
Exploring Multi-Task Learning with Unbalanced
Datasets and Gradient Surgery

Stanford CS224N Default Project

Julien Darve
Department of Computer Science

Stanford University
jdarve@stanford.edu

TA Mentor: Arvind Venkat Mahankali

Abstract

Multi-task learning allows a single model with a shared set of parameters to
compute several different tasks. A model trained on multiple tasks is inherently
more efficient than training several different models on each task, as we only need
to run the model once and store only one set of parameters. This paper explores
multi-class learning in the context of fine-tuning a BERT model on the sentiment
classification, paraphrase detection, and semantic similarity tasks. However, there
are several added difficulties that come with multi-task learning, especially if
training on datasets of vastly unequal size per task. The central goal of this paper
is to find mitigation strategies against unweighted datasets to improve multi-task
learning performance. One issue with multi-task learning is that gradients from
different tasks can destructively interfere. The major contribution of this paper is a
custom implementation of Gradient Surgery as described in Yu et al. (2020) which
addresses the problem of interfering gradients. We also experiment with dataset
reweighting and loss function modifications to address dataset imbalance. Our
findings are threefold. We find that our base model overfits badly on the sentiment
classification task as it is our smallest dataset. We can mitigate this overfit by
adding a coefficient of 0.5 on its loss function, leading to our best results over all
three tasks. Finally, we found that gradient surgery leads to the most balanced
results between all three classes and effectively mitigated overfit without the need
for hyper-parameter tuning.

1 Introduction

The BERT architecture, based on the self-attention mechanism, has become the core of modern NLP
foundational models, as originally proposed in Devlin et al. (2019). Modern BERT models are be
trained on massive datasets including but not limited to most of the World Wide Web, social media
posts, scientific papers, code on github, and movie subtitles, and can have up to hundreds of billions
of parameters. A common practice in NLP is to take a pre-trained BERT model trained on these
massive datasets, add a single linear layer on top, and finetune the model for a specific sub-task
involving word processing, making use of its rich pre-trained embeddings.

In multi-task learning, several different linear layers are added on top of BERT leading to several
different outputs, and the model is trained on all tasks at once. In practice, this allows us to re-use
the entire BERT model and its output embeddings in order to compute all of our tasks, increasing
space and time complexity. However, by the nature of making one model for multiple tasks, the
performance on each task individually might be worse than for a model trained solely and fully
specialized for each task. Thus, our task is to create a multi-task fine-tuning pipeline that makes as
little tradeoffs on performance for multi-task learning as possible, to enable both high accuracy and
high computational efficiency.

Stanford CS224N Natural Language Processing with Deep Learning



We explore this topic through the specific multi-task learning problem of fine-tuning BERT on the
sentiment classification, paraphrase detection, and semantic similarity tasks. We will investigate two
specific problems with multi-task learning. First, our datasets for these three tasks are massively
unbalanced, with our dataset for paraphrase detection being more than 40x the size of the semantic
similarity dataset. Second, it is theorized that when a model is trained according to multiple gradients,
if these gradients point in different directions, they can destructively interference, preventing optimal
convergence in the gradient descent landscape.

In order to address these issues, we explore three solutions. First, we try re-weighting the datasets
by duplicating the smaller datasets to match the size of the larger dataset. Secondly, we try adding
a coefficient to the loss function of one of the classes with a smaller dataset to reduce overfit and
allow training on an increased number of duplicates. Thirdly, the major contribution of this paper,
is a custom implemented of PCGrad, i.e. Gradient Surgery, which projects the gradients for each
loss function against each other to reduce destructive interference and provide more optimal descent
through the gradient landscape. We find that reweighting the datasets causes greater overfitting on
the tasks with smaller datasets, which we can mitigate using smaller coefficients on these tasks.
Furthermore, we find that Gradient Surgery balances the results between each task the best. We
conclude that loss function re-weighting and Gradient Surgery are effective measures to optimize
the training process for Multi-task learning models. These results, while specific to our tasks and
datasets, can be re-purposed and applied to any other model and training task that involves multiple
datasets or loss functions.

2 Related Work

There are many different approaches that have been taken to improving the use of datasets and
gradients for multi-task machine learning problems. A common method is to increase the number
of task-specific parameters in a model, such as by adding a larger number of linear layers per task.
Another is to vary the learning rate per task.

A more architecture-focused way of employing more parameters per task is explained in Stickland
and Murray (2019), a paper which proposes Projected Attention Layers (PALs) for BERT. These are
modules added to the attention parts of the model that improve the way BERT encodes information
from input sentences to improve performance, at the cost of added parameters. However, we are more
interested in sharing as many parameters as possible between models, only keeping the basic linear
projection layer at the end for classification.

A popular method for multi-task learning for unbalanced datasets is annealed sampling, employed by
the same paper. Instead of taking a batch from each dataset and training all at once, this method will
randomly sample batchs one at a time from each single dataset and train on that batch. The sampling
is done with a probability proportional to the square root of the epoch number, and size of the dataset
relative to the others, so that larger datasets are more likely to be sampled at the start and training
equalizes near the end.

The Gradient Surgery approach we take was proposed by Yu et al. (2020). The advantages of PCGrad
is that it direct targets gradient optimization in the model, rather than changing the model architecture.
In addition, it maintains the aspect of multi-task learning of updating parameters for every task all at
once, rather than doing them one at a time as in annealed sampling. We believe that this will help
the model learn the tasks equally, rather than constantly switching back and forth between tasks. In
addition, it is a universal technique that can be applied anywhere there is gradient descent for several
loss functions, a significant advantage.

3 Approach

3.1 The BERT architecture

The architecture used in this paper is an extension on top of the classic BERT model, as proposed
in Devlin et al. (2019). It employs the self-attention mechanism, invented by Vaswani et al. (2017).
Given input token embeddings, the model linear transforms them into queries Q, keys K, and values

2



V . They are combined by the following equation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

with multi-headed self-attention being a concatenation of several such attention calculations. The
encoder part of this architecture starts with a multi-headed self-attention layer, which is fed into a two
layer feed-forward neural network, then layer norm is applied. The model includes residual layers
between the different layers, and positional embeddings for spatial awareness. The BERT model used
in this paper uses 6 such encoder layers, with 8 self-attention heads, with a hidden size of 768.

The BERT model learns by predicting words masked out of input sentences in regular text. It includes
a CLS token at the top of each sentence, the output of which represents a classification of the overall
sentence. Our model takes only this CLS token, and attaches a single linear layer on top of it, with
dropout and a relu non-linearity.

3.2 Task baselines and datasets

We have three different linear layers, one for each task. The baselines for these tasks are provided
in the default final project handout, referenced in the following references: Stanford Sentiment
Treebank (SST) Socher et al. (2013), Quora Paraphrase Dataset (Para) Fernando and Stevenson
(2008), SemEval (STS) Agirre et al. (2013). We use cross entropy loss for the SST task and mean
squared error loss for the STS task. I experiment with two different loss functions for the paraphrase
task, mean squared error and binary cross entropy loss, as explained in the experiments section.

3.3 Gradient update methods

As will be explained in the experiments section, we evaluate each task with its own loss function, and
we have different ways of combining these loss functions. Our base model naively computes

ltotal = lsst + lpara + lsts.

Then, we have a second model that weights the base loss function, introducing coefficients λsst, λpara,
λsts:

ltotal = λsstlsst + λparalpara + λstslsts.

Finally, I tried calculating the gradients not through linear combination, but using Gradient Surgery.
Gradient Surgery is a method proposed in Yu et al. (2020). A sample implementation in PyTorch is
provided in 1. I implemented PCGrad myself for this code (I did not use any outside code other than
that provided in class; the paper does not provide a pytorch implementation). Essentially, for each
task separately, I perform a loss.backward(), record the gradients, then zero the gradients and loop
on the next task. This gives me three separate gradients for each task alone. If the cosine similarity
of the gradients is negative, I subtract the projection of one from the other, to reduce destructive
interference. As shown in 1, I use this to get a single gradient from the three, then update the model’s
parameters manually using the newly calculated gradients.

Gradient Surgery is meant to address convergence when the gradients from different tasks 1) are
pointing in opposite directions 2) are vastly different in magnitude and 3) exhibit high curvature. It is
theoretical shown in Yu et al. (2020) that Gradient Surgery more effectively descents the gradient
landscape in these conditions.

4 Experiments

4.1 Data

For first task, sentiment classification, I use the Stanford Sentiment Treebank (SST) from Socher
et al. (2013) for the sentiment dataset. For SST, the sentences are input to the BERT model by itself.
The output will be one of five classes numbering 0 through 4, where 0 is negative, 2 is neutral, and
4 is positive. These are represented in the model as 5 class probabilities, normalized through cross
entropy loss.

3



Figure 1: A custom implementation of PCGrad, for reference. While not my real implementation
as that would not fit in a single figure, it exemplifies the pseudocode behind the algorithm. The
tasks variable stores the gradients and projected gradients per task, the grads variable represents the
gradients for each parameter in the model. Code is based off pseudocode provided in Yu et al. (2020)

.

For the second and third tasks, paraphrase detection and semantic textual similarity (STS), they
involve two sentences. Paraphrase detection is trained on the Quora dataset Fernando and Stevenson
(2008), and semantic textual similarity on the SemEval dataset Agirre et al. (2013). I determined
that the best method for inputting the data from these tasks into the BERT model was to separate the
two sentences by a sep-token, which the BERT model is trained to differentiate sentences with, as
explained in Devlin et al. (2019). Paraphrase detection is measured from 1 (is a paraphrase) to 0 (not
a paraphrase). Similarity is a float measured from 0 to 5, with 0 representing no similarity and 5
representing the same meaning. The output of the model for either task is a single float representing
the model’s estimation of the correct answer.

The SST dataset uses 11,855 examples, the Quota dataset 404,298, and the SemEval dataset 8,628.
As we can see, the paraphrase task is greatly overrepresented in our training data.

4.2 Evaluation method

The evaluation metric for the sentiment classification and paraphrase detection tasks will be a simple
accuracy of correct to total predictions. Paraphrase detection logits will first be put under a sigmoid
function and rounded before calculation of accuracy. Semantic textual similarity is evaluated by
pearson correlation between the model output and the correct labels, as proposed in its original paper.

4.3 Experimental details

While I ran and trained almost 20 models, the highlights of my results lie in 7 models. First, I tried to
use mean squared error loss on the paraphrase task, which resulted in low accuracy. The remaining
6 models are divided in groups of three based on the weighting placed on their datasets, which I
will call the small and large split, respectively. In the first group I use the weighting "3-1-4", which
corresponds to 3 times the SST dataset, 1 times the Quora dataset, and 4 times the SemEval dataset.
The model will move on to the next epoch once the first dataset is emptied, essentially taking the
minimum across each of the task’s data points, which for these numbers evaluates to 24,160 sentences
per task, limited by 4*SemEval. The second group is the split "8-1-10", representing 60,400 sentences
per task, limited by 10*SemEval.

For each of these groups, I have 3 models. One is a base model (named base model), which naively
adds all three losses and back-propagates on the sum. The second model uses PCGrad to update the
gradients (named PcGrad). The last one does the same as the first but with a linear combination of
the losses, with a coefficient of 0.5 on the SST task (named 0.5 on SST), hypothesized to reduce
overfitting. This is meant to be an alternative to the PCGrad as a different way of augmenting the
base model.

4.4 Accuracy results

Our top three models have their results on the test split displayed in fig 2. 2. Overall, we got that the
model with the modified loss function on the larger split performed the best overall, and the best on
the STS task. The PCGrad model was about tied overall, and it was the best on the paraphrase task.

4



Model Overall test score SST test acc Paraphrase test acc STS test corr
3-1-4 Base Model 0.784 0.541 0.875 0.871

8-1-10 PcGrad 0.785 0.528 0.890 0.874
8-1-10 0.5 on SST 0.785 0.531 0.875 0.880

Figure 2: Test set results on the top three models, with the best result per category bolded. Results
largely follow dev results, although SST scores were higher. The 0.5 on SST model on the larger split
remains the best model.

Model Overall dev score SST dev acc Paraphrase dev acc STS dev corr
3-1-4 MSE Loss 0.695 0.521 0.631 0.866

3-1-4 Base Model 0.780 0.529 0.874 0.876
3-1-4 PcGrad 0.776 0.513 0.876 0.876

3-1-4 0.5 on SST 0.776 0.508 0.881 0.880
8-1-10 Base Model 0.780 0.509 0.891 0.878

8-1-10 PcGrad 0.780 0.513 0.888 0.877
8-1-10 0.5 on SST 0.782 0.518 0.887 0.880

Figure 3: Dev set results per model on each task. The top 4 rows of the table represents the smaller
split (3-1-4), while the bottom 3 represent the larger split (8-1-10). Between these categories, the best
result per column is bolded

The base model on the smaller split was chosen due to its dev performance on the SST task, and it
remains the best at this task.

The more interesting results lie in the dev split, as we have access to all model experiments. The
results obtained for each model on each of the tasks and a measure of their overall success on the dev
set is shown in fig. 3 3.

What we see is that the base model has the best accuracy on the SST task but the worst on the
paraphrase task in the smaller split. But, in the larger split, it instead scores the worst on SST and the
best on the paraphrase task. The effect was reversed for the 0.5 on SST model; its SST accuracy was
the worst on the smaller split but the best on the larger split, and it is overtaken on the paraphrase task
by the base model for the larger split. While I expected the 0.5 on SST model to perform the worst
on the SST task for both splits, I was surprised when it performed the best on the larger split. We will
further discuss these results in the analysis section.

Another interesting result we notice is that the PCGrad model scored at the median of the other
models for both split sizes. In addition, it tied with the best on the test set. These results are in line
with the theoretical results of Gradient Surgery, and stands as empirical evidence for its effectiveness
on unbalanced tasks.

Using mean squared error on the paraphrase task made the model perform the worst on that task, and
seemed to drag down the results from the other task as well.

4.5 Loss curve results

Furthermore, I also recorded loss curves for the training and dev splits per epoch, as I was interesting
in seeing how the different models converge, shown for the base model in fig. 4 4. What the plots
show is extreme overfit on the SST dataset, where the train loss goes down the farthest, but the dev
loss never converges and instead steadily increases. These results are suprising, especially because
the dev accuracy on the SST task was increasing even as its loss was getting worse.

Fig. 5 5 shows the loss curves from the 0.5 on SST model on the two different dataset splits, and the
base model on the smaller size. What these curves show is that, for the larger split, the base model
learns the SST task earlier than the 0.5 on SST model. Moreover, for the smallest dataset, we see
that for the 0.5 on SST model the train loss of SST never overtakes STS. Both of these results are
expected from the fact that the SST task has a coefficient slowing down its training. Finally, for the
base model on the smallest data, we can see that the SST loss overtakes the STS loss at the final
epoch, which surprisingly caused the best results on this task.

5



Figure 4: Loss curves on the train and dev datasets for the base model, per epoch. SST is measured in
cross entropy, Para in binary cross entropy, and STS in mean squared error, normalized to log scale.
The overall value is a simple sum between the three values. As we can see, there is massive overfit on
the SST task. Not shown are the loss graphs on the PCGrad model, which were visually identical.
Plots were made with matplotlib.

Figure 5: Loss curves on the train datasets for the large and small dataset splits for the 0.5 on SST
model, and the small split on the base model, same format as fig. 3

5 Analysis

To start, binary cross entropy loss worked miles better than mean squared error on the paraphrase
detection task. The reason for this is that we apply a sigmoid before rounding the logits for evaluation.
The sigmoid function puts all negative numbers under 0.5 and all positive numbers above 0.5, allowing
the easiest way for the model to differentiate between the two categories. The mean squared error
function, in addition, does not work well for values between 0 and 1, as the squaring will decrease
most of the distances instead of increasing them as it is supposed to.

Consider the fact that the base model goes from the best to worse on the SST dev accuracy when it
goes to a larger dataset split, and that its loss curves have the dev loss get progressively worse even as
the train loss gets to the best. This is clear evidence of overfitting on this task. This is most likely
because the split weight on the dataset is too high. In addition, the base model on the smaller split has
an SST curve that just barely intersects the STS curve at its end, so that it does not have the time to
overfit, which could be the reason why it has the best results on this task. It also performs the worse
on the paraphrase task, possibly because it is not able to take as big an advantage of the larger dataset,
and the model is focusing on learning SST.

Thus, it is logical to add a coefficient of 0.5 on its loss function, to force the model to learn this task
slower, yet learn the other tasks at the same rate. This worked for the larger split, as the model had
more time to learn this task, so its results improved without overfitting too much. Our results show
that this coefficient of 0.5 can mitigate the effects of overfitting. In addition, the model benefited
from training on additional data from the paraphrase task, increasing its accuracy there.

However, on the smaller split, the 0.5 on SST model performed the worst on this task but the best on
the others. We hypothesize that this was because the gradient updates from the SST task were muted,
which allowed the updates from the other tasks to dominate. This is further evidenced by our loss
curves. This model configuration did not have the time to fully converge on the SST task compared to
the others. From the fact that the SST task being worse was correlated with the others being the best,

6



we can deduce that the gradient on the SST task is at least partially pointing in a direction opposite to
the two other tasks.

We see that our model’s performance might have plateaued on the STS task, as moving from 4 times
the dataset to 10 times the dataset largely makes no difference in the results. In addition, its loss
curves seem to be completely flat in the last few epochs. I hypothesize that no more amount of
training would significantly increase results, and maybe this is due to mean square loss not being
very effective with small changes. Moreover, I believe that it is not overfitting like the SST task, even
though the data is being similarly over-trained, because the paraphrase task is very similar in nature
to similarity. Training on that dataset prevents this task from straying towards an overfitting state,
and increases its own accuracy. Furthermore, more data increases results on the paraphrase task,
and its loss curves are still improving on the dev set per epoch, pointing to the fact that it could be
underfitting, although not significantly.

Finally, our results show that Gradient Surgery provides the most balanced results. We can imagine
that PCGrad is able to reduce destructive interference on the gradients so that the model does not
optimize one task over the others. In addition, between splits, on the two datasets that were duplicated
excessively, the model makes no reduction in accuracy, yet improves in the larger class, hinting
that this method is resistant to overfitting. These results are a strong endorsement of this method to
optimize gradient descent.

6 Conclusion

Through this analysis, we have come to a better understanding of multi-task learning when faced with
unbalanced datasets. On our smallest dataset, SST, we experienced significant overfit. We found that
experimenting with weighted loss functions is an effective way of mitigating this overfit, in our case
by slowing down training on smaller classes. We also showed that Gradient Surgery results in a more
balanced distribution of class results, without any sort of hyperparameter optimization.

For this project, I experimented with many different types of loss functions, loss function coefficients,
data set splits, and I wrote a custom implementation of PCGrad in PyTorch. In addition, behind the
scenes, I implemented several utility functions to efficiently debug and analyze my code to make
my results reliable. For example, I made a testing mode in my code that trained the model using
only a small sample of the data to run the code all the way through and make sure that there were no
compilation errors. I trained over 20 models and analyzed their loss curves, convergence patterns,
and dev results to determine which extensions to the base model provides the best results, and record
enough data to understand why. I now understand machine learning at a more fundamental level, and
I feel more confident in reasoning about model training and analysis.

Future work can experiment using a coefficient even lower than 0.5 on the SST loss, maybe 0.25,
and training on even more data to increase the performance on the other datasets. Another direction
could be to use cosine similarity loss on the STS task to possibly help it learn beyond the threshold I
reached, which seems like a maximum with these configurations. A limitation of this work is only
having using two sizes of splits, and only one additional set of coefficients on the loss function. Given
more time and compute I could have experimented with even more models and make stronger claims
about the data, in addition to having better results. Multi-task learning has a lot of challenges, and
this paper only address a handful. There are many further directions to take this research, and I am
proud to have made a contribution myself.

7 Ethics Statement

An important ethical consideration with multi-task learning is that the model might be better at some
tasks than the others due to lack of training data, the issue at the center of this paper. For instance,
imagine a machine learning model that is trained on translating between multiple languages. Each
language represents a different task, and will have its own set of translations between every other
language. A common problem in machine learning is that we have a lot of data about English, as
well as many other European languages because all of the data is online, but not as much from other
languages from developing countries. A translation bot trained on a mix of languages where some
languages have vastly more translation data than others might lead it to expect a given input is from a
popular language rather than a less popular one because it had so much extra data from the popular

7



language. This can lead to discrimination against these languages as the model will have a lower
accuracy and users will more likely misunderstand it, rather than a model trained direction on just
that particular language.

For this application, is crucial to learn all tasks equally, and get the most balanced accuracy, so that
the model does not reinforce existing discrimination and inequalities. Thus, research into accurate
training of multiple datasets using strategies like loss function reweighting and Gradient Surgery is
essential. A possible mitigation strategy for this problem is increased research and dataset collection
for each task. In our example, researchers could investigate more deeply into the language of
developing countries and obtain more accurate data. For example, the researchers could find written
books or other forms of text, scan them and convert them to digital copies to increase the amount of
reliable training data.

Another ethical consideration is that multi-task learning inherently has difficulties with interpretability.
A model trained on a single task is already hard to interpret on its own. Introducing several tasks only
reduces interpretability, as the model embeddings are now optimized for multiple different purposes,
making them that much more complex. For an extreme example, imagine a multi-task model trained
on generating happy, helpful messages for therapy on one task, and generating sad, angry messages
for a movie script on another task. Our model embeddings may mix in ways we do not understand,
and these tasks might start to blend in implicit ways. Our happy messages might start sounding more
negative and our movie scripts unrealistic, in ways that are subtle and not noticeable at first glance.
We can have dangerous effects if applied in real-life therapy or other settings.

In this paper, I have spend a lot of time gathering and analyzing results, in the form of loss curves and
accuracy data. This helped me understand my problem better, and hypothesize about strategies like
loss re-weighting and understanding the benefits of Gradient Surgery, which ultimately improved my
performance. However, if the issue is an implicit bias in the outputs of my models for certain tasks,
interpretability data like the ones I obtained are rather rudimentary. A mitigation strategy would be to
avoid applying multi-task learning to problems like these. If we want to make a machine learning bot
to help us provide therapy to people who need help, we should not try to cut costs by using a model
trained for other tasks as well, especially ones opposite to the one I want. We should train solely
on messaging that is possible and helpful for a therapy patients, not necessarily a one-size-fits-all
chat-bot.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. sem 2013

shared task: Semantic textual similarity. Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In North American Chapter of the Association
for Computational Linguistics.

Samuel Fernando and Mark Stevenson. 2008. A semantic similarity approach to paraphrase detection.
11th annual research colloquium of the UK special interest group for computational linguistics,
pages 45–52.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. Proceedings of the 2013 conference on empirical methods in natural language processing,
pages 1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning. CoRR, abs/1902.02671.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

8

https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2001.06782

	Introduction
	Related Work
	Approach
	The BERT architecture
	Task baselines and datasets
	Gradient update methods

	Experiments
	Data
	Evaluation method
	Experimental details
	Accuracy results
	Loss curve results

	Analysis
	Conclusion
	Ethics Statement

