ComBERT: Improving Multitask-BERT with
Combinations of Scale-invariant Optimization and
Parameter-efficient Fine-tuning

Stanford CS224N Default Project

Harper Hua Ruiquan Gao Xinyi(Jojo) Zhao
shuohua@stanford.edu ruiquan@stanford.edu xyzhao99@stanford.edu
Abstract

In the rapidly evolving field of natural language processing (NLP), pre-trained
language models such as BERT have established a benchmark for numerous tasks.
However, the intensive computational requirements for fine-tuning these models
across multiple tasks pose significant challenges. This paper introduces ComBERT,
a novel framework that enhances the efficiency and efficacy of multitask BERT
models by integrating pre-training optimization with parameter-efficient fine-tuning
methods. Our approach leverages a multitask learning strategy, employing transfer
learning and a shared loss fine-tuning mechanism. We incorporate tasks like senti-
ment analysis, semantic textual similarity, and paraphrase detection, focusing on
their synergistic potential to foster robust generalization. Furthermore, we utilize
advanced optimization techniques, including cosine similarity adjustments and
Multiple Negatives Ranking Loss, alongside the innovative Low-Rank Adaptation
(LoRA) and Weight-Decomposed Low-Rank Adaptation (DoRA) techniques to
enhance model adaptability while minimizing resource demands. Experimental
evaluations across standard datasets validate the superiority of ComBERT, demon-
strating significant improvements in model performance across diverse NLP tasks
while maintaining resource efficiency. This study sets a precedent for future re-
search in developing more scalable and versatile language models.

Key Information

* TA mentor: Johnny Chang

» External collaborators / External mentor / Sharing project: No

1 Introduction

The field of natural language processing (NLP) has witnessed significant advancements in recent
years, particularly with the advent of pre-trained language models like BERT (Bidirectional Encoder
Representations from Transformers) [1]. These models have demonstrated remarkable performance
across a wide range of NLP tasks, owing to their ability to learn rich contextual representations
from vast amounts of unlabeled text data. However, the success of these models often relies on
computationally intensive fine-tuning processes, which can be prohibitively expensive and time-
consuming, especially when dealing with multiple tasks simultaneously.

To address these challenges, we propose ComBERT, a novel approach that combines pre-training
optimization techniques with parameter-efficient fine-tuning methods to enhance the performance and
efficiency of multitask BERT models. Our framework builds upon the standard BERT architecture
and introduces several key innovations to improve its adaptability and scalability across diverse NLP
tasks.

Stanford CS224N Natural Language Processing with Deep Learning

First, we initiate our approach by implementing and training BERT on sentiment analysis using the
SST and CFIMDB datasets for single-task classification. Building upon this foundation, we explore
multitask learning [9] as a key component of our framework to enable the model to learn shared
representations beneficial across multiple NLP tasks. Our approach involves two principal techniques:
transfer learning, which utilizes knowledge from a related task to enhance performance on a target
task, and shared loss fine-tuning, which trains tasks simultaneously by integrating their loss functions.
We investigate the potential of paraphrase detection as a primary task for multitask fine-tuning due to
its ability to capture deep semantic similarities and transferable linguistic structures. By incorporating
paraphrase detection alongside tasks such as sentiment analysis and semantic textual similarity, we
aim to develop a versatile model that can generalize effectively and adapt to new challenges with
minimal fine-tuning.

Second, we investigate the impact of dataset selection and augmentation on pre-training effectiveness.
In addition to the commonly used datasets for paraphrase detection, we introduce the MultiNLI
dataset [16], which encompasses both sentiment and paraphrase detection tasks. By generating
separate datasets for each task from MultiNLI, we seek to enhance the model’s understanding of
diverse linguistic phenomena and improve its generalization capabilities.

Third, we explore various optimization techniques to refine the model’s performance on specific tasks.
For similarity prediction, we employ cosine similarity fine-tuning [[14], which adjusts the model to
assess paraphrase and similarity predictions based on the cosine similarity between the predicted
output vector and the target vector in the embedding space. Additionally, we investigate the use of
Multiple Negatives Ranking Loss Learning for the paraphrase task, which aims to capture the relative
relationships between positive and negative examples more effectively.

Finally, we incorporate parameter-efficient fine-tuning (PEFT) methods, specifically focusing on the
recently proposed LoRA (Low-Rank Adaptation)) [6] and DoRA (Weight-Decomposed Low-Rank
Adaptation) techniques [8]]. PEFT addresses the limitations of traditional fine-tuning approaches
by leveraging weight decomposition to split pre-trained weights into low-rank matrices, enabling
efficient adaptation while maintaining a learning capacity similar to full fine-tuning. By integrating
LoRA and DoRA into our framework, we aim to strike a balance between performance and parameter
efficiency, facilitating the deployment of ComBERT in resource-constrained environments.

Through extensive experiments on benchmark datasets, we demonstrate the effectiveness of
ComBERT in improving the performance of multitask BERT models across three downstream
tasks, . Our results highlight the synergistic benefits of combining pre-training optimization tech-
niques with parameter-efficient fine-tuning methods, paving the way for more efficient and adaptable
language models in the future.

2 Related Work

Pre-trained Language Models The development of pre-trained language models, such as BERT [1],
has revolutionized the field of natural language processing (NLP). In addition to BERT, other notable
pre-trained language models have been proposed. RoBERTa [[10] builds upon BERT by modifying
key hyperparameters and training on larger datasets, resulting in improved performance on various
NLP tasks. XLNet [[17] introduces a novel permutation language modeling objective, which captures
bidirectional context while avoiding the limitations of traditional autoregressive models.

Multitask Learning Multitask learning 9] has emerged as a promising approach to improve the
efficiency and generalization capabilities of NLP models. Raffel et al. [13] introduced T5 (Text-to-
Text Transfer Transformer), a unified framework for multitask learning that treats every task as a
text-to-text problem. T5 achieves state-of-the-art results on a wide range of NLP tasks, demonstrating
the effectiveness of this approach. Sun et al. [[15] proposed ERNIE 2.0, a continual pre-training frame-
work that incrementally learns multiple tasks in a continual learning setting, effectively leveraging
knowledge transfer across tasks.

Dataset Augmentation Gururangan et al. [3]] investigated the impact of domain-adaptive pre-training,
where models are further pre-trained on domain-specific datasets before fine-tuning. They found that
this approach can significantly improve performance on downstream tasks in the target domain. Feng
et al. [2] provided a comprehensive survey of data augmentation techniques for NLP, highlighting
their effectiveness in improving model robustness and generalization.

SST Pretrained Welghts a5
Dataset ~” CEloss

LoRA
Quora Paragraph Cosine Utelo
_ . .. Negative i
Dataset CEE e Bty H:gking Mifiesickoss
BERT Regularization
SemEval Pretrained Multiple
STS STS Cosine "
Welghts I — > MSELoss Similarity ';:9‘;'."’9
Dataset o —
o
2
[—
g
TN D°RA =

Dataset

Figure 1: Architecture Overview

Optimization Techniques Mao et al. [12]] proposed UniPELT, a unified framework for parameter-
efficient language model tuning that combines different optimization techniques, such as adapters
and prefix tuning. UniPELT achieves competitive performance while significantly reducing the
number of trainable parameters. Zhang et al. revisited the effectiveness of adversarial training
for NLP models and proposed a new adversarial training scheme that improves model robustness and
generalization.

Parameter-Efficient Fine-Tuning Hu et al. [6] proposed LoRA (Low-Rank Adaptation), which
adapts pre-trained weights using low-rank matrices, enabling efficient fine-tuning while maintaining
performance comparable to full fine-tuning. Liu et al. [8] further extended this idea with DoRA
(Weight-Decomposed Low-Rank Adaptation), which leverages weight decomposition to split pre-
trained weights into magnitude and directional components, allowing for more effective adaptation.
Additionally, He et al. [4] introduced a unified view of parameter-efficient tuning methods, providing
a common framework for understanding and comparing different approaches. They also proposed
a novel method called UniPERT, which combines the strengths of different PEFT techniques to
achieve better performance and efficiency. Mahabadi et al. [11] proposed Compacter, a compact and
efficient fine-tuning method that learns a small number of task-specific parameters while keeping
the pre-trained model fixed, achieving performance comparable to full fine-tuning with significantly
fewer parameters.

3 Approach

3.1 Baseline Approach

We first implement MiniBert with the given code. We take it as our baseline where each task is
trained using its specific training set and evaluated on a development set. This provides a foundational
performance benchmark for subsequent enhancements. For our baseline, we employ distinct loss
functions tailored to each specific task: cross-entropy loss for sentiment prediction, paraphrase
detection loss for paraphrase prediction, and mean squared error (MSE) for similarity prediction.
The basic method for computing similarity involves the dot product of two vectors, providing a
straightforward yet effective baseline for comparison against more complex approaches.

3.2 Multitask Fine-tuning

Multitask fine-tuning in our framework involves two principal methods: transfer learning and shared
loss fine-tuning.

Transfer learning uses knowledge from a related task (task A) to enhance performance on a target
task (task B), thereby reducing the dependency on extensive labeled data for the target domain.
Both tasks share the same model architecture except for the final layer. Initially, we train the model
on task A to obtain a pretrained model M. Subsequently, we transfer all weights from M (except
the last layer) to task B and fine-tune using dataset B. During this fine-tuning, the weights are
adjusted not frozen to tailor the model to the specific requirements of task B. This process
allows the model to adapt the broad features learned from task A to the nuances of task B, optimizing
performance on the target task.

Shared loss fine-tuning involves training tasks simultaneously while integrating their loss functions.
This method encourages the model to find a representation beneficial across all tasks, which is
articulated mathematically as:

L= OlLl + BLQ —|—’YL3

where L represents the total loss, Ly, Lo, L3 are the loss functions for each task, and «, 3, are
weights determining the contribution of each task’s loss to the total loss.

3.3 Pretrained Dataset Exploration and Augmentation

In this study, we propose using paraphrase detection as the primary pretraining task for BERT due
to its robust feature learning capabilities. This task demands deep semantic analysis, enabling the
model to discern subtle linguistic nuances and develop complex semantic representations. Such
sophisticated feature learning is invaluable, as it enriches the model’s understanding of language,
which is beneficial for a variety of subsequent NLP tasks.

Moreover, the skills acquired from paraphrase detection—such as recognizing semantic similarities
and interpreting different expressions of similar ideas—are highly transferable to other NLP tasks like
sentiment analysis and semantic textual similarity. By pretraining on paraphrase detection, the model
not only gains a deep understanding of high-level semantic content but also ensures these capabilities
are broadly applicable across diverse NLP scenarios, enhancing both its efficiency and effectiveness.

Besides this, we also find MultiNLI dataset for pretraining. It is a dataset with both sentimental and
paraphrase detection. We generate two datasets from it, one is paraphrase and another is sentiment
analysis. We use this to replace the pretraining section of paraphrase detection dataset(quora), to
increase the understanding of the model.

3.4 Similarity Optimization

Cosine Similarity. In Cosine-Similarity Fine-Tuning[14], we adjust the model to assess the para-
phrase prediction and the similarity prediction by the cosine similarity. This approach is particularly
effective for tasks involving similarity assessments or matching scenarios. The cosine similarity is
computed as follows:

(y,¥)
Iyl -3l

where y, y are the two embedding vectors of the two sentences we want to compare. Then, we can
process the cosine similarity and define the appropriate loss functions according to the tasks.

CosineSimilarity(y,¥) =

3.5 Loss Function and Regularized Optimization

Multiple Negatives Ranking Loss Learning. = We use Multiple Negatives Ranking Loss Learning
[S]] for the paraphrase task, where we need to decide whether two sentences are paraphrases to each
other. Suppose S is the similarity score we use. For a batch (z1,y1,01),- .., (b, Ys, lp), Where
l; = yes if x; and y; are paraphrases and [; = no otherwise, we compute the loss by the average of

—1(l; = yes) - S(zi, ;) + log (1 + 2?':1 es(zi’yi)>

This loss can be viewed as the cross-entropy loss on a multiple choice task — we want to select the
most similar sentence of a given sentence, or claim no choice is similar.

Bregman Proximal Point Optimization. We use Bregman Proximal Point Optimization (BPPO)
[7] as part of our regularization method. Consider a classification task. Suppose f (6, z) is the output
distribution of our model # on input x, we want to update at round ¢ by

b

O¢+1 = arg minz Cross-Entropy (f(0, @), y:) + - €s (f(0,23), (6, i) (1)
o =

where £, (1, v) denote the symmetric KL-divergence Dk, (p||v) + Dk (v||p) and g > 0 is tunable
parameter. The implementation of Eq. (1)) is via running the optimization on mini-batches.

3.6 Parameter-efficient fine-tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) methods have been introduced to fine-tune pre-trained
models with minimal additional parameters, addressing the issue of computational cost and stor-
age requirements associated with full fine-tuning (FT). Among PEFT methods, LoRA (Low-Rank
Adaptation) has gained popularity due to its simplicity and effectiveness. However, there exists a
performance gap between LoRA and FT, which is often attributed to the limited number of trainable
parameters in LoRA.

To bridge this gap, a novel method called DoRA (Weight-Decomposed Low-Rank Adaptation) has
been proposed. DoRA leverages weight decomposition, inspired by Weight Normalization, to split
the pre-trained weights into magnitude and directional components. By fine-tuning both components,
DoRA aims to achieve a learning capacity similar to FT while maintaining parameter efficiency. The
directional component, which contains a substantial number of parameters, is adapted using LoRA to
enable efficient fine-tuning. Compared to LoRA, DoRA has demonstrated consistent performance
improvements across various tasks, including natural language processing, vision-language tasks,
and large language models, without compromising inference efficiency.

LoRA. LoRA (Low-Rank Adaptation) addresses the computational and memory limitations associ-
ated with updating all model weights during training. In regular fine-tuning, the weight update is
defined as Wypdatea = W + AW, where W is the original weight matrix and AW is the learned
weight update matrix. However, computing AW can be expensive for large models. LoRA proposes
an efficient alternative by approximating the weight update matrix AW as the product of two smaller
matrices, A and B, such that AW = AB. The updated weight matrix in LoRA is then given by
Wupdated = W + A - B, where A and B are low-rank matrices with dimensions A € R%*" and
B € R™*9, and r is the rank of the approximation. By using low-rank matrices, LoRA significantly
reduces the number of trainable parameters compared to full fine-tuning.

In the forward pass, the input x is multiplied by the low-rank matrices A and B, and the result is
scaled by a hyperparameter . The LoRA layer is then added to the original model weights, allowing
for efficient fine-tuning while preserving the knowledge captured during pre-training.

DoRA. DoRA (Weight-Decomposed Low-Rank Adaptation) is an extension of the LoRA (Low-
Rank Adaptation) method that aims to improve the performance of parameter-efficient fine-tuning
for large language models. DoRA builds upon LoRA by decomposing the pretrained weight matrix
W) into a magnitude vector m and a directional matrix V. The decomposition is inspired by the
mathematical principle that any vector can be represented as the product of its magnitude (a scalar
value indicating its length) and its direction (a unit vector indicating its orientation in space). In
DoRA, this decomposition is applied to the entire pretrained weight matrix Wy, where each column
vector represents the weights connecting all inputs to a particular output neuron. The DoRA process
can be summarized in two steps:

1) Decompose the pretrained weight matrix W into a magnitude vector m and a directional matrix
V:Wy = m% where |V|,. is the vector-wise norm of V.
2) Apply LoRA to the directional matrix V' and learn the magnitude vector m during training:

W' =m H‘//rAA\‘//\. = m|VVVVUOIg:| - where AV is the update to the directional matrix V, and BA

represents the LoORA weight update.

In the forward pass, the LoRA weight update is computed and added to the pretrained weight matrix
Wp. The resulting numerator is then normalized by its vector-wise L2 norm to obtain the updated

directional component. Finally, the new weight matrix is obtained by multiplying the magnitude
vector m with the updated directional component, and the linear transformation is applied using the
new weight matrix. By decomposing the pretrained weights and applying LoRA to the directional
component, DoRA aims to achieve better performance compared to standard LoRA while still
maintaining parameter efficiency.

4 Experiments

4.1 Data

For Bert training part, we will use the data in the folder data. For sentiment analysis tasks, we are
going to use the provided Stanford Sentiment Treebank (SST) dataset and CFIMDB dataset. We only
use the train set for training and dev set for validation.

For the fine-tune part, we use the train set and dev set of the provided SST set, Quora Dataset and
SemEval STS Benchmark Dataset. The SST set has 8, 544 training data points with 1, 101 validation
data points. The Quora set has 283, 003 training data points with 40, 429 validation data points. The
SemEval STS Benchmark Dataset has 6, 040 training data points with 863 validation data points.

Besides, we also tried to enlarge our pretrained datasets with MultiNLI[16]]. The MultiNLI dataset,
also known as the Multi-Genre Natural Language Inference corpus, is a comprehensive resource
designed for training and evaluating machine learning models on the task of natural language inference
(NLI). Developed as an extension of the Stanford NLI (SNLI) corpus, MultiNLI introduces a diverse
range of genres of spoken and written text, which were not included in SNLI. The corpus encompasses
a variety of genres such as fiction, letters, telephone speech, and government reports, providing a
broad spectrum of linguistic contexts.

We generate two datasets out of MultiNLI. One is sentiment analysis dataset, taking the godel_label
as its label with 3 labels marked. Another is paraphrase analysis dataset, where we use all the pairs
as positive samples. Then for each sentence, we find 10 random sentences as negative labels. In all
we have 392,702 training data points for sentiment analysis and 3,927,020 training data points for
paraphrase.

4.2 Evaluations

We will evaluate our results on dev set of the datasets and report the result of Test LeaderBoard.
Specifically, For SST an Quora Dataset, the metric is accuracy. For STS benchmark Dataset, the
metric is correlation. In order to explore the effects of different optimization method, we did several
independent experiments for different optimization methods. Because of time limitation, we run
fewer epochs to test the efficiency of different methods and combine them in our final experiments.

4.3 Results and Analysis

General Results. We utilized all the approaches mentioned in Section[3} The dev results and test
results are:

SST accuracy PARA accuracy STS correlation

Dev 0.529 0.891 0.871
Test 0.551 0.888 0.871

Multitask Finetuning. We present our preliminary multitask finetuning results in Table[I] where
we only use ~ 5% of the huge Quora dataset. It suggests that: 1) single-task fine-tuning on each
task has positive effects on the other two tasks; 2) multitask fine-tuning (almost) dominates every
single-task fine-tuning — it has comparable performance on the task single-task fine-tuning uses and
has significantly better performance on the other two tasks, indicating that incorporating additional
related tasks during fine-tuning can effectively leverage the model’s capacity to learn from diverse
data, resulting in improved generalization and transfer learning capabilities; 3) while full fine-tuning
is less time-efficient than last-linear-layer fine-tuning, it achieves significantly better performance.
Despite the increased computational cost, fine-tuning the entire model architecture enables more
comprehensive parameter optimization and adaptation, resulting in superior performance gains.

Method a f v SST Accuracy PARA Accuracy STS Correlation
Multitask (full-model) /3 1/3 1/3 0.51 0.792 0.857
Single-task (full-model) 1 0 0 0.506 0.577 0.449
Single-task (full-model) 0 1 0 0.446 0.806 0.635
Single-task (full-model) 0 0 1 0.480 0.741 0.861
Last-linear-layer - - - 0.461 0.380 0.260

Table 1: Our results on dev sets. We obtain the SST accuracy for the 3rd and 4th lines by running the "last-
linear-layer" fine-tuning after the "full-model" fine-tuning. Note that we don’t introduce new parameters in the
last layer for the PARA and STS tasks.

Pretrained Dataset Selection and Augmentation. We present our pretrained-selection results in
Table 2| Our analysis suggests that the PARA Dataset consistently performs well across all tasks,
demonstrating strong generalization capabilities. In contrast, other datasets such as SST and STS
show optimal performance only on tasks directly related to their respective datasets. Due to its broad
applicability, the PARA Dataset is an excellent choice for initial pretraining stages. MultiNLI Dataset
can slightly increase the results, but not as good as PARA Dataset.

Pretraining Dataset SST acc PARA acc STS corr

SST Dataset 0.513 0.629 0.861
PARA Dataset 0.502 0.803 0.863
STS Dataset 0.495 0.623 0.851
MultiNLI Dataset 0.515 0.557 0.864

Table 2: Our results on dev sets. We train the model on the pretrained dataset for around 3 epochs and use
multitask training for the 3 downstream tasks.

Loss Function Optimization. We show the results for loss function optimization in Table
Multiple Negative Ranking loss learning will improve the model’s ability to distinguish the similarity
amongst sentences, which makes it a better objective for similarity-related tasks on PARA and STS
datasets. With additional fine-tuning, the PARA accuracy increases 0.002 while the STS correlation
increases 0.01 under multiple negative ranking loss. This marginal improvement could be caused
by the severe overfitting issue of the pretrained model. Furthermore, we observed that introducing
regularization for accuracy evaluation tasks on SST and PARA datasets could boost the performance
to some extent, which reinforces our aforementioned explanation of the overfitting problem caused
by the pretrained model.

Method SSTacc PARA acc STS corr
Loss Function Benchmark - 0.864 0.856
Multiple Negative ranking loss learning - 0.866 0.866
No regularization 0.514 0.864 -
Regularized Optimization 0.524 0.880 -

Table 3: The results of Loss Optimization and Regularized Optimization (on the dev set) with additional
pre-training. We did not know how to apply multiple negatives ranking loss function to the SST task, while we
did not implement BPPO method to the STS task.

Cosine Similarity Optimization. We implemented both simple inner dot product similarity and
cosine similarity. Comparing the results we find that cosine similarity outperforms inner dot product
similarity because the latter fails to take relative similarity values of the vectors into consideration.
Moreover, cosine similarity measures the cosine value of the angle between two vectors, offering
a better representation for relative distances by measuring magnitude and orientations of vectors
simultaneously.

PEFT with LoRA and DoRA. As shown in Table[d] we performed two sets of experiments for
LoRA and DoRA respectively. First, we replaced linear layers for Bert model with rank = 4 LoRA
and DoRA layers. We loaded different baseline checkpoints (pre-trained with single task) and used
multitask learning (MTL) loss as the fine-tuning objective. Compared to Table [T] where we used the

exact same dataset, we observed that DoRA significantly outperforms LoRA and has comparable
performance as the multitask fine-tuning full-model. This resonates withthe novelty of DoRA to boost
the fine-tuning perfomance while maintaining the advantage of parameter efficiency by introducing
the additional weight decomposition vectors.

Second, we compared the results under different tunable parameter settings. It is worth metioning
that we used MTL loss for fine-tuning and loaded checkpoints pre-trained with MTL loss as well.
Summarized in Table |4, LoRA and DoRA have similar results on three different tasks in general
while DoRA marginally outperforms LoRA, which could be caused by the severe overfitting issues
of the pretrained checkpoint with MTL loss, limiting the space for further improvement.

PEFT w/ MTL loss & loaded checkpoints #parameters SST acc PARA acc STS corr

LoRA + SST-base 3,849 0.527 0.524 0.436
LoRA + cfimdb-base 3,849 0.423 0.530 0.309
DoRA + SST-base 757,286 0.496 0.748 0.845
DoRA + cfimdb-base 757,286 0.496 0.753 0.853
Tunable parameters #parameters SST acc PARA acc STS corr
LoRA only 3,849 0.515 0.804 0.853
all paras 109,489,938 0.509 0.818 0.857
DoRA only 757,286 0.514 0.817 0.855
all paras 110,243,375 0.511 0.817 0.856

Table 4: Results of PEFT performance comparison. We set rank as 4 for both LoRA and DoRA linear layer
replacement. First, we loaded different baseline checkpoints and tuned on LoRA/DoRA layers only. Second, we
loaded MTL full fine-tuned checkpoints with and experimented on different frozen weights.

5 Conclusion

In this project, we introduced ComBERT, a novel framework that combines pre-training optimiza-
tion techniques with parameter-efficient fine-tuning methods for enhanced multitask BERT models.
Through extensive experiments, we demonstrated the effectiveness of ComBERT across three down-
stream tasks: sentiment analysis, semantic textual similarity, and paraphrase detection. Our results
showcased the synergistic benefits of integrating multitask learning, transfer learning, dataset augmen-
tation strategies, loss function optimization, similarity function optimization, regularized optimization,
and parameter-efficient fine-tuning methods like LoORA and DoRA.

Notably, ComBERT has achieved the best performance on the combined results of these tasks,
outperforming traditional fine-tuning approaches. By leveraging shared representations and efficient
adaptation, ComBERT exhibits improved generalization capabilities while maintaining computational
efficiency, making it well-suited for resource-constrained environments. These findings pave the way
for more efficient and versatile language models in the field of natural language processing.

6 Ethical Consideration

Deploying our model in real-world scenarios presents several potential challenges. Firstly, the model
has been trained and tested only on specific datasets, which may not accurately represent the broader
real-world data distribution. This discrepancy can lead to inaccurate predictions. Additionally, the
training datasets may not include sufficient representation of diverse data points, potentially leading
to biased outcomes.

Secondly, the theoretical explanation of the BERT model remain inadequately explained. As a
result, providing a precise confidence level for the model’s predictions is challenging. This lack of
certainty could lead to the generation of unreliable or incorrect data, which might adversely affect
decision-making processes.

To mitigate these issues, it is crucial to continuously update and evaluate the model against a more
varied and comprehensive dataset that better mirrors real-world conditions. Moreover, efforts should
be made to enhance the transparency and interpretability of the model, thereby providing clearer
insights into how decisions are made and fostering greater trust in its applications.

References

[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[2] Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura,
and Eduard Hovy. A survey of data augmentation approaches for nlp. 2021.

[3] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman,
and Noah A. Smith. Annotation artifacts in natural language inference data. 2018.

[4] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. 2022.

[5] Matthew L. Henderson, Rami Al-Rfou, Brian Strope, Yun-Hsuan Sung, Laszl6 Lukécs, Ruiqi
Guo, Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response
suggestion for smart reply. CoRR, abs/1705.00652, 2017.

[6] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[7] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.
SMART: robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 2177-2190. Association
for Computational Linguistics, 2020.

[8] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
arXiv preprint arXiv:2402.09353, 2024.

[9] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. 2019.

[10] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. 2019.

[11] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient
low-rank hypercomplex adapter layers. arXiv preprint arXiv:2106.04647, 2021.

[12] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen tau Yih,
and Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model
tuning. 2022.

[13] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. 2023.

[14] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks, 2019.

[15] Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, and Haifeng Wang. Ernie
2.0: A continual pre-training framework for language understanding. 2019.

[16] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112—-1122. Association for Computational
Linguistics, 2018.

[17] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V.
Le. Xlnet: Generalized autoregressive pretraining for language understanding. 2020.

[18] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi,
and Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. 2021.

	Introduction
	Related Work
	Approach
	Baseline Approach
	Multitask Fine-tuning
	Pretrained Dataset Exploration and Augmentation
	Similarity Optimization
	Loss Function and Regularized Optimization
	Parameter-efficient fine-tuning (PEFT)

	Experiments
	Data
	Evaluations
	Results and Analysis

	Conclusion
	Ethical Consideration

