
Parameter-Efficient Learning Strategies for
Multi-Task Applications of BERT

Stanford CS224N Default Project

Irmak Sivgin
Electrical Engineering, Stanford University

isivgin@stanford.edu

Mahmut Yurt
Electrical Engineering, Stanford University

myurt@stanford.edu

Abstract
In this project, we employ multiple strategies to improve the downstream perfor-
mance of BERT in sentiment classification, paraphrase detection, and semantic
similarity scoring tasks. Our goal is to fine-tune the base BERT model with task-
specific downstream layers to produce robust embeddings generalizable to multiple
tasks. We approach this problem by investigating various multi-task learning
improvements (multi-stream BERT, BERT with cosine-similarity), by exploring
optimization techniques (gradient surgery), by incorporating parameter-efficient
learning strategies (LoRA, DoRA, rs-LoRA), and by utilizing different token em-
beddings (using the [CLS] token, average of all hidden features, [CLS] token and
averaged tokens processed and concatenated). We find that the best performance is
achieved by multi-stream BERT with cosine similarity, using both averaged and
concatenated features optimized by gradient surgery on the multi-task objective.

1 Key Information to include
• TA mentor: Tony Lee. External collaborators, external mentor, sharing project: No.

2 Introduction
Natural language processing (NLP) is a vital tool in modern computer science for enabling machines
to comprehend, interpret, and interact with the human language Nadkarni et al. (2011). NLP can
tackle a wide range of diverse tasks, including but not limited to text classification Kowsari et al.
(2019), machine translation Macherey et al. (2001), and information retrieval Voorhees (1999). For
sentence-level analysis, NLP excels in handling medium-length texts, providing precise and accurate
results. In particular, NLP is shown to be highly effective in sentiment analysis to detect the emotional
tone in a given text, paraphrase detection to determine if two sentences convey similar meanings, and
semantic textual similarity regression to evaluate the degree of similarity between sentences. However,
the field still faces important challenges such as ambiguous language, contextual complexity, and
idiomatic expression Khurana et al. (2023).

Building generalizable language models is therefore essential for robust techniques that can perform
well across diverse domains and tasks Cheng et al. (2018). Multi-task learning (MTL) is a promising
approach to achieve generalizability by training a single model across multiple tasks simultaneously,
leveraging shared representations to enhance performance Caruana (1997). For instance, widely-used
models like bidirectional encoder representations from transformers (BERT) have demonstrated the
efficacy of shared representations in obtaining high performance across various NLP tasks Devlin et al.
(2018). However, MTL significantly increases the number of parameters to be optimized, resulting in
a training process with higher computational requirements. Furthermore, balancing the optimization
of unique task-specific features with shared features is quite challenging. Note that task-specific
features are crucial for fine-tuning the model to perform well at individual tasks, whereas shared
features provide a robust foundation across all tasks Yurt et al. (2021). Meanwhile, task interference,
in which learning one of the tasks negatively impacts another one, also complicates the balance in
multi-task learning Yu et al. (2020). The challenge of managing these aspects highlights the difficulty
of developing generalizable models in NLP, necessitating techniques like parameter-efficient learning,
adaptive parameter sharing and task-specific regularization to navigate these challenges effectively.

Stanford CS224N Natural Language Processing with Deep Learning

In this project, we aim to address the challenges of multi-task learning using a pre-trained BERT
model for sentiment analysis, paraphrase detection, and semantic similarity regression. For this
purpose, we demonstrated a multi-stream approach to effectively learn both task-specific and shared
representations. This was achieved using a network architecture that pools information from task-
specific linear layers and a shared linear layer used across tasks. To address task interference, we
explored gradient surgery, which involves projecting a gradient onto the orthogonal space of another
gradient in cases of gradient conflicts Yu et al. (2020). To enhance performance, we further utilized
a cosine similarity metric in semantic similarity regression. Moreover, we explored parameter-
efficient learning strategies such as LoRA Hu et al. (2021), DoRA Liu et al. (2024), and rs-LoRA
Kalajdzievski (2023) to manage the increased number of parameters in BERT needing optimization.
These techniques introduced different low-rank adaptations, where the weights of the pre-trained
BERT are frozen and trainable low-rank matrices are added. Finally, we examined fusing additional
hidden states from BERT, including direct use of the pooling output, averaging, and concatenation.

3 Related Work
Multi-task learning: The idea of multi-task learning aims to enhance overall model performance
by simultaneously handling multiple tasks Caruana (1997); Yurt et al. (2021), and has been widely
explored in the context of language models Collobert and Weston (2008); Radford et al. (2019); Chen
et al. (2023). Among these works, Collobert and Weston (2008) trained a joint deep neural network
across various tasks and showed enhanced generalizability. Similarly, Radford et al. (2019) suggested
that a language model can benefit from large, diverse datasets, in an unsupervised learning framework
for performance benefits over multiple domains. More recently, Chen et al. (2023) introduced a
multimodal large language model as a unified interface for various vision-language multi-task learning
applications. This is achieved by proposing unique identifiers for individual tasks during learning
Chen et al. (2023). There is another stream of research on improving optimization on multi-task
objective landscape. In Bi et al. (2022), authors simply add all the individual losses from different
tasks and perform backpropagation on this merged objective. Although this idea can be powerful,
authors of Yu et al. (2020) note the possibility of detrimental gradient interference among different
task objectives, proposing “gradient surgery”, a procedure that projects a gradient onto the other
gradient’s normal plane for in the case the gradients conflict. This approach of modifying gradients
for multi-task learning has been shown to improve efficiency and performance. In a recent paper,
Yurt et al. (2021) demonstrated that pooling information from unique and shared features for multiple
tasks can effectively enhance performance. This is achieved by learning individual and shared layers
separately and then concatenating them to learn a final fusion layer Yurt et al. (2021).

Parameter-efficient learning: One limitation of fine-tuning large language models is its need for
substantial computational resources to handle the complexity of the networks Hadi et al. (2023).
To address this various strategies have been developed Houlsby et al. (2019); Hu et al. (2021); Liu
et al. (2024). Among them, a recent study introduced low-rank adaptation (LoRA) that freezes
the weights of the pre-trained model and injects trainable rank decomposition matrices Hu et al.
(2021). This helps to significantly reduce the number of trainable parameters and computational cost
Hu et al. (2021). Building on this approach, another study proposed a corrected scaling factor for
rank stabilized LoRA, namely rsLoRA Kalajdzievski (2023). Meanwhile, another study proposed
weight-decomposed low-rank adaptation, DoRA, that decomposes the pre-trained weight matrices
into magnitude and directional components, and fine-tunes them Liu et al. (2024). These methods
also address the issue of overfitting to the smaller fine-tuning dataset and drifting away from the
pretrained backbone model, reducing the number of trainable parameters in the fine-tuning process.

4 Approach

Here we describe the baselines and main approaches used in our study to enhance performance.

4.1 Baselines

We considered two baselines (see Appendix Fig. 1). The first one involves multi-task training
of BERT Devlin et al. (2019) for sentiment analysis, paraphrase detection, and semantic textual
similarity, with a single additional linear layer dedicated to each task, where only the additional linear
layers are trained, and BERT is not fine-tuned. The second baseline utilizes the same architecture and
multi-task training; however, here BERT is also fine-tuned to examine if it improves the performance.
We refer to this as the base model in the remainder of the report.

2

4.2 Multi-Stream Bert

As an architectural contribution to multi-task learning, we first developed a multi-stream approach
(MS) inspired by Yurt et al. (2021). This MS approach integrates a shared linear layer (SL) and three
separate task-specific linear layers (TL) following BERT output (see Appendix Fig. 2). These shared
and task-specific layers aim to leverage both shared and task-specific representations to enhance
model performance for all tasks. The implementation can be summarized as follows:

• BERT Encoder: The given input text is provided to the pre-trained BERT model that outputs
the contextualized token representations [CLS]. The token output denoted as hCLS serves as the
aggregate representation of the input sequence.

• Shared Linear Layer (SL): The [CLS] output hCLS is processed by the shared linear layer to
generate a general representation across tasks:

hshared = WsharedhCLS + bshared (1)

where Wshared denotes the weights, bshared the biases, and hshared the output of the shared layer.
• Task-Specific Linear Layers (TL): Depending on the ongoing task, the same [CLS] output hCLS

is propagated through the corresponding task-specific linear layer:

htaski = WtaskihCLS + btaski (2)

where Wtaski denotes the weights, btaski the biases, and htaski output of the task-specific linear
layer for the ith task.

• Concatenation: The outputs of the shared and task-specific linear layers are concatenated to form
a combined representation:

hcombinedi = [hshared;htaski] (3)
where [;] denotes the concatenation operation.

• Subsequent Layers: The combined representation hcombinedi is propagated to the next layer to
compute the final output for the respective task.

houti = Wlastihcombinedi + blasti (4)

where Wlasti denotes the weights, blasti biases, and houti output of the final layer.

4.3 Cosine Similarity

Cosine similarity is a common metric used in NLP due to its ability to capture orientation rather
than magnitude of the vectors. Therefore, we utilized it for the task of semantic textual similarity
to evaluate the degree of the likeness between the two token representations Reimers and Gurevych
(2019). Its formulation is given as:

cos similarity(x1, x2) =
x1

⊤x2

max(||x1||||x2||, ϵ)
(5)

where x1 and x2 are the token representations, and ϵ is a small value preventing division by zero.
The output ranges in [-1, 1], where 1 indicates that vectors are identical in direction, 0 indicates
that vectors are orthogonal, -1 indicates that vectors are diametrically opposed. Here the output is
propagated through a ReLU followed by a multiplication by 5 to perform the desired regression.

4.4 Multitask Fine-Tuning (PCGrad)

In multitask optimization, it is possible to have gradients that have negative conflict with other task
gradients, which triggers over- or under-estimation problems Yu et al. (2020). Authors propose
projecting conflicting gradients (PCGrad) method to remove the conflicting components of the
gradients across tasks in Yu et al. (2020). The notion of gradient conflict is defined as i-th task
gradient gi and j-th task gradient gj having a negative dot product, i.e., gi⊤gj < 0. In such cases,

gi is modified as: gi ← gi − gi
⊤gj

gj⊤gj
gj Yu et al. (2020). After this gradient modification, the model

parameters are optimized through regular gradient descent. For this part, AdamW optimizer is used.
We base our implementation of PCGrad on the original GitHub code, but adapt to PyTorch instead 1.

1https://github.com/tianheyu927/PCGrad

3

https://github.com/tianheyu927/PCGrad

4.5 Parameter Efficient Fine-Tuning

Low-rank adaptation for fine tuning (LoRA), as introduced in Hu et al. (2021), alleviates the memory
and computation overhead in the fine tuning procedure by freezing the pretrained parameters and
only making low-rank updates. For any targeted layer that will be fine-tuned, the weights are re-
parameterized as W0 + AB with the pretrained model weight W0 ∈ Rd×k being untouched, and
A ∈ Rd×r, B ∈ Rr×k as the parameters to be updated Hu et al. (2021). The rank of the modification,
∆W = AB is r ≪ d, k, which enables parameter efficiency in fine tuning while also preventing
overfitting to the specific task. LoRA utilizes a scaling parameter α such that ∆W is scaled by α

r ,
which the authors fix at a scalar in the order of r as optimizing α is roughly the same as optimizing
the step size Hu et al. (2021). Thus, the final update rule for LoRA is

Ŵ = W0 +
α

r
∆W = W0 +

α

r
AB. (6)

In a recent study, authors show that dividing the scale factor by
√
r provides rank-stabilization,

which enables improved performance at higher values of r, while original LoRA performance does
not improve much with increasing r Kalajdzievski (2023). Rank-stabilized LoRA (rs-LoRA) thus
provides for a fine-tuning compute/performance trade-off.

Weight-decomposed low-rank adaptation (DoRA) decomposes the pretrained model weight W0

to magnitude and direction and fine-tunes both components, where the direction parameters are
adapted with the LoRA method Liu et al. (2024). The authors claim that concentrating LoRA on the
directional component of the weights simplifies the task, as the magnitude component is fine-tuned
separately, and that this approach stabilizes optimization. For a weight matrix W ∈ Rd×k, the
magnitude-direction decomposition is expressed as

W =
V

∥V ∥c
m =

W

∥W∥c
∥W∥c (7)

where m ∈ Rk is the magnitude vector holding the magnitude of each column of W , V ∈ Rd×k is
the directional matrix, and ∥ · ∥c denotes the norm of each column. We express DoRA fine-tuning:

Ŵ =
V +∆V

∥V +∆V ∥c
m =

W0 +AB

∥W0 +AB∥c
m (8)

with m = ∥W0∥c, V = W0 at initialization. m is kept trainable while V is frozen, forcing low-rank
updates on the direction matrix through LoRA procedure Liu et al. (2024). We utilized peft library
from HuggingFace to implement LoRA, rs-LoRA and DoRA.

4.6 Token Fusing Strategies

To enhance model performance, we can leverage additional hidden states from BERT instead of
relying only on the [CLS] token embedding. For this purpose, we examined two other token fusing
strategies in addition to utilized the [CLS] token on its own:

• [CLS] Token Embedding: The [CLS] token embedding hCLS is received from BERT with a size
of (dhidden), the hidden size of the BERT model.

• Averaging: The averaging approach involves calculation of the average of all hidden states,
described as:

havg =
1

L

L∑
i=1

hi (9)

where L is the sequence length, hi represents the hidden state at position i, and havg denotes the
output with the same shape as the [CLS] token embedding, (dhidden).

• Concatenation with Non-Linear Transformation: To pool information, the [CLS] token em-
bedding hCLS is concatenated with the non-linearly processed, averaged hidden states havg. The
process can be formulated as:

htra = tanh(Wavghavg + bavg) (10)

hcat = [htra;hCLS] (11)

4

where Wavg represents the weights, bavg denotes the biases, and htra is the output of the non-
linear transformation, with a shape of (dmodel), hcat denotes the concatenation of the [CLS] token
embedding and the linearly processed output of the averaged embeddings, resulting in a shape of
(2dhidden).

These token fusing strategies aim to leverage more comprehensive contextual information from
BERT’s hidden states, thereby improving the model’s performance on the tasks.

5 Experiments

5.1 Data

Three different datasets are used: 1) SST dataset, 2) Quora dataset, and 3) SemEval STS Benchmark
dataset. SST dataset includes 8,544 train, 1,101 dev and 2,210 test samples with annotated sentiment
classification labels for 5 classes. Quora dataset consists of 283,010 train, 40,429 dev, and 80,859 test
samples. The task is binary paraphrase detection. STS dataset consists of 6,040 train, 863 validation,
and 1,725 test samples. The task is similarity value regression for given two texts. To mitigate
misbalances between the datasets in the multi-task learning protocol, around 20,000 samples are
randomly selected and used in training during each epoch for the Quora dataset.

5.2 Evaluation method

For the SST dataset that provides labels for a 5-class classification task, we evaluated performance
using accuracy. Similarly, for the Quora dataset, where the task is to determine if particular in-
stances are paraphrases, we also used accuracy in evaluation. The accuracy can be defined as:
Accuracy = (Number of Correct Predictions)/(Total Number of Predictions). Meanwhile, for the
SemEval dataset, the task is a regression problem to predict the similarity value between pairs of
texts. Here, to evaluate the performance, we use the Pearson correlation coefficient (PCC). PCC
measures the linear correlation between the predicted vs. actual similarity values, and it is defined as:
r = (n(

∑
yŷ)− (

∑
y)(

∑
ŷ))/

√
[n

∑
y2 − (

∑
y)2][n

∑
ŷ2 − (

∑
ŷ)2] where n is the number of

paired scores, and y and ŷ represent the actual and predicted similarity values, respectively. This
metric helps us understand how well the predicted values match the true similarity scores.

5.3 Experimental details

Our experiments span architectural changes, utilizing different input features, parameter-efficient
learning and multi-task optimization with gradient surgery. In terms of different models that are
trained, we have the base model (MultiTaskBERT), base model augmented with shared layer (SL),
multi-stream (MS) and cosine similarity (CS). For all these models, we perform parameter-efficient
fine-tuning with LoRA, DoRA and rs-LoRA. The rank for the updates is set to 8, however, we also
explore a higher rank (256) with rs-LoRA to see if the rank stabilization will boost the performance
given more number of trainable parameters. The α parameter is set to 16.

We further explore the effect of using various features extracted from BERT in the downstream tasks
by assessing performance of our models with the regular [CLS] token, averaging and concatenation
strategies outlined in Section 4.6.

Finally, we select the best performing model-feature pairs to inspect the potential of PCGrad op-
timization. In order to handle the different dataset sizes across tasks, we randomly oversample
from the smaller datasets to match the number of samples in the larger datasets. We observed that
oversampling the smaller datasets allows for better PCGrad optimization compared to undersampling
the larger datasets to match the size of the smallest dataset. Note that exact matching of the number
of batches is necessary for the PCGrad procedure. PCGrad uses AdamW as the backbone optimizer
as in all other cases. The learning rate is set to 1e-5. The number of training epochs is set to 10. All
experiments were conducted on NVIDIA A40 Gpus, on Python using PyTorch.

5.4 Results

We present our results for multi-task learning with BERT. We report accuracy (sentiment classifi-
cation and paraphrase detection) and correlation (similarity regression) on the dev set. Base model

5

(MultiTaskBERT) without any fine-tuning achieves 0.308 accuracy in sentiment classification, 0.634
accuracy in paraphrase detection and a correlation score of 0.225 in similarity evaluation, resulting in
an average performance score of 0.389. In the tables that we present below, we include the fine-tuned
BERT model as the comparison baseline, as fine-tuning the whole model improves upon the case
where only the classification layers are trained. In the tables, SL refers to the base model with an
additional shared layer whereas MS refers to the whole multi-stream model (see Section 4.2). CS
stands for using cosine similarity for similarity evaluation task.

Tables 1, 2 and 3 display the performances of low-rank fine-tuning methods LoRA, DoRA and
rs-LoRA, respectively. Inspecting the average scores across all models and fine-tuning methods with
r = 8, the best performance is achieved by rs-LoRA and MS + CS model. Notably, each one of the
three fine-tuning methods outperforms the other two for at least one model. Thus, we can say that
these methods perform similarly. Testing rs-LoRA with r = 256 slightly increases the average scores,
however, this difference was not observed to be significant.

We also present the affect of BERT embeddings on downstream task performances in Table 4. Token
fusing by averaging or concatenation produces better results compared to only using the [CLS] token.
This is an expected result as in either token fusing approach, the downstream model is still informed
of the [CLS] token, but, also has access to the remaining hidden states of BERT, which convey more
information. Interestingly, averaging seems to be more desirable for models without cosine similarity,
and concatenation yields better results for models with cosine similarity. The best overall method
appears to be MS + CS model with concatenated tokens. SL + CS and MS + CS models perform
similarly, and both token fusing strategies yields good results. Thus, we compare naive SGD with
PCGrad on these two models.

Table 5 displays SL + CS and MS + CS models with averaged or concatenated features optimized
by naive AdamW or the PCGrad method. We observe that using gradient surgery improves results
across all models and all token choices. We achieve the same combined score for MS + CS model
with both averaged and concatenated features.

Finally, our test leaderboard results with MS + CS model using concatenated features optimized
with gradient surgery are: SST test accuracy: 0.505, Paraphrase test accuracy: 0.790, STS test
correlation: 0.833. Thus, we achieve the overall test score of 0.737.

Model Trainable % Sentiment Paraphrase Similarity Average Score

Base Model 1.478 0.417 0.730 0.254 0.467
SL 1.456 0.360 0.718 0.307 0.462
SL + CS 1.456 0.366 0.710 0.750 0.609
MS 1.458 0.322 0.723 0.301 0.449
MS + CS 1.458 0.322 0.717 0.697 0.579

Table 1: Comparison of LoRA fine-tuned model performances across the tasks.

Model Trainable % Sentiment Paraphrase Similarity Average Score

Base Model 1.315 0.448 0.725 0.364 0.512
SL 1.294 0.395 0.719 0.357 0.491
SL + CS 1.294 0.362 0.679 0.749 0.597
MS 1.296 0.299 0.720 0.334 0.451
MS + CS 1.296 0.321 0.682 0.722 0.575

Table 2: Comparison of DoRA fine-tuned model performances across the tasks.

6 Analysis

We performed qualitative analysis to understand our model, and wanted to address when it works
well and when it fails. In the following part, some examples are reported and commented on.

Sentiment classification:

• Sentence: A poignant, artfully crafted meditation on mortality. (4)

• Prediction: 4 – Correct Answer: 4

6

Model Trainable % Sentiment Paraphrase Similarity Average Score

r = 8

Base Model 1.478 0.420 0.714 0.238 0.457
SL 1.456 0.361 0.730 0.278 0.456
SL + CS 1.456 0.383 0.730 0.710 0.608
MS 1.458 0.374 0.713 0.287 0.458
MS + CS 1.458 0.415 0.727 0.719 0.620

r = 256

Base Model 32.24 0.423 0.730 0.327 0.493
SL 32.07 0.441 0.723 0.293 0.486
SL + CS 32.07 0.431 0.731 0.711 0.624
MS 32.07 0.414 0.738 0.312 0.488
MS + CS 32.07 0.421 0.707 0.701 0.610

Table 3: Comparison of rs-LoRA fine-tuned model performances across the tasks.

Model Feature Sentiment Paraphrase Similarity Average Score

Base Model
[CLS] 0.511 0.726 0.367 0.535

average 0.514 0.741 0.362 0.539
concatenation 0.511 0.729 0.369 0.536

SL
[CLS] 0.510 0.737 0.367 0.538

average 0.500 0.729 0.394 0.541
concatenation 0.522 0.732 0.370 0.541

SL + CS
[CLS] 0.507 0.743 0.761 0.670

average 0.523 0.745 0.805 0.691
concatenation 0.523 0.747 0.805 0.692

MS
[CLS] 0.492 0.750 0.372 0.538

average 0.497 0.751 0.371 0.540
concatenation 0.511 0.744 0.355 0.537

MS + CS
[CLS] 0.491 0.745 0.797 0.678

average 0.504 0.731 0.826 0.687
concatenation 0.519 0.745 0.826 0.697

Table 4: Comparison of token fusing strategies with the choice of using the [CLS] token across the
baseline and proposed models evaluated for 3 tasks.

For this example, we observed that our model is successful in predicting the sentiment of the given
sentence. We can understand that the model correctly identified the positive sentiment conveyed by
words like “poignant” and “artfully crafted”, which indicate high praise and admiration.

• Sentence: This flick is about as cool and crowd-pleasing as a documentary can get.

• Prediction: 1 – Correct Answer: 4

The model might have struggled with understanding the context and the overall tone of the sentence,
focusing on individual words such as flick, cool, crowd rather than the sentence as a whole.

Paraphrase detection:

• Sentence 1: How do I get that peace of mind?

• Sentence 2: What do you do to achieve peace of mind?

• Prediction: Paraphrase – Correct Answer: Paraphrase

The model is correct in this prediction. We sense that the content and intent of both sentences
are the same, and we estimate that the model accurately identified the synonymous nature of “get”
and “achieve”, as well as the interchangeable structure of the questions. The model recognizes the
equivalence of “how do I” and “what do you do to”, which shows understanding of phrases.

• Sentence 1: Should I buy an iPhone 5s in 2016?

• Sentence 2: Is it advisable to buy iPhone 5s over a same priced Android smartphone in
2016 from a future perspective for at least 2 years?

• Prediction: Paraphrase – Correct Answer: Not Paraphrase

7

Model Feature Optimizer Sentiment Paraphrase Similarity Average Score

SL + CS

average PCGrad 0.495 0.811 0.774 0.693
concatenation PCGrad 0.488 0.802 0.805 0.698

average AdamW 0.523 0.745 0.805 0.691
concatenation AdamW 0.523 0.747 0.805 0.692

MS + CS

average PCGrad 0.489 0.816 0.835 0.713
concatenation PCGrad 0.496 0.807 0.837 0.713

average AdamW 0.504 0.731 0.826 0.687
concatenation AdamW 0.519 0.745 0.826 0.697

Table 5: Direct optimization vs. using PCGrad for the best performing models. We compare the
performance of SL + CS and MS + CS models with enhanced features under different optimizations.

The model is incorrect in this prediction. We see that the two sentences are asking a similar question
but in a much different manner. The first one directly ask the question on “iPhone”, whereas
the second one includes other pieces such “Android”, “future”. We estimate that the model was
influenced by the shared context of purchasing decisions and technological considerations, resulting
in not capturing the entire meaning.

Semantic similarity regression

• Sentence 1: Two girls playing with people and flowers behind them.
• Sentence 2: Two young girls wearing skirts are playing in a garden.

• Prediction: 3.287 – Correct Answer: 3.2

The model was almost perfect in predicting the similarity in this case as the two sentences are
straightforward and quite similar. The model was able to match “flowers behind” with the concept of
being “in a garden”.

• Sentence 1: Queen pays tribute to Nelson Mandela.
• Sentence 2: South Africa’s rugby fraternity mourns Mandela.

• Prediction: 3.01 – Correct Answer: 1

The model might lack the ability to deeply understand the context (Queen paying tribute vs rugby
fraternity paying tribute), leading it to incorrectly assume a higher degree of similarity based on
shared keywords rather than the overall meaning and specific entities involved.

7 Conclusion

In this project, we demonstrated a multi-stream approach for multi-task learning of BERT using
parameter-efficient learning techniques, input fusing strategies, and gradient update techniques for
sentiment classification, paraphrase detection, and semantic similarity regression. Using the proposed
techniques, we achieved sentiment classification accuracy of 0.505, paraphrase test accuracy of 0.790,
and similarity regression correlation of 0.833, yielding an overall test score of 0.737. The future work
will be based on incorporation of external datasets to improve performance.

8 Ethics Statement

Developing a multi-task NLP model for sentiment analysis, paraphrase detection, and semantic
similarity regression does not essentially seem dangerous, but there can be several ethical issues that
one should address. Firstly, the risk of bias in the training data can lead to unfair or discriminatory
outcomes. These outcomes can promote societal prejudices. Secondly, the use of personal data,
especially in sentiment analysis, can raise privacy concerns. From individuals, proper consent might
be necessary to collect, or anonymization should be performed. Additionally, the potential misuse
of the model, such as manipulating opinions or conducting surveillance can pose ethical risks. To
address these concerns, as developers, we should ensure that the training data we use is diverse and
representative to minimize biases. We should ensure that we perform strong anonymization techniques
to protect personal data. Furthermore, we should build transparent models with development and
documentation to enhance accountability and trust.

8

References
Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task

learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669.

Rich Caruana. 1997. Multitask learning. Machine learning, 28:41–75.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. 2023. Minigpt-v2:
large language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478.

Zhi-Qi Cheng, Xiao Wu, Siyu Huang, Jun-Xiu Li, Alexander G Hauptmann, and Qiang Peng. 2018.
Learning to transfer: Generalizable attribute learning with multitask neural model search. In
Proceedings of the 26th ACM international conference on Multimedia, pages 90–98.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international conference
on Machine learning, pages 160–167.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. 2023. A survey on large
language models: Applications, challenges, limitations, and practical usage. Authorea Preprints.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pages 2790–2799. PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models.

Damjan Kalajdzievski. 2023. A rank stabilization scaling factor for fine-tuning with lora.

Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. 2023. Natural language processing:
State of the art, current trends and challenges. Multimedia tools and applications, 82(3):3713–3744.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana Mendu, Laura Barnes, and
Donald Brown. 2019. Text classification algorithms: A survey. Information, 10(4):150.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-decomposed low-rank adaptation.

Klaus Macherey, Franz Josef Och, Hermann Ney, et al. 2001. Natural language understanding using
statistical machine translation. In INTERSPEECH, pages 2205–2208. Citeseer.

Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. 2011. Natural language
processing: an introduction. Journal of the American Medical Informatics Association, 18(5):544–
551.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

Ellen M Voorhees. 1999. Natural language processing and information retrieval. In International
summer school on information extraction, pages 32–48. Springer.

9

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2312.03732
http://arxiv.org/abs/2402.09353
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning.

Mahmut Yurt, Salman UH Dar, Aykut Erdem, Erkut Erdem, Kader K Oguz, and Tolga Çukur. 2021.
mustgan: multi-stream generative adversarial networks for mr image synthesis. Medical Image
Analysis, 70:101944.

10

http://arxiv.org/abs/2001.06782
https://doi.org/https://doi.org/10.1016/j.media.2020.101944

A Appendix (optional)

Figure A1: The network architecture for the base model used in the comparisons. The CLS token
calculated for the sentiment analysis task is propagated through the linear layer to calculate output
for that task. The [CLS] tokens for the two instances are calculated for the paraphrase detection, and
they are concatenated before passing through the linear layer of that task. Similarly, the [CLS] tokens
for the two instances are calculated for the semantic similarity task. They are again concatenated
before passing the linear layer of the similarity task.

Figure A2: The multi-stream architecture is displayed. In this architecture, there is a shared layer
shown in yellow here. Regardless of the task, [CLS] tokens are propagated through this layer to
calculate representations. For the sentiment analysis task, [CLS] token is also propagated through the
individual layer of this task, and the outputs from the individual and shared layers are concatenated
before passing through the final layer for the sentiment analysis task. For the paraphrase detection,
the two [CLS] tokens are separately propagated through the shared layer and individual layer of this
task, and then all representations are concatenated before passing through the final layer of this task.
Similarly, for semantic similarity, the two [CLS] tokens are passed through the individual and shared
layers, and then the outputs of these layers are concatenated and passed through the final layer.

11

	Key Information to include
	Introduction
	Related Work
	Approach
	Baselines
	Multi-Stream Bert
	Cosine Similarity
	Multitask Fine-Tuning (PCGrad)
	Parameter Efficient Fine-Tuning
	Token Fusing Strategies

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix (optional)

