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Abstract

In the highly competitive financial markets, accurately predicting the impact of
news on stock prices is crucial for traders, investors, market makers, and other
participants seeking to optimize their market exposure. In this study, we explore
the power of natural language processing in predicting the normalized returns of
securities in the 10-minute window following the publication of news articles. Our
investigation encompasses 9 encoders, from published models finetuned on finan-
cial data like FinBERT to the latest OpenAI encoders like the t3-large embedding
model. Our primary objective was to measure the ability of NLP in explaining
stock returns and to present a framework completely free of look-ahead bias, a
pervasive issue in the existing literature. We present proper data normalization,
feature generation, and training routines to eliminate look-ahead bias. Our results
validate NLP’s application to return prediction while highlighting how the impact
of news has been grossly overstated in previous studies due to data contamination.
We rigorously analyze model performance both across time, security, and encoder
and benchmark it against both conventional buy and hold and traditional news
sentiment analysis as measured by an LLM. Our best model achieves a mean direc-
tional accuracy of 54.4% and a Sharpe Ratio of 7.6% per prediction, outperforming
the Buy and Hold respective baselines of 50.7% and 1.6% and the LLM baselines
of 51.2% and 3.5% . Our findings underscore the benefits of NLP in financial
prediction while advocating for a robust and unbiased methodology.

1 Key Information to Include

Our TA mentor is Kaylee Burns, and we have no external collaborators, mentors, or share the project.

Team contributions: See Appendix

2 Introduction

Predicting stock prices has long been a complex problem, defying precise modeling despite significant
efforts over the past 60+ years. Financial markets are influenced by numerous factors, including
macroeconomic variables, corporate earnings, geopolitical events, and public sentiment, not to
mention the natural randomness of order placement and trade flow. It is a problem with inherently low
signal-to-noise ratio, and news are only one driving factor. The market efficiency and the abundance
of highly sophisticated arbitrageurs keep the price process hard to predict and close to a martingale.
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Our main question is to what extent security price movements can be predicted by novel news
information. While much of the variance in security returns is believed to be random and difficult
to predict, some market movements are driven by factors such as microstructure, macroeconomic
conditions, order flow, and new public information. This study leverages NLP models to predict
stock returns based on news articles, carefully examining their effectiveness and addressing common
pitfalls like look-ahead bias. We aim to provide a realistic assessment of the power of NLP techniques
in financial prediction and enhance understanding of how public news influences market behavior.

3 Related Work

The prediction of stock market movements using news and other text data has been an active area
of research, combining natural language processing and financial analysis. Various studies have
explored different approaches to integrate textual data with financial time series to enhance the
predictive power of models. Li et al. (2022) proposed a transformer-based attention network for stock
movement prediction by incorporating historical text and stock prices [1]. Their model captures the
temporal dependence of financial data and effectively analyzes key information to achieve accurate
predictions. This approach offers one way to tackle the challenge of integrating text and stock prices.

Several other studies have focused on developing encoders finetuned on financial data. The FinBERT
model [2], introduced by Huang et al. (2022) was specifically designed for extracting information
from financial text and showed promising results in financial sentiment analysis, which is a crucial part
of predicting market movements. Another model with the same name of FinBERT [3] introduced by
Dogu Araci (2019), also demonstrated the effectiveness of finetuned models tailored to the financial
domain. Araci’s implementation of FinBERT achieved state-of-the-art results in financial sentiment
analysis tasks, significantly outperforming previous models such as LSTM with ELMo embeddings
and ULMFit. The study reported an accuracy of 97% on the Financial PhraseBank dataset with full
annotator agreement and set new benchmarks in the FiQA sentiment dataset by achieving lower mean
squared error and higher R-squared values compared to other models.

4 Approach

4.1 Problem statement

Given some news story about a publicly traded company, predict from the text content the return
of the company’s stock following X minutes from the publication time. Each news consists of a
headline, a timestamp, and possibly a text body, and we tackle the problem at a timeframe of 10
minutes but 3, 5, 15, 30, and 60 were also investigated with worse results. More formally, we do not
forecast raw returns but rather the related normalized Jensen’s alphas, as defined next.

4.2 Target definition

One then uses the time series of these factors to create a “base" model, often a linear regression,
to explain the part of the returns controlled by the known factors. We regress the returns at time t
against the factors at time t (as opposed to some t′ < t) so that the factor model is purely explanatory
with no attempt at forecasting. One then obtains the residuals of the factor model - the unexplained
part of the returns - and fits a second model - the alpha model - to forecast the residuals: the “excess"
returns over the known factors. See Avellaneda 2010 [4] or Gatev et. al 2006 [5] for examples.

For this project, our factor model is a simple Capital Asset Pricing Model (CAPM) [6] in which
the only factor is a market factor βM given by the S&P 500 index, and our alpha model is an NLP
model to forecast the excess returns on the index, also known as the Jensen’s alpha αS in the context
of CAPM for stock S. We then define our downstream model target as the volatility-normalized
Jensen’s alpha α̂S . Formally, these quantities are defined for each ticker S as

αS = rS − βM
S rM and α̂S =

αS

σαS

(1)

in which rS is the stock return, rM is the market return, and βM
S is the stock exposure factor to the

market (S&P 500), and σS is a forecast of the diffusive volatility of αS for the time interval of the
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alpha. Here we use a Gaussian GARCH(1,1) for σαS
since it explicitly models heteroscedasticity,

reproduces volatility clustering, and reacts fast to volatility shocks without look-ahead bias.

We emphasize that return series undergo severe distributional shifts, most visible in the high instability
of its second-order moments, so dynamic normalization is crucial. It cannot be stressed enough how
a naive z-scoring of the whole data would be an acute methodological flaw as (1) it preserves the
distributional instability and (2) introduces look-ahead bias when all data is used for normalization.
Our dynamic, temporal, causal normalization mitigates the inherent distributional term structure
without look-ahead bias. Henceforth, every mention to forecasting “returns" refers to α̂S .

4.3 Model architecture

4.3.1 General framework

The full model pipeline starts with a news headline passing through an encoder to be transformed into
a d-dimensional embedding vector. The embedding is concatenated to a vector of backward-looking
financial features computed from price and volume data on the stock referenced in the news. The
concatenated vector is then fed into a downstream network to predict the future return. See Figure 5.

4.3.2 Encoders

We tested 9 different encoders with different dimensions d. They are defined in Tables 1 and 2 below.

Name dim HuggingFace identifier
finbert 768 yiyanghkust/finbert-tone

finbert2 768 ProsusAI/finbert
distilroberta 768 mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis
distilroberta2 768 NLP-FEUP/FT-mrm8488-distilroberta-finetuned-financial-news-sentiment-analysis

deberta 768 nickmuchi/deberta-v3-base-finetuned-finance-text-classification
roberta 768 RogerKam/roberta_fine_tuned_sentiment_financial_news

roberta2 1024 Jean-Baptiste/roberta-large-financial-news-sentiment-en
Table 1: Encoders available in HuggingFace

Name dimensions OpenAI identifier
OpenAI-128 128 text-embedding-3-large
OpenAI-768 768 text-embedding-3-large

Table 2: Encoders from OpenAI

Encoders finbert [2] and finbert2 [3] come from publications and were finetuned on varied
financial text like SEC fillings, stock analysis pieces, and some financial news. The remaining
HuggingFace models were all finetuned only on financial news and are not connected to a publication.
Finally, the OpenAI encoders are application-agnostic and have not been finetuned on financial text.

4.3.3 Financial features

The financial features include (1) the forecasted GARCH volatility for the current time, (2) notional
volume for the current time, (3) past 3, 5, 10, 15, 30, 60 minute returns, (4) past changes in mean
volatility, and (5) mean volume between the two prior 3, 5, 10, 15, 30 minute intervals.

The financial data provides further context about the market state in terms of current price, volatility,
and volume levels as well as past changes in these variables, assisting in the interpretation of
the encoded text data. This is particularly useful not only because market reactions are regime-
dependent but especially because the timeliness of timestamps varies significantly, i.e.: some stories
are published right after the actual news is made public while other pieces have a far bigger delay
of many minutes if not hours. Full financial context of both current and past market states enables
the model to learn to identify signs that the impact of the news already happened in the past (stale
news) or will most likely happen in the near future (breaking news) to make a correct prediction. The
same headline can have very different returns following its publication had it been published a couple
minutes after the reported event (impact ahead) or delayed by hours (impact before timestamp), so
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combining financial data is crucial for performance. We later demonstrate how a large language
model (LLM) predicting news sentiment performs significantly worse in gauging the real impact of
news due to lack of financial context despite its very high performance in actual sentiment analysis.

4.4 LLM annotations

For added baseline comparisons and feature engineering, we utilized the Claude-Haiku model from
Anthropic to annotate our news headlines dataset. We asked it to generate its own sentiment and
relevance scores for each headline. Our approach involved a pseudo chain-of-thought prompt where
we provided Haiku with the news headline and the reference ticker. First, we asked Haiku to
identify whether the ticker was directly mentioned by name in the headline. This step was used to
engineer a feature named ‘tagging’, intended to help explain away much of the variance arising from
ambiguous or irrelevant headlines. Next, we prompted Haiku to analyze the sentiment of the headline
from a prospective investor’s perspective. Haiku was instructed to provide a short explanation of
the sentiment, followed by a numerical sentiment score ranging from -100 to 100. Finally, we
asked Haiku to assess the relevance of the headline to the ticker, providing a short explanation
and a relevance score ranging from 0 to 100. This prompt structure was designed to mimic the
chain-of-thought concept, aiming to improve the resulting performance of the annotations.

4.5 Elimination of look-ahead bias

A core strength of our work compared to both previous projects and previous papers is our diligence
in eliminating look-ahead bias, which is rampant in a significant part of the literature. In particular,
the common formulation of predicting returns of a given day using news or social media posts
from the same day is extremely flawed as the text often carries information about the day’s return,
e.g.: "Apple plunges after..." or "NVDA opens green with..." introduce significant look-ahead bias.
Even if the target is changed to overnight returns with only news before market opening, several
products like futures and foreign exchange trade 24h per day 5 or 6 days a week across markets, with
cryptocurrencies and some over-the-counter products trading uninterruptedly. Since there is strong
correlation of returns across markets and asset classes, any piece of financial information introduces
look-ahead bias when the start of the return interval is not ahead of the text timestamp.

Therefore, the methodologically sound approach is to predict returns immediately after the timestamp
as done here. A chronological train-test split and chronological training and forecasting are also used
to treat the dataset as a time series. The normalization of both the target and the financial features
is similarly careful by using volatility predicted by a GARCH(1,1) model fitted on past data. As
previously explained, conventional z-scoring introduces look-ahead bias. Moreover, all financial
features were structured to have zero temporal overlap with any target, and statistical tests were used
to screen for accidental data contamination. Finally, we even decided to avoid the LLM annotations
of sentiment and relevance as inputs since the model might have been trained in a large corpus of
more recent news, so even if very subtle there would be no guarantee of no look-ahead bias.

4.6 One-tier vs two-tier model

The overwhelming majority of news are not financially impactful, and the aforementioned timestamp
misalignment is a significant issue for all 3 news sources, so a robust architecture needs to handle
these two core issues. The inclusion of rich financial data on current and past market states is one
proposed solution, but we also put forward an innovative two-tier model, which to the best of our
knowledge is considerably different than anything ever attempted in past literature.

Both the one-tier and two-tier models work as described under 4.3.1, with the difference that in
the two-tier approach two models are used instead of one. The first model has its target altered to
future changes in volatility and volume instead of returns while the second takes those predictions
as additional financial features to then predict the returns. The core motivation lies in volatility and
volume increases being a proxy score for news relevance/impact, so by providing them to the second
model one can create an even richer representation of the financial context. Equipped with a rough
estimate of a relevance score, the second model would possibly predict returns more accurately.
The two-tier approach tries to disentangle the problem of concomitantly learning sentiment and
impact of text as learning both together poses a significant challenge, especially given the very low
signal-to-noise ratio of the data and all the aforementioned difficulties. See Figure 5 in Appendix for
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a schematic representation of the two-tier approach, which can be understood as a generalization of
the one-tier, which is in turn defined by simply excluding sub-model 1 and its output.

4.7 Training, Evaluation, and Baselines

The training uses a 70-30% chronological train-test split, and we tried both training a single model on
all securities and training one per security, with best results on the first. We used mean squared error
(MSE), L1 Loss, and Huber Loss to compare predicted and true normalized returns, with best results
on the latter. All models were trained with Adam [7] with different learning rates and weight decays.

We evaluated using (1) explained variance, (2) mean directional accuracy (MDA), (3) Pearson
correlation between predicted and true returns, and (4) Sharpe ratio per trade of the portfolio
constructed by weighting the true normalized return by the predictions. For the case of LLM
sentiment, we weight the positions analogously with the predicted sentiment.

We compared all models as well as the one-tier and two-tier approach across all 4 metrics. For the
financial baselines, we compared buy and hold of each individual stock and of the S&P 500 index in
terms of MDA and Sharpe since the other metrics are not defined. For the LLM baseline, we compute
MDA, Pearson, and Sharpe using the sentiment score as the prediction to compare. These metrics are
invariant under linear scaling of the prediction, so the comparison is methodologically sound.

5 Experiments

5.1 Data

The news and financial data are from Jan 2015 to May 2024 for AAPL, AMD, AMZN, GOOG,
MSFT, NVDA, and TSLA. The news consist of 73,412 timestamped headlines aggregated from
CapitalIQ, Benzinga, and Polygon for all tickers, and some contain additional data (body, tags, etc)
while the financial data is the NYSE TAQ database of all trades recorded on the tickers in the period.

TAQ was processed down to minute returns with a GARCH(1,1) fitted to forecast volatility. We
defined 3, 5, 10, 15, 30, 60 minute volatility-normalized returns to test targets of different timescales.
We filtered out duplicate and empty headlines and matched news to returns to get input, target pairs.

An LLM (Claude-Haiku) was used to tag the news headlines pulled Polygon, Benzinga and Capi-
talIQ. The tag was a simple True/False that indicates whether or not the specified ticker is directly
referenced/mentioned in the headline. The model was also used to provide its predictions on the
sentiment and relevance of the news to the ticker, but this was used only as a baseline comparison.

5.2 Experimental details

Model Architecture: Grid search determined optimal parameters and features for single- and two-tier
models.

Single Model Approach:

• Encoder: OpenAI-128
• Target Columns: αS10M

• Extra Inputs: tag; αS−5M

• Hidden Dimension: 8
• Architecture: External encoder, 3 fully connected layers (Leaky ReLU and ReLU), Dropout

(later removed)

Training:

• Batch Size: 1024, Epochs: 50, Loss Function: HuberLoss
• Optimizer: Adam (Learning Rate: 0.006, Weight Decay: 0.005)

Two-Tier Model Approach:

Model 1(Volatility and Volume Processor):
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• Encoder: OpenAI-128

• Target Columns: ∆V3M,5M,10M and ∆σ3M,5M,10M (V is Volume, σ is Volatility)

• Extra Inputs:{∆V,∆σ}−[3M,5M,10M,15M,30M ]; σS ; αS−[3M,5M,10M,15M,30M,60M]

• Hidden Dimension: 16

Training:

• Batch Size: 1024, Epochs: 100, Loss Function: HuberLoss

• Optimizer: Adam (LR: 0.008, WD: 0.002)

Model 2 (Downstream Processor):

• Encoder: OpenAI-128

• Target Columns: αS10M

• Extra Inputs: tag; αS−5M
; ∆V̂3M,5M,10M ; ∆σ̂3M,5M,10M

• Hidden Dimension: 12

Training:

• Batch Size: 1024, Epochs: 100, Loss Function: HuberLoss

• Optimizer: Adam (LR: 0.02, WD: 0.007)

5.3 Results

Name Explained var(%) MDA(%) Pearson Sharpe
deberta 0.170 52.302 0.049 0.048

distilroberta 0.196 51.468 0.048 0.048
distilroberta2 0.113 51.722 0.036 0.038

finbert -0.014 51.685 0.026 0.024
finbert2 0.266 51.776 0.052 0.053
roberta -0.005 51.015 0.027 0.030

roberta2 0.057 51.377 0.028 0.031
OpenAI-128 0.484 54.422 0.082 0.076
OpenAI-768 0.443 53.751 0.070 0.069

LLM sentiment - 51.236 0.031 0.035
Buy & Hold - 50.671 - 0.016

Table 3: Model performance across encoders and compared to benchmarks

Figure 1: Cumulative returns of a theoretical portfolio constructed from model test predictions.
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Figure 2: 1000-window rolling Sharpe and MDA of the best models.

Overall Performance The table and the cumulative return plot show that the models generally
outperform the Buy & Hold strategy, indicating that the models are effective in capturing some
predictive signals from the news headlines despite the low signal-to-noise ratio observed in our
Exploratory Data Analysis. The OpenAI text-embedding-3-large (with both 128 and 768 dimensions)
and deberta models are particularly notable for their performance, and they both largely outperform
LLM sentiment, showing the power of integration of textual and financial data.

Explained Variance and Directional Accuracy

The explained variance and MDA metrics reveal that the OpenAI-128 model is the best, with an
explained variance of 0.484 and an MDA of 54.422%. This indicates that the model captures a
significant portion of the variability in stock returns and is the most accurate in predicting the direction
of returns. The OpenAI-768 and deberta models perform slightly lower, suggesting that they are also
effective in extract meaningful information from news headlines and financial data.

Risk-Adjusted Returns

The Sharpe ratio highlights the superior performance of the OpenAI-128 model (0.076), followed
closely by OpenAI-768 (0.069). It indicates that these models are not only more accurate but the
predictions have a more favorable risk profile. The lower Sharpe ratios with other encoders, such as
distilroberta and finbert, suggest a poor representation of the embeddings for the task at hand.

Cumulative Returns

The cumulative out-of-sample return plot (Figure 1) illustrates the growth of hypothetical portfolios
following the models’ predictions. The OpenAI-128 and OpenAI-768 models consistently outperform
other models and the Buy & Hold strategy. This consistent outperformance underscores the robustness
of these models in leveraging news information for stock return prediction. The LLM sentiment
model, while providing some predictive capability, significantly underperforms compared to the
specialized NLP models, emphasizing the importance of targeted model architectures for this task.

Rolling Performance Metrics

The rolling MDA and Sharpe ratio plots (Figure 2) show that the OpenAI models maintain higher
MDA and Sharpe ratios than the Buy & Hold strategy and LLM sentiment model, indicating consistent
accuracy and a favorable risk-return profile over time. The variability in these metrics highlights
the models’ sensitivity to market conditions and news events, underscoring the need for continuous
adaptation.Additionally, Figure 3 demonstrates that higher percentile cutoffs correlate with higher
MDA, suggesting that larger predicted magnitudes indicate higher model confidence. This is crucial
for financial modeling, as it implies that the model’s stronger predictions (with higher absolute
values) are more reliable, allowing investors to focus on the most confident forecasts for better
decision-making. Further, see figure 4 which models cumulative returns in the test set.

Summary of Observations

The OpenAI text-embedding-3-large with 128 and 768 dimensions demonstrate superior performance
across all metrics, effectively encoding news headlines to forecast stock returns, even without
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fine-tuning on financial data. These specialized models proposed significantly outperform the
LLM sentiment model and Buy & Hold strategy, underscoring the importance of tailored model
architectures for financial prediction tasks. Rolling metrics indicate periods of high performance
and fluctuations, reflecting the models’ responsiveness to market dynamics and the need for ongoing
evaluation and refinement.

6 Analysis

The challenge of predicting security prices/returns from news headlines is well-documented through-
out this paper. This task is inherently noisy due to the numerous factors influencing stock prices.
Evaluating the relevance of a news headline to the price of a security is particularly difficult but
crucial. To understand our model’s performance and provide a benchmark, we offer a selection of
example headlines, their associated tickers, and the resulting normalized returns.

Table 4 lists these headlines along with the normalized returns predicted by our model, compared
to the actual returns. The model’s predictions are often conservative in magnitude, which does not
necessarily indicate poor performance. Given the high noise in returns data, a predicted return should
be seen as a central tendency or expected value rather than an exact figure. This perspective aligns
with viewing normalized returns as proxies for confidence in directional predictions. A positive
prediction indicates confidence in an upward movement, while a negative prediction suggests a
downward trend, regardless of magnitude. When inspecting the results in Table 4, when the predicted
normalized return matches the true return in direction, the model effectively captures the impact of
the news headline on the security price and the data points with significant discrepancies between the
predicted and true returns highlight the model’s limitations. Most notably, are the ambiguous cases:
Many news headlines are ambiguous or have mixed sentiment, making it difficult even for human
analysts to predict their impact accurately. For instance, straight- forward headlines like “Mullen
Automotive’s stock at record low as it pushes ahead with plan for another reverse stock split” are
easier to evaluate than more ambiguous ones like “What’s going on in the oil market?” or “3 Key
EPS Reports to Watch this Week.”

Headline Ticker Actual Return Predicted Return
Forget Nvidia: This Other "Magnificent Seven" Member Just Poured $11 Billion Into Data Centers NVDA -2.418821 -0.037260

Tesla, Deciphera Pharmaceuticals, Heartland Financial And Other Big Stocks Moving Higher On Monday TSLA 1.069773 -0.074928
Amazon Spends Up To $4B On AI Startup Anthropic, Analysts Explore Deal Prospects AMZN 0.022503 0.007440

Mullen Automotive’s stock at record low as it pushes ahead with plan for another reverse stock split TSLA -2.467070 -0.106924
ChatGPT On Apple iPhone, Make Or Break Data For Stock Market Ahead AAPL 0.656861 0.079368

Table 4: Headlines with Normalized Returns Predicted by Model vs Actual Returns

7 Conclusion

We have demonstrated that NLP techniques can be effectively applied to predict stock returns under
a methodologically robust approach with no look-ahead bias and enhanced by the integration of
financial and textual data for better context for predictions. Our statistically significant results
outperform traditional benchmarks, underscoring the potential of integrating financial data with
news embeddings. However, challenges remain in handling the low signal-to-noise ratio inherent in
financial data since only a small part of the variance in the data can be explained by the news. Future
work could explore other ways of separating the relevance and sentiment tasks beyond the two-tier
model approach as well as invest more modeling effort into getting a representation of market state
with respect to the expected reaction to different type of news.

8 Ethics Statement

There are two main ethical concerns. If our work is leveraged for real trading, we need to assure
that the third-party news data can be used for commercial purpose without authorization from or
royalties for the news creators. This can be consulted directly with the sources to prevent unauthorized
use. Secondly, we need to be mindful of ESG concerns and define ethical standards with respect to
controversial securities associated with undesirable societal outcomes. These include the fossil fuel
industry, the arms industry, companies associated with human rights violations, etc. We might abstain
from trading those or formulate strict rules to comply with most recent ESG standards.
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A Appendix (optional)

Team Contributions: Lucas pulled and processed the Polygon news, the Claude annotation, and
OpenAI Embedding datasets; performed exploratory data analysis of the annotation and news
datasets; finetuned the final architectures, input features, and hyperparameters via experimentation
and grid search. Henrique pulled and processed the financial data and the Capital IQ news; designed
the financial features and targets; experimented with different encoders; performed exploratory
data analysis of the datasets; built pipelines and templates for model training, benchmarking, and
visualization. Shree pulled and processed the Benzinga news, scraped the bodies of the Polygon
articles for the LLM annotations; finetuned the final architecture with different loss functions and
experimentation with cross-validation and addition of dropout layers.

Figure 3: The magnitude of the prediction serves as a proxy for model confidence as shown by the
dependence of mean directional average on the percentile magnitude of the predictions. Prediction of
higher magnitude (measure here with percentile cutoffs) yield higher MDA.
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Figure 4: Cumulative returns in the test set show that most model performance comes from correctly
predicting NVDA and GOOGL, revealing an unexpected structure to the difficulty of forecasting
different tickers based on news.

Figure 5: Architecture of the two-tier model with the one-tier as a special case
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