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Abstract

The project explores the techniques and effects of fine-tuning pretrained BERT to
be a multi-class model for a variety of downstream tasks. In particular, it highlights
how the careful transformation of embeddings, the structure of the fine-tuning
loop, and the choice of loss functions can result in sizable performance gain across
tasks without increasing the overall model complexity. Furthermore, it also studies
the parameter-efficient fine-tuning methods in this context, showcasing highly
desirable trade-off ratios between trainable parameters and performance.

1 Key Information

Mentor: Soumya Chatterjee, External Collaborators: None, Sharing project: No

2 Introduction

A pretrained Bidirectional Encoder Representations from Transformers (BERT) model offers versatile
embeddings for various downstream tasks. In practice, BERT initially undergoes extensive pretraining
with massive datasets on generic tasks, like masked token prediction, and then fine-tunes on more
specific tasks with their respective smaller datasets.

This pattern of fine-tuning pretrained models has seen wide application, proving effective in per-
formance and more computationally accessible than training models from scratch |Qin et al.|(2023).
However, several challenges arise in the implementation details. First of all, there are numerous
decisions and configuration possibilities to go from embeddings to the final task-specific output,
such as the further processing of embeddings and the formulation of loss functions based on the
characteristics of a given task. Additionally, in a multi-task setting, we may require adjustments to the
fine-tuning process so that the embeddings generated are simultaneously generalizable to all down-
stream tasks of interest. In other words, it may be desirable that the model cycles through batches
across multiple task-specific datasets evenly and frequently. Finally, full fine-tuning still involves
updating a large number of trainable parameters, so we investigate the effect of parameter-efficient
fine-tuning (PEFT) methods that may reduce trainable parameters to a fraction of the original quantity
while maintaining minimal performance trade-offs Houlsby et al.[(2019).

The remainder of the report delves into the methodologies and experiments aimed at addressing the
aforementioned challenges. Under the default final project framework, the multi-task model for this
report builds upon the minBERT model with pretrained weights. The enhancements implemented
to mitigate these challenges are evaluated across three downstream tasks: sentiment prediction,
paraphrase detection, and semantic textual similarity (STS). At the end of the project, the Best
Performance model achieved an overall score of 0.778 on the test set. With PEFT, the model was
able to reduce its trainable parameters to around 20% while only losing roughly 5% of overall score
on the development set.
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3 Related Work

The original BERT paper outlines the fundamental information such as model architecture, pretraining,
and token configuration |Devlin et al.|(2019)). More importantly, its experiment section highlights
the results of many extension possibilities, such as ensembling, additional pretraining, and various
feature-based approach to leverage the pretrained embeddings.

However, the topic of multi-task learning was not in the spotlight until around the BERT and PALs
paper |Stickland and Murray| (2019). The Projected Attention Layers (PALs) mechanism explores the
option of adding task-specific parameters alongside, as opposed to on top of, BERT parameters. In
other words, the main BERT parameters are shared across tasks, while extra supplementary parts
of the model are dedicated to picking up task-specific signals. The paper also raises the issues with
fine-tuning on task-specific datasets in the naive sequential manner and proposes an alternative,
sampling-based, approach. Additionally, the MTRec paper, in the scenario of tackling multiple news
article related tasks, presented more sophisticated decoding configurations, the idea of "main" and
"auxiliary" tasks, and the practice of combining losses from multiple tasks while accounting for
potential conflicts in gradient updates Bi et al.|(2022).

One detail that is particularly relevant to this project is the input format. For example, to accommodate
paired sentence inputs, the original BERT paper proposes the concatenation of the pair into one
Devlin et al.|(2019). On the other hand, the Sentence-BERT paper recognized that BERT is more
suitable for token-level tasks and subsequently adapted it into a Siamese Network architecture, where
two sub-networks of BERT share weights and process sentence pairs Reimers and Gurevych|(2019).
In the process, the paper leverages the fact that paired sentence inputs are usually for tasks that
measure similarity in some capacity. As a result, it devises a loss function that penalizes the pair of
embeddings based on their level of similarity and the label.

Finally, computational efficiency has been a coveted property and much of it can depend on the
concept of parameter efficiency. As an alternative to full fine-tuning, which involves updating all
model parameters, parameter-efficient fine-tuning (PEFT) techniques in general drastically lower
the number of trainable parameters required with a minor tradeoff in performance. For example,
Low-rank Adaptation (LoRA) approximates the weight updates that happen during fine-tuning with
low-rank matrix multiplications |[Hu et al.| (2021)). Weight-decomposed Low-rank Adaptation (DoRA)
builds upon the previous approximation idea, but it first decomposes the pretrained weights into
magnitude and direction components in order to induce some of the desirable properties that full
fine-tuning exhibits in its weight updates |Liu et al.| (2024).

4 Approach

The high-level structure of the approaches of this project involves first exploring extensions that can
provide the most amount of performance improvement to the baseline model. Subsequently, it applies
PEFT methods to the most performant model obtained and examines the levels of efficiency gain.

4.1 Baseline

The baseline model aims to produce multi-task outputs with minimal extensions. For the sentiment
classification logits, the baseline uses W (Dropout(u)) + bs, where w is the [CLS] token embedding
and W are the trainable weights in the last linear layer for sentiment classification. For the paraphrase
and STS logits, the baseline simply outputs the cosine similarity between the pair of [CLS] token
embeddings. Lastly, the baseline fine-tunes only on the default sentiment classification dataset.

4.2 Feature Representations

Given a single sentence, the project considers using the default [CLS] token embedding as a "sum-
mary" representation of the whole sentence versus applying pooling operations (including mean and
max pooling) on the sequence of wordpiece-level embeddings generated by the last BERT layer,
referred to as the "last hidden state (1hs)".

Given a pair of sentences, we extend the ideas above. Let u and v be the representations of their
respective sentence, via [CLS] token embedding or pooled embedding, we experiment with the



concatenated subsets of A = {u,v, |u — v|, |u + v|} as the input to the final prediction module
Reimers and Gurevych| (2019).

Given a pair of sentences, we also adopt the suggestion to pass them simultaneously through BERT,
as (Sentencel + [SEP] 4 Sentence2), sometimes referred to as cross-encoding, where [SEP] is the
separator token |Devlin et al.| (2019). Let s be the cross-encoded embedding of the sentence pair, we
add that to the mix of feature set A and the input to the final prediction module could be, for example,
Concat(Uihs, Vlhs, Sths)-

4.3 Multitask Training Loop

In each epoch, suppose we have three task-specific datasets D;, Do, D3 for fine-tuning, the naive
way would be to go through them sequentially as D; — D, — Dg, exhausting all batches in one
dataset before starting on the next. This approach brings up the potential drawbacks of learning on
one task for an extended period of time.

Alternatively, we cycle round-robin at the batch level by; — ba; — bai, — ..., such that we train
on each task at an even and constant pace, restarting on smaller datasets until the largest dataset is
depleted. However, this over-sampling nature could lead to over-fitting to smaller datasets if the size
imbalance is huge.

Finally, we examine the sampling-based option. Whenever the model is ready to process the next
batch, we sample from the collection of all batches across all tasks with the probability p; o« |D;|. We
also examine the effect of task data imbalance in this configuration. If we use probability distribution
pi x +/|D;l|, we effectively skew the sampling probabilities toward the smaller datasets [Stickland
and Murray| (2019). Let the epoch conclude whenever a dataset is depleted and this is equivalent to
under-sampling the majority dataset.

4.4 STS with Cosine Embedding Loss

The default approach to STS is to treat it as a regression task, get feedback from the mean-squared-
error loss, and clamp the final output to the predefined range based on the dataset. However, the
nature of the STS task allows the idea of penalizing based on similarity measures between a pair of
sentences. One such loss we examine in this project is the Cosine Embedding Loss. With u, v as
embeddings and y as the label for the pair, it states

1 — cos(u,v), ify=1

Loss(u, v) = { max(O,(cos(ZL,v) — margin), ify y: -1 M
In other words, for paired sentences that are labeled as similar, we get a penalty for how dissimilar
their embeddings are |[Reimers and Gurevych| (2019)). For pairs that are labeled as dissimilar, we get a
loss for how similar their embeddings are such that weak similarity below a certain margin does not
incur any penalty. In practice, if the original label space is continuous, we experiment with the ways
to map them to {—1, 1} in order to apply this loss function.

4.5 DoRA

Until this point, combinations of previous approaches experimented under full fine-tuning should
have yielded a multi-task model with solid performance. We then apply DoRA to the model with the
highest overall score to analyze the effects of this PEFT method Liu et al.|(2024). At a high level,
this means altering all linear layers in the existing model.

Specifically, let W, € R?** be the trainable weights in the original linear layer. DoRA, leveraging
the weight decomposition method, sets the magnitude component m = ||W||. and the directional
component V' = Wy [Salimans and Kingma| (2016). Let AV be the weight updates that would happen
to the directional component under full fine-tuning, by the Low-rank Approximation (LoRA) method,
we may approximate AV = BA where B € R¥*" A € R™*¥ and r < min(d, k). In summary, the
new weights W' under DoRA would look like
, Wy + BA

W=, Bl @
In other words, DoRA decomposes the original weights into magnitude and normalized directional
components. During fine-tuning, the magnitude component is updated plainly while the directional



component is updated through LoRA. Parameter-efficiency is achieved by having only m, B, A as
the trainable parameters. In experiment, we also observe the effects of the hyperparameter rank r.

5 Experiments

5.1 Data
This project uses some of the datasets recommended by the default project handout. Specifically:

¢ The Stanford Sentiment Treebank (SST) dataseﬂ is the task-specific dataset for sentiment
classification. The training set includes 8544 examples. Each input is a movie review and its
corresponding label denotes one of the five discrete sentiment categories.

* The Quora dataseﬂ is the task-specific dataset for paraphrase detection. The training set
includes 283003 examples. Each input is a pair of questions posted on the Quora website
and the pair has a corresponding binary label indicating whether the pair is considered
duplicate questions or not.

* The SemEval STS Benchmark dataset is the task-specific dataset for semantic textual
similarity evaluation [Cer et al.|(2017). The training set includes 6040 examples. Each input
is a pair of sentences and the pair has a continuous similarity score in the interval [0,5]
where higher scores indicate stronger similarity.

5.2 Evaluation method

The evaluation method follows the default project leaderboard metrics. In particular, we evaluate both
the sentiment classification and the paraphrase detection tasks by accuracy. We evaluate the STS task
by the Pearson correlation between the true similarities and the predicted similarities. The metrics
for the individual tasks are shown in table columns with shorthand Sentiment, Paraphrase, and STS.
The overall score (shown in table columns with shorthand Overall) is calculated as %(Acescntimcm +
Accparaphrase + (0.5 + Corrgs)). For PEFT experiments, the number of trainable parameters is
measured as the proxy for parameter-efficiency.

5.3 Experimental details

The experiments have the same pretrained weights for BERT, the same learning rate of 1e~®, and
the number of epochs fixed to 10. No early stopping or increase in the number of epochs is in place
because the model’s performance on the development set tends to converge fairly quickly at around
epoch 4 to 6. The experimental results that are focused on a single aspect of model configuration
have all other parameters held constant.

5.4 Results
5.4.1 Key Results

First, in TabldI] we showcase the evaluation metrics of model configurations that considerably
improved upon its previous iterations, in chronological order:

* Key Update 1. Compared to the baseline, this version includes all three datasets mentioned
above. The STS task uses the Cosine Embedding Loss.

* Key Update 2. Compared to Key Update 1, this version modifies the fine-tuning loop to use
the sampling-based approach to select a batch at each step.

* Key Update 3. Compared to Key Update 2, this versions swaps out the use cases of the
[CLS] token embedding with mean-pooled token embeddings.

* Best Performance. Compared to Key Update 3, sentence pairs are cross-encoded, that is,
passed through the encoder together as opposed to separately. Accordingly, STS switches to
become a regression task penalized by mean-squared-error loss.

"https://nlp.stanford.edu/sentiment/
*https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs



Model Overall Sentiment Paraphrase STS

Baseline 0.494 0.471 0.390 0.271

Key Update 1 0.670 0.457 0.778 0.550
Key Update 2 0.681 0.509 0.784 0.519
Key Update 3 0.717 0.500 0.872 0.559
Best Performance 0.779 0.524 0.874 0.877
Most Efficient 0.757 0.501 0.846 0.850
Test Leaderboard 0.778 0.524 0.875 0.871

Table 1: Performance of notable model configurations. Metrics other than "Test Leaderboard" are
based on the development set.

* Most Efficient. we swap out each linear layer in the Best Performance model with its DoRA
formulation (rank 16) to drastically reduce the number of trainable parameters.

At the end of TabldI]is the test leaderboard results of the "Best Performance" model, surpassing the
initial expectations. This outcome aligns with one of the sub-themes of the project, which aims to
limit the overall model complexity. From a quantitative perspective and considering notable model
configurations, we observe the following: (1) Fine-tuning on an ample amount of task-specific data
is essential for the pretrained embedding to generalize for a given task; (2) The STS task benefits
most significantly from cross-encoding compared to bi-encoding; (3) Careful adjustments to non-
architectural components, such as loss functions, embedding choices, and fine-tuning procedures,
yield incremental yet consistent improvements. The key results collectively highlight the significance
of methodological nuances in optimizing model performance.

5.4.2 Feature-based Experiment Results

Concatenation | STS Sampling Method | Probabilities | Overall
(u,v) 0.530 Sequential - 0.767
(u,v,lu-vl) 0.559 Proportional [0.03, 0.95, 0.02] 0.773
(lu+vl,lu-vl) 0.553 Square Root [0.13,0.76,0.11] | 0.779
(u,v,¢) 0.877 Balanced [0.33,0.33,0.33] | 0.748
Table 2: Embedding concatenations. Table 3: Overall score versus sampling methods.

By directly comparing the different ways to concatenate relevant embeddings, we get the quantitative
results in Tablg2] The concatenated tensor is the input to the final linear layer, which generates the
logits. The u and v are bi-encoded, mean-pooled, last hidden states. It is noteworthy that incorporating
information about the sum or difference between the pair of embeddings yields a minor boost in STS
correlation, which agrees with the suggestions in the Sentence-BERT paper |Reimers and Gurevych
(2019). Moreover, having the cross-encoded embedding c in the concatenation is able to increase the
correlation by over 0.3, marking the largest gain for the STS task among all strategies.

5.4.3 Training Loop Experiment Results

In Table3] the Probabilities column shows the sampling probabilities for the SST, Quora, and the
SemEval STS datasets. Sampling batch-by-batch from all three task-specific datasets (Proportional)
allows the model to frequently change the task that is is fine-tuning on. As discussed in the dataset
section, the Quora dataset is considerably larger than the other two. Alternatively, when the sampling
probabilities are proportional to the square-rooted sizes of the datasets (Square Root), it not only
limits the data size disparity to some extent, but also avoids removing too many examples from the
majority dataset. This contrasts with the method of forcing an even split among datasets (Balanced),
where we witness that the benefit of having access to more data significantly outweighs the appeal of
fine-tuning on evenly-sized datasets.



6 Analysis
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Figure 1: Sentiment confusion matrix. Figure 2: SST accuracy over epochs.

6.1 Task Performance Analysis

Sentiment Classification. This task among the three is the hardest one for the model to improve its
performance on. We commonly observe that the development set accuracy converges very early on
across all model configurations experimented with in this project. For example, the training curve of
the Best Performance model shown in Figure| exhibits that the model is able to learn peculiarities
that exist in the training data but do not generalize well to unseen data. To uncover how and where the
model makes mistakes, we inspect the confusion matrix in Figurem The raw counts are normalized on
the True Label level. For example, True Label 2 (Neutral) has the weakest performance. Among those
sentences, 24% were predicted as 1 (Somewhat Negative) and 32% were predicted as 3 (Somewhat
Positive). This pattern extends to other labels, where the predictions concentrate near the true label,
which corresponds to how the heatmap highlights areas near the diagonal. Admittedly, the finer we
divide the sentiment space, more nuanced examples arise to which even human annotators would not
assign labels unanimously.

Mistake Question 1 Question 2
S Why computer vision is
w ?
FP hy computer vision is hard? computationally hard?
. . What is Donald Trump like in person,
?

FN How is Donald Trump in person? away from the press/media?
FP How do I fix a laptop that won’t turn on? How do you fix an HP laptop

that won’t turn on?

Table 4: Paraphrase detection error examples.

Paraphrase Detection. Based on the development set for this task, the number of mistakes for
each label is proportional to the number of total examples with that label, indicating a balanced
performance. We select a few noteworthy examples from the mistakes, shown in Tablef] to illustrate
some of the subtle differences that are particularly challenging. In the Mistakes column, "FP" refers
to false positives, meaning predicting a non-duplicate pair as duplicates, and "FN" refers to false
negatives accordingly. As we can see in the paired questions, though the quantifiers may only consist
of a single word, computational difficulty is much more specific than general difficulties (example 1),
much like how fixing an HP laptop might require specific expertise compared to fixing any laptops
(example 3). On the other hand, longer quantifiers may not change the scope of the question in the
case where being away from the press is synonymous to being in person (example 2).

Semantic Textual Similarity. Since the Best Performance model treats the task as a regression problem,
we can look at the residual plot to discover error patterns. Shown in Figurdd] the first thing to notice is



that despite the predicted values are almost always well-contained in the possible range of similarities,
simply setting an upper-bound of 5 for output values can provide a minor performance increase.
Secondly, we observe the emptiness in the lower-left quadrant, implying the model’s relatively higher
tendency to over-predict for pairs with low similarities.
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Figure 3: Model size versus performance. Figure 4: Residual plot of STS predictions.

6.2 PEFT Analysis

In Figure3] we compare the number of trainable parameters with the resulting overall score for models
integrating DoRA with rank r = [4, 8, 16, 32|, as well as the full fine-tuning model in the upper-right
corner. As mentioned earlier, the rank parameter directly controls how "low-rank" we want matrices
B and A to be for approximation. A higher rank would imply more parameters to update.

The first observation is that despite » = 4 and r = 8 only have a roughly 1 million difference in
terms of trainable parameters, the gap in their overall scores is significant. Conversely, once the rank
exceeds r = 8, the performance gains are negligible.

Compared to the full fine-tuning result, DoORA’s parameter efficiency is evident. The Best Performance
model with full fine-tuning requires a roughly 300% increase in the trainable parameters while only
yielding a 3% increase in the overall score. Importantly, within the scope of this project, integrating
DoRA does not compromise some desired system properties. For instance, models with DoRA still
converge quickly, requiring a similar number of epochs as full fine-tuning models. Additionally,
in this current multi-task setting, the performance trade-offs occur evenly across tasks, indicating
that none of the current downstream tasks are particularly susceptible to approximation errors in the
weight matrices resulting from DoRA.

7 Conclusion

This project demonstrates the collective impact of enhancing small components within a multi-task
model. While the availability of task-specific datasets is critical to the performance, refining the
training loop, identifying a more suitable loss function, and exploring potential feature representations
can be effective and resource-efficient strategies. These enhancements, spread across the deep learning
system, can lead to significant improvements, even under constraints of model complexity.

Furthermore, this project showcases how cross-encoding is essential to the learning of the STS
task, resulting in a final Best Performance model that achieves an overall test score of 0.778 on the
leaderboard. More importantly, applying DoRA reveals that competitive model performance can be
attained with only a fraction of the original trainable parameters. This demonstrates that PEFT is
desirable when computational resources are limited or when faster iterations through modeling ideas
are needed.

Regarding the limitations, it is important to note that the set of downstream tasks are relatively
small. For the multi-task model to handle a more complex, diverse, or niche set of tasks, broader
experimentation with the model’s architecture may be required. Additionally, since DoRA is only



one of the many PEFT methods, a comprehensive comparison of multiple other approaches within
this multi-task setting is a reasonable next step.

8 [Ethics Statement

One of the ethical concerns in the context of multi-task learning is the interactions across different
task-specific datasets. When weights are shared, the transfer of biases across tasks is not yet fully
understood. In real-world application scenarios where the number of tasks increases significantly,
managing the relationships among datasets and maintaining the integrity of each dataset becomes
challenging. Consequently, the undesirable properties of one may extend to impact the whole multi-
task system. This concept may extend beyond biases to privacy. That is, even when there are multiple
datasets in play, the privacy constraints on each single dataset cannot be relaxed in the hope that
being in a multi-task system can obscure where the signals originate. A possible mitigation strategy
is to deconstruct complex multi-task objectives into smaller sub-systems that interact with only a few
datasets. This allows for a bottom-up approach to combine smaller systems into a more complex
form.

The other ethical challenge has to do with PEFT. Parameter efficiency can lead to significant monetary
savings due to reduced computation needs. For companies providing deep learning as a service
to various customers, switching to PEFT methods can significantly cut operational costs without
noticeably affecting the evaluation metrics visible to customers. This scenario may lead companies
to withhold benefits from customers by not adjusting prices in accordance with the reduced costs.
As PEFT methods evolve, the signals indicating such changes can become even less discernible.
Therefore, it is advisable to implement policy updates that regulate appropriate disclosure.
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