifier model. The classifier model then selects a model within
the model bank to route the input, with the chosen model’s output being relayed back to the user.
This architecture is detailed in Figure 1. Future work on this project may involve further abstracting
the Hivemind architecture to enable users to seamlessly add models to the network and finetune the
classifier on a dataset themselves.

4.5 Baseline

For our baseline, we utilized a non-finetuned Llama-3-8b-hf model and evaluated its performance
in correctly answering questions from the MMLU dataset. We wanted to see whether our architec-
ture—passing to specific finetuned models—would be more effective than a general, pretrained but
not finetuned model.

5 Experiments

5.1 Data

We used the Massive Multitask Language Understanding (MMLU) Hendrycks et al. (2020) dataset,
splitting it into training and evaluation data so results were not tainted. This dataset contains 57 tasks
on various subjects, which we separate into 4 main categories based on the MMLU paper. These 4
categories are STEM, humanities, social science, and other. Each dataset entry contains a question,
a subject, a list of four answer choices, and the correct answer. The classifier maps question and
answer choices to the corresponding subject, while the individually finetuned models map question
and answer choices to the corresponding correct answer.

5.2 Evaluation method

We had two primary methods of evaluation. First, to evaluate the efficacy of the classifier, we passed
1000 questions from our evaluation dataset to the classifier, removing the subject labels from them
and storing them elsewhere. We examined how often the classifier passed the question to the correct
model (STEM, humanities, social sciences, or other), tracking additional statistics such as which
models questions were passed to most or least often and which models received the highest proportion
of questions that weren’t meant for them.

Second, to evaluate the efficacy of the Hivemind architecture as a whole, we passed each of the
same 1000 questions from our evaluation to the corresponding finetuned model that the classifier
chose. We calculated how many of these questions the architecture answered correctly, comparing
its performance in this metric to a number of other models or designs: passing the 1000 questions
just to the baseline model described above, passing the 1000 questions to each the four models each
individually finetuned on specific categories (STEM, humanities, social sciences, other), passing the
1000 questions to just our "mega-model" (a Meta-Llama-3-8b model finetuned on every question
individually passed to the four other finetuned models), passing the 1000 questions to a random
classifier architecture where the choice of which model to pass to is determined by random choice,
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passing the 1000 questions to a random majority classifier architecture where three finetuned models
are chosen at random to select an answer and the answer with the majority of votes is chosen (ties
broken randomly), passing the 1000 questions to a majority classifier architecture where the answer
with the majority of votes between all four finetuned models is selected (ties broken randomly), and
passing the 1000 questions to a "perfect" classifier architecture, where the question is passed to the
correct model every time (simulated by passing the question to the topic expert for the topic category
the question fell under).

5.3 Experimental details

We wrote a script for both evaluation methods. We used the Together AI API to feed inputs to our
classifier model, as well as our other models, and collected the outputs in a text file. These scripts
additionally summarized the output results at the end and computed relevant numbers, listing how
often the input was passed to the correct model (for the first evaluation method) and how often the
correct answer was selected (for the second evaluation method). Each evaluation took roughly 40
minutes due to the model runtime and the length of API calls, which did somewhat limit our ability
to run multiple evaluations.

5.4 Results

Figure 2: Classifier: Assignment Accuracy

For our first evaluation metric, we analyzed how often the classifier model passed a question to the
correct individually-finetuned model (Figure 2). The classifier model successfully classified 384 out
of 1000 questions, meaning it had a 38.4% success rate. While this is clearly better than random
choice, which would have had a 25% success rate, this isn’t quite ideal, as it means the classifier is
passing to the incorrect model more often than not.

Clearly the classifier model passed to "other" far too often and the others not nearly enough, particu-
larly social sciences. We suspected that the classifier was defaulting to choosing "other" whenever it
wasn’t immediately sure. To test this hypothesis, we ran a second experiment, renaming "other" as
"niche" and utilizing some additional prompt engineering tools to attempt to get it to choose "other"
less often, but the results were the same. We then ran a third experiment, removing the "other"
category entirely and consolidating the subjects that fell into "other" into either STEM, humanities,
or social sciences. Most notably, a category in "other" called "miscallaneous" occupied a large part of
our evaluation dataset. Since these questions mostly consisted of arbitrary fun facts, we removed them
entirely. After re-finetuning the classifier model on three categories instead of four and creating a
new evaluation dataset (still with no overlap with the training dataset) with 334 STEM questions, 333
humanities questions, and 333 social sciences questions, we obtained the following results (Figure 3).

The model overall classified 572 out of 1000 questions correctly for a 57.2% success rate, which is a
substantial improvement from before. We do have to account for there being fewer possible choices
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Figure 3: Classifier: Assignment Accuracy After Removing "Other" Category

this time, so we compare to random guess. The original classifier did .384
.25 = 1.546 times better than

random chance, while this classifier did .572
.333 = 1.718 times better than random chance, which is still

a noticeable improvement. Were it not for resource and time limitations, we would have re-finetuned
and evaluated with these new categories and examined if other results changed as well.

For the second evaluation metric, we analyze how many answers various models and systems
(including our Hivemind classifier system) got correct (Figures 4, 5, 6). Charts with more information,
including breakdowns by subject, can be found in the appendix.

Figure 4: Baseline Model, Mega-Model, and Classifier System: Number of Questions Answered
Correctly

We note that, aside from the non-finetuned baseline model, performances are roughly the same.
All models and architectures get between 640 and 660 out of 1000 answers correct except the
finetuned STEM model, which only got 627 correct. Meanwhile, the baseline model was about half
as good, getting only 318 answers correct. This suggests that finetuning is effective, but finetuning on
individual subjects doesn’t make a meaningful difference in results on other subjects. For example,
the finetuned STEM model answered less STEM questions correctly than the humanities, social
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Figure 5: Individually Finetuned Models: Number of Questions Answered Correctly

Figure 6: Random Classifiers: Number of Questions Answered Correctly

sciences, and "other" models (although it’s worth nothing it just answered less questions correctly
in general). It’s probable that in the finetuning process, the individual subject models learned more
about question answering in general rather than question answering for the particular subject.

6 Analysis

Given our results, we note that while classifiers can be effective, their efficacy is dependent on the
distinction and the well-definedness of both the datasets and the models selected for the architecture.
The vagueness of the MMLU categories is likely contributing to the classifier’s errors. For example,
an example MMLU question is:
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Which of the following statements is TRUE concerning the standard regression model? A: 0: y has a
probability distribution. B: x has a probability distribution. C: The disturbance term is assumed to
be correlated with x. D: For an adequate model, the residual (u-hat) will be zero for all sample data
points

The subject of this is "econometrics", which we count as a social science. However, given that this
question is about mathematical modeling, one could reasonably assign it to the STEM category
as well. Furthermore, there is some ambiguity with the categories themselves, particularly social
sciences and humanities. Topics like sociology and religion fall somewhere in the middle, with the
distinguishing factor being more how the subjects are studied rather than the material itself, something
an LLM might have trouble picking up on.

That the mega-model and perfect pipeline models performed similarly to rest of the models (654/1000
and 653/1000 respectively) backs our proposition that the individually finetuned models are fairly
similar. These two models should be strongest, as the former is finetuned on the entire training dataset
spanning all four categories, while the latter passes each question to the model individually finetuned
for questions of the same subject. However, both performed only marginally better than the rest. The
Hivemind architecture thus seems to be most effective when the models in the network are fairly
distinct—otherwise all inputs could just be passed to the same model. This raises an interesting
balancing act, as if the models are all completely different (i.e. one for code generation, one for
Chinese language conversation), then inputs can likely be filtered deterministically, with no need for
machine learning. Conversely, if the models are all very similar, then we get the problem described
above. A potential solution here is to finetune the models in our network on more data to make them
more specialized, which is something we hope to do in the future.

7 Conclusion

Overall, we succeeded in our mission of constructing a multi-model architecture that utilizes a
classifier model to feed inputs to different specialized models. While the architecture’s performance
as demonstrated above wasn’t as successful as we had hypothesized, it was certainly not bad and
indeed outperformed our baseline. Perhaps most importantly, we made several discoveries pertaining
to our Hivemind architecture and how to best optimize its performance, namely

1. It is important for the models in the network to be sufficiently distinct; otherwise, the
classifier’s importance is lessened

2. When including an "other" or "default" model in the network, it’s important to consider that
the classifier will likely pass to it very frequently

3. When examining a training dataset for a classifier, deciding which model each input "should"
pass to, i.e. the ground truths, may be challenging. If the dataset is not pre-labeled in
that regard (or if the labels seem unreliable), it may be helpful to try techniques like
crowdsourcing opinions or using LLMs as judges, though both these strategies have their
drawbacks.

Our work suffered from certain limitations, the most prominent being resource constraints. By the
time we completed all training and evaluation, we were down to $5 in Together AI credits, having
spent nearly all of what we were granted. Similarly, we were constrained by time, as we had to
finetune and evaluate multiple models, which we did several times. Because of this, both our classifier
model and our individually finetuned models are not as potent as we would have liked. Another
limitation is that sorting questions into STEM, humanities, and social sciences can be subjective, as
discussed above, and our results would likely be different had we categorized differently. For future
work on this project, we would like to help rectify these issues by finetuning each of our models
for much longer periods of time on much larger datasets. This would hopefully result in not just a
stronger classifier, but more specialized individual models in the network. Furthermore, we’d like
to go through the training and evaluation dataset more carefully and divide the subjects into more
granular categories. This would help remove some of the ambiguity from our category definitions
and make our results more robust.
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8 Ethics Statement

We utilize the pretrained Llama3 model in our architecture, developed by Meta AI. Meta AI did put
effort and thought into developing responsible models to promote safety in deployment; through their
Llama Guard editions and Code Shield, Meta bolstered safety and security for code suggestions, a
common apprehension when it comes to LLMs Meta AI (2024a). However, there are still concerns.
Llama3 was pretrained on "15 trillion tokens of data from publicly available sources", including
"publicly available instruction datasets, as well as over 10M human-annotated examples" AI@Meta
(2024). While Meta used tools like NSFW filters to screen their data and protect users, Kili (2024),
there may still be bias present in the dataset it was trained on, and Meta either did not take substantial
steps to account for this bias or did not put this information on their model card. This is problematic
because pretraining models on datasets that contain bias introduces bias into the models. For example,
if an LLM is pretrained on datasets that only refer to doctors as "he", it may grow to assume women
cannot be doctors as a result of gender bias. Because Hivemind utilizes numerous Llama3 models,
any bias contained in the Llama3 models is carried over to our architecture as well. One mitigation
strategy for this would be to replace our Llama3 models with a model that is perhaps not quite as
powerful, but has taken explicit steps in its pretraining to reduce bias. We could alternatively keep the
Llama3 model but introduce a finetuning cycle to reduce bias. Significant research has already been
conducted on this topic, such as the 2023 paper "Disclosure and Mitigation of Gender Bias in LLMs",
and we can utilize it to reduce bias in our own system Dong et al. (2024).

A second potential instance of bias is related to the first but has more to do with the abstraction of
our model. In our architecture, the pipeline between the classifier model and the network models is
abstracted away, meaning the end user of any system built using it would simply provide an input
and receive an output. All information about the process under the hood would likely be hidden.
This has the potential to be problematic because a developer could hide some LLMs within their
Hivemind network that are inherently biased or dangerous and could target vulnerable populations.
For example, a developer could insert a model into their Hivemind that targets elderly users and
attempts to get them to input their social security numbers, using the classifier to detect when this is
possible. Additionally, developers could reveal some of the models in their network to lull the user
into a false sense of security while hiding the biased or dangerous ones. A mitigation strategy for this
could be to create a reporting platform/system for users of any systems built on Hivemind to report
dangerous or biased content they find, whose system it came from, and how they found it, enabling
users to better hold developers accountable and to make investigations into Hivemind systems easier.
This would ensure that people’s use of the Hivemind architecture is monitored and anyone attempting
to use it for nefarious activity more easily found and stopped.
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A Appendix

This appendix provides further detailed information and results from our experiments. It includes
more comprehensive divisions of the MMLU dataset as well as additional comparisons that we plot
and found.

A.1 MMLU Datasets

Figure 7 and Figure 8 offer a more detailed breakdown of the subjects and categories found in MMLU
research, as reference in Hendrycks et al. (2020). Figure 7 presents the subjects and categories exactly
as provided in the original paper, Hendrycks et al. (2020). In contrast, Figure 8 reorganizes the
"Other" category to organize within the three domain-specific categories: STEM, Humanities, and
Social Sciences.

Figure 7: Categorization of MMLU Subjects into Subject Categories: This figure illustrates how we
divided the MMLU subjects into our four categories.
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Figure 8: Categorization of MMLU Subjects into Subject Categories Without "Other": This figure
illustrates how we merged the "other" category into the other three for the MMLU dataset.
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A.2 Baseline Model and Mega-Model: Subject-Based Accuracy

Figure 9: Baseline and Mega-Model Subject-Based Accuracy: This figure illustrates how many
questions the baseline model and the mega-model got correct by subject. Recall the baseline model is
a non-finetuned Llama3-8b model, while the mega-model is a Llama3-8b model finetuned on all four
subject categories and not just one. Note that there were 250 total questions in each category.
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A.3 Finetuned Models: Subject-Based Accuracy

Figure 10: Finetuned Models Subject-Based Accuracy: This figure illustrates how many questions
each of the individually finetuned models in our network (one for STEM, one for humanities, one for
social sciences, and one for "other") got correct by subject. Note that there were 250 total questions
in each category.
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A.4 Random Classifier, Random Majority Classifier, Majority Classifier: Subject-Based
Accuracy

Figure 11: Random Architectures Subject-Based Accuracy: This figure illustrates how many questions
the three random-based architectures got correct by subject. The random classifier replaces the
classifier in our architecture with random choice. The random majority classifier replaces the
classifier in our architecture with choosing three models at random and picking the majority answer
among them, with ties broken randomly. The majority classifier is the same, except it picks the
majority among all four models instead of just three.

15



A.5 Perfect Pipeline: Subject-Based Accuracy

Figure 12: Perfect Pipeline Accuracy: This figure illustrates how many questions the our classifier
would have gotten correct by subject if it passed each input to the correct model. Note that there were
250 total questions in each category. In total, the "perfect" classifier would have achieved a score of
653, which is not far off the results of the actual classifier.
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