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Abstract

Our project aims to extend BERT for multitask learning across three downstream tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity. Beyond baseline multitask learning, we
further enhance BERT’s performance in terms of accuracy and efficiency by focusing on key aspects
of model architecture and various training techniques. We explore state-of-the-art methods such
as SMART, LoRA, DoRA, and DDP, which have not been extensively evaluated on encoder-based
models. Our architecture modifications to BERT significantly improve performance across the three
tasks by 18% over the baseline. Our sampled data achieved 88% of the baseline performance with a
96.5% data reduction. Among various resource efficiency techniques, LoRA proved most effective in
reducing GPU memory usage and training time, albeit with a trade-off in accuracy as compared to full
fine-tuning. While the Distributed Data Parallel (DDP) technique significantly reduces training time,
it can negatively impact accuracy.

1 Key Information to include

TA mentor: Josh Singh; External collaborators: N/A; Sharing project: No; Team contributions: Equal Contribution
of all team members. Lin worked on multitask implementation, architecture optimization, N hidden layers and data
sampling. Amitai worked on the SMART implementation and incorporation into multitask architecture. Arpit worked
on PEFT techniques viz LoRA and DoRA as well as DDP implementations and experiments.

2 Introduction

An exceptional power of a Large Language Models (LLMs) is that they can generalize to perform many different
tasks across a wide variety of topics through pre-training over large corpora. Fine-tuning LLMs becomes paramount
in training LLMs to perform well on domain specific downstream tasks. Modern fine-tuning techniques present new
challenges as they face a trade-off between model accuracy improvements and intensive resource consumption.

In our project we address this trade-off by applying various techniques to improve the accuracy and training performance
of a multitasked BERT. Specifically, for resource efficient fine-tuning, we apply two Parameter-Efficient Fine-Tuning
(PEFT) techniques: Low-Rank Adaptation (LoRA) Hu et al. (2021) and its extension, Weight Decomposed Low-Rank
Adaptation (DoRA) Liu et al. (2024), a novel technique. We observe how these techniques impact training time, GPU
utilization, and memory consumption during fine-tuning. We also implement architecture optimization and regularization
to improve model accuracy. With our architecture modification, accuracy is significantly improved over the baseline.
Using PEFT techniques, we see a reduction in training time and resource consumption, though with some impact on
accuracy. Our project provides insights into combined efforts to achieve memory and computational efficiency without
sacrificing too much accuracy. Further hyperparameter tuning with PEFT techniques is required to optimize accuracy
and efficiency simultaneously across all downstream tasks to bring accuracy as close to the baseline as possible.

3 Related Work

After the introduction of BERT [Devlin et al. (2018)], various improvements[Asa Cooper Stickland (2019)] have been
applied to generalise it for multitask performance. There is a noticeable gap in research exhaustively covering all aspects
of the model development pipeline. In particular, with the advent of decoder-based models like GPT [Alec Radford
(2018)] , the latest state-of-the-art techniques have not been well-tested all together on encoder-based models like BERT.
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PEFT methods primarily consist of adapter based methods Houlsby et al. (2019), prompt based methods Lester et al.
(2021), and LoRA based methods. In adapter-based methods, additional trainable modules are added, while in prompt-
based methods, extra soft tokens are added to the initial input for the purpose of fine-tuning. LoRA based methods
“apply low-rank matrices to approximate weight changes during fine-tuning and can merge with pre-trained weights
prior to inference.” DoRA enhances LoRA’s learning capacity and stability without adding inference overhead. By
decomposing pre-trained weight matrices into lower ranks and decoupling magnitude and direction updates, DoRA
maintains state-of-the-art expressivity . An accuracy gap exists between LoRA based methods and full fine-tuning due
to the limited learning capacity of LoRA. DoRA tries to bridge this gap by marrying the fine-tuning resource efficiency
of LoRA with the expressivity of full fine-tuning learning. Our work applies LoRA and DoRA to fine-tune a multitask
BERT and analyzes the impact on performance and efficiency in terms of GPU memory utilization and training time.

The SMART paper Haoming Jiang and Zhao (2019) introduces a regularization penalty to the loss function of our
fine-tuning training process. The regularization loss is representative of how sensitive a model is to perturbations
in the input embeddings. SMART injects perturbations into the training embeddings and computes a regularization
penalty based on the divergence of the model predictions on the original embeddings versus the perturbed embedding
values. As part of the loss algorithm SMART runs gradient ascent with respect to the noise embeddings to maximize the
regularization penalty at each batch. We adapt it into our architecture to improve model generalization and robustness.

The LIMA paper[Zhou et al. (2023)] demonstrates that fine-tuning a pre-trained language model with a curated high-
quality dataset yields superior results, thereby emphasizing the fact that most of the knowledge in large language
models (LLMs) is acquired during pre-training. Instead of using millions of prompts the authors fine-tuned a 65B
parameter LLaMa model on only 1,000 carefully curated examples. This approach prioritizes quality over quantity
when it comes to data and results in better human-preferred responses compared to models fine-tuned on extensive data.
Our work derives motivation from this work to achieve high-quality data sampling and improve fine-tuning accuracy
while simultaneously reducing training time.

4 Approach

In this and later sections, we will refer to the three downstream tasks as follows: sentiment analysis (SST), paraphrase
detection (PARA), and semantic textual similarity (STS).

4.1 Multi-tasking BERT

As a first step we extend BERT to do multitask learning. We add three task-specific heads and set the training loop
sequentially in order of SST, PARA and STS. For SST, sentence embeddings are passed through dropout then a softmax
classifier, trained with cross-entropy loss. For PARA, individual sentence embeddings are concatenated, followed by
dropout and a softmax classifier with binary cross entropy loss. For STS, individual sentence embeddings are used with
cosine similarity as the output layer and MSE loss.

We refer to this design as MultitaskBERT v1.

Figure 1: Architecture of our MultitaskBERT v1

4.2 Accuracy Improvements

Architecture optimization: Upon MultitaskBERT v1, we modify the embedding generation strategy for PARA and
STS. Each sentence pair is now concatenated with a [SEP] token and then embedded. We add configurable hidden layers
to each task head to increase learning capability. Each hidden layer consists of a linear transformation, ReLU activation,
and dropout regularization. The configuration provides a convenient way for subsequent N hidden layers experiments.

We refer to this design as MultitaskBERT v2.
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Figure 2: Architecture of our MultitaskBERT v2, with modifications highlighted in color

SMART regularizer: We apply SMART to SST and STS. Both SST and PARA compute embedding similarity for
accuracy, while STS computes Pearson correlation [Freedman et al. (2007)]. SMART uses KL divergence to compute
loss functions for classification and mean squared error to compute loss for regression tasks. We experiment across
SST and STS to assess the efficacy of both loss functions as SST and Para are both classification tasks and STS is a
regression task.

N hidden layer: We evaluate whether multi-layer structure performs better for our tasks.

4.3 Efficient Training

Finally, we focus on the following dimensions for enhancing on training efficiency:

Data efficiency via sampling: Curate a sampled dataset to investigate the effectiveness of data sampling and balanced
training set in a multitask learning setting, and expediting subsequent experiments.

Memory efficiency via PEFT: Explore LoRA and DoRA techniques on our model for better resource utilization.

Computational efficiency via DDP: Implement Distributed Data Parallel (DDP) Li et al. (2020) to speed up training
when multiple GPUs are available. Includes option to use Autocast to take advantage of automatic mixed precision
if supporting hardware is present. This addresses the fact that training and experimenting on a single GPU can be
time-consuming and expensive.

4.4 Logging and Monitoring

We incorporate PyTorch profiling to capture GPU utilization, memory consumption, and other diagnostic metrics, while
utilizing TensorBoard for logging and monitoring of training loss and accuracy.

5 Experiments

5.1 Datasets

We used three datasets in our experiments:

• SST: The Stanford Sentiment Treebank [Socher et al. (2013)] is used and consists of 11,855 single sentences
extracted from movie reviews. The dataset is parsed by the Stanford parser8 [Chen and Manning (2014)] and
includes a total of 215,154 unique phrases from the resulting parse trees which are annotated by 3 human
judges. Each phrase has a label of negative, somewhat negative, neutral, somewhat positive, or positive.

• PARA: The Quora [Zhiguo Wang (2017)] dataset is used and consists of 404,301 question pairs with labels
indicating whether text sequences are paraphrases of one another.

• STS: The SemEval STS Benchmark [Cer et al. (2017)] dataset is used and consists of 8,628 different sentence
pairs of varying similarity on a scale from 0 (unrelated) to 5 (equivalent meaning).
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5.2 Evaluation method

For SST and PARA, model accuracy is evaluated against labeled dev datasets. For STS the Pearson correlation [Freedman
et al. (2007)] is used. The mean of the three accuracy/correlation scores is then used for inter-epoch comparison, and the
model with the highest mean score is saved.

For training efficiency experiments, the overall training time, GPU memory consumption and GPU utilization are
analyzed and compared between PEFT techniques. For Distributed data parallel(DDP) experiments, GPU meory usage
and GPU utilization are measured by capturing the highest utilization across all GPUs, and these metric are used for
evaluation.

5.3 Experiment details, results and analysis

Unless specified, the default configurations were used throughout our experiments: batch size 16, learning rate 1e-5,
dropout probability 0.3, epochs 10, fine-tune mode "full-model" and 1 Nvidia T4 GPU. The fine-tune mode has two
options: 1) "full-model" where all BERT parameters are trainable and 2) "last-linear-layer" where BERT parameters are
frozen and only the task-specific layers are trained.

5.3.1 Architecture optimization

Model name SST
Acc.

PARA
Acc.

STS
Corr.

Dev
Acc.

Training
Time Configuration

MultitaskBERT v1 0.495 0.731 0.526 0.663 10.18h No hidden layers
MultitaskBERT v2 0.491 0.900 0.886 0.778 9.98h 3 hidden layers, 1 for each task

Table 1: Architecture optimization experiment result

The MultitaskBERT v2 surpasses v1 for 17.35% on overall dev accuracy. For SST, during training [Figure 3], the v1
rapidly improves accuracy within the first few epochs. After reaching a plateau around epoch 5, it has a minor dip
in accuracy before stabilizing. MultitaskBERT v2 starts with a lower accuracy but steadily improves throughout the
training process. Both models reach almost the same accuracy at the end of the training. This finding concludes that the
additional layer does not affect fine-tuning for SST.

For PARA, MultitaskBERT v1 accuracy fluctuates throughout all epochs and remains consistently lower than v2. STS
presents a similar pattern. Contradicts to the dev accuracy graph, the loss graph of STS shown v1 is better at minimizing
the training loss. By looking at the loss graph alone might be misleading when it does not align with accuracy. Lower
loss does not always equate to higher accuracy.

This experiment shows that the embedding generation strategy has an enormous impact on model accuracy. Multi-
taskBERT v2 excels at tasks that benefit from richer contextual information provided by the sentence pair embeddings.
Its performance on tasks that only utilize single sentence embeddings is comparatively less accurate. This indicates a
limitation in its ability to capture context from isolated sentences. The [SEP] token used in sentence pair embedding
acts as a clear boundary between the two sentences and is an indicator for BERT to process two distinct sequences that
need to be processed together. During pre-training BERT is typically trained on tasks that involve multiple segments
of text. By using [SEP] token consistently during fine-tuning we ensure that the model is being used in a way that is
consistent with its pre-training, which helps improve performance on sentence pair tasks, paraphrase detection, and
semantic textual similarity.

The added hidden layer also contributes to the performance boost. To further investigate whether this gain can increase
along with more layers, we conduct more experiments in "N hidden layers" [Section 5.3.5].

5.3.2 SMART regularizer

In order to keep experiments focused on the accuracy score impact of SMART, all hyperparameters were held constant
except k = {1, 250, 500}, which represents the number of iterations for updating the perturbed embeddings. The injected
perturbation size is set to epsilon = 10e-5, sampled from a normal distribution with mean 0, standard deviation 1, and
variance 10e-5. The step size was set to 10e-3, as was done in the SMART paper. Like the SMART paper, we use
the AdamW Optimizer with learning rate 1e-5. The SMART results were evaluated against the MultitaskBERT v1
architecture [Figure 1] which provided the original baseline model accuracy. Experiments 1-3 focused on fine-tuning
with SMART on SST and experiments 4-6 on fine-tuning with SMART on STS. Below test were done on MultitaskBERT
v1 which does not have hidden layer for tasks.
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The regularization loss is computed using symmetrized KL divergence for SST, and mean squared error for STS, as
described in the SMART paper. The loss is defined by the following equation.

gi(x̃i, Θ̄s)
1

|B|
∑
xϵB

▽x̃ls(f(xi, Θ̄s), f(x̃i, Θ̄))

Exp. SST
Acc.

PARA
Acc.

STS
Corr.

Dev
Acc. Experiment Setup Additional Comments

1 0.526 0.409 0.321 0.532 Fine tune on SST. k = 1
Baseline experiment for fine-tuning SST
with SMART. Dev Accuracy of .532 out-
performs baseline of .523.

2 0.502 0.497 0.297 .549 Fine tune on SST. k = 250

SST Accuracy of .502 compared to
baseline from MultitaskBERT v1 of
.495. Additionally improves dev accu-
racy from baseline of .523 to .549.

3 0.502 0.497 0.297 0.549 Fine tune on SST. k = 500
Regularization convergence leading to
no change on accuracy score from Ex-
periment 2.

4 0.184 0.589 0.471 0.503 Fine tune on STS. k = 1

Baseline experiment for fine-tuning
STS with SMART. Dev Acc outper-
forms baseline MultitaskBERT v1 of
.496.

5 0.205 0.482 0.421 0.466 Fine tune on STS. k = 250 Under performs compared to Experi-
ment 4 with K=1.

6 0.191 0.526 0.495 0.488 Fine tune on STS. k = 500

Increase number of gradient updates to
see if value of regularization penalty
has affect on accuracy. Under performs
compared to Experiment 4 with K=1.

Table 2: SMART Regularizer experiment results

From Table [2] In Experiments 1-3 we examine whether fine-tuning the baseline multitaskBERT model with SMART
regularization on the SST dataset has any impact on accuracy scores. We apply SMART to one fine-tuning task at a
time in order to help attribute accuracy score fluctuation to SMART regularization. The distinguishing hyperparameter
between experiments k, specifies the number of iterations on the gradient descent loop for the noise embeddings.
Fine-tuning SST with SMART produces an improved dev accuracy score at k=1, k=250, and k=500 compared to the
baseline. The difference in dev scores between k=1 and k=250, and k=500 can likely be attributed to maximizing
the loss penalties through gradient ascent for each batch. The accuracy values converge between k=250 and k=500,
indicating that the gradient ascent loop can be terminated earlier with convergence criteria if updates are too small. In
future experiments it would be interesting to observe where this convergence occurs. The results do not provide an
accuracy score improvement to SST baseline of .495. This might be due to the fact that SMART commits to increasing
a model’s robustness to perturbations but does not guarantee improvement in accuracy score for a particular task. The
overall increase in dev score compared to the baseline indicates that reduced sensitivity may help with generalization to
downstream tasks.

In Experiments 4-6 SMART is applied to fine-tuning the STS dataset. The best results to dev accuracy come from
k=1. This indicates that the randomly sampled injected noise can be sufficient to calculate regularization penalties. It is
possible that maximizing the regularization penalty with k=250 and k=500 causes fine-tuning to a particular task to
overfit and thus result in a lower overall dev score across several tasks. In future work it would be interesting to evaluate
model accuracy against regularization loss values to understand the impact of tweaking the k iteration loop.

5.3.3 MultitaskBERT v2 with SMART regularizer

Exp. SST
Acc.

PARA
Acc.

STS
Corr.

Dev
Acc.

Training
Time Configuration Model name

- 0.495 0.731 0.526 0.663 10.18h MultitaskBERT v1
- 0.491 0.900 0.886 0.778 9.98h MultitaskBERT v2
1 0.495 0.906 0.884 0.781 11h SMART on SST MultitaskBERT v2 with SMART

Table 3: MultitaskBERT v2 with SMART compared to the previous versions

This experiment we fine-tune MultitaskBERT v2 with SMART on SST. Compared to the v1 and v2 models, it produces
the highest dev score, resulting in an overall accuracy improvement. While SMART is only applied on SST, the results
show that it helps increase the dev accuracy on PARA. It is possible that the dataset elements of PARA are generally
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close to the model classification boundary, and thus a regularization penalty created by SMART creates a model that is
more robust to perturbations, which would be particularly meaningful in this type of classification task.

5.3.4 Data sampling

We select 10,000 examples (out of 283,011) from PARA train set [Section 5.1] based on their topic category distribution
[Appendix A.1], to ensure a representative sample of the original data and a balanced data size across all three tasks. In
Experiment 1, PARA is trained on the sample data. SST and STS remain the same. In Experiment 2, we fine-tune on
MultitaskBERT v2 which was pre-trained on the full datasets and run 10 epochs per task, with sampled data for PARA,
for a total of 30 epochs.

In the table below, "pre-train model" refers to loading an existing model’s configurations, whose dev accuracy serves as
the initial benchmark for inner-epoch comparisons.

Exp. SST
Acc.

PARA
Acc.

STS
Corr.

Dev
Acc. Experiment Setup

- 0.491 0.900 0.886 0.778 MultitaskBERT v2 [Table 1] as baseline.
1 0.513 0.792 0.877 0.748 No pre-train model, fine-tune mode "full-model"
2 0.496 0.906 0.888 0.782 pre-train model "MultitaskBERT v2", fine-tune mode "last linear layer"

Table 4: Data Sampling experiment results

Experiment 1 shows that the model performs better on SST task when data size between tasks is balanced. For PARA,
the sampled data achieved 88% of the baseline performance with a 96.5% data reduction. Experiment 2 yields our
best model, suggests that further fine-tuning a model on task heads only, using the sampled datasets can further improve
performance albeit only marginal gains.

5.3.5 N hidden layers

To efficiently evaluate the impact of varying hidden layers, we conduct experiments using the sampled dataset from the
previous experiment for PARA. SST and STS remain the same. In the table below, "hl" represents hidden layers, and are
allocated evenly among task heads. "lr" represents learning rate and "bs" represents batch size.

Exp. SST
Acc.

PARA
Acc.

STS
Corr. Experiment Setup Additional Comments

1 0.513 0.792 0.877 hl 3, lr 1e-5, bs 16, dropout 0.3, epochs 10. Baseline experiment.
2 0.495 0.792 0.866 hl 6, lr 1e-5, bs 16, dropout 0.3, epochs 10. Added additional layer.
3 0.508 0.784 0.876 hl 6, lr 2e-5, bs 32, dropout 0.3, epochs 10. Increased batch size and learning rate.

4 0.518 0.805 0.886 hl 3, lr 2e-5, bs 32, dropout 0.4, epochs 20. Increased batch size, learning rate, dropout
probability and epochs.

5 0.509 0.793 0.871 hl 6, lr 2e-5, bs 32, dropout 0.4, epochs 20. Increased hidden layer, batch size, learning
rate, dropout probability and epochs.

Table 5: N hidden layer experiment results

Experiment 1 we train the model with default configurations [Table 1] as a baseline. Experiment 2 we add one hidden
layer to each task and observe a decrease in both SST dev accuracy and STS Pearson correlation. Based on the train loss
graph [Figure 4], Experiment 1 consistently shows lower loss values. Both experiments eventually converge to a similar
loss at the end of epoch 10. This suggests that Experiment 1 model is generally performing better in terms of learning
the underlying patterns in the training data.

Experiment 3 the batch size and learning rate were doubled which results in improved scores for SST and STS compared
to Experiment 2, but still a drop compared to Experiment 1. This suggests that increasing the number of hidden layers
may necessitate corresponding adjustments to batch size and learning rate to maintain the model performance.

Since convergence remains unclear and dropout’s impact unknown, we conducted Experiment 4 and 5 with more epochs
[Figure 5]. We increase the dropout probability from 0.3 to 0.4, and run the experiments with batch size 32 and learning
rate 2e-5 for 20 epochs. Experiment 4 outperformed all, showing higher and more stable dev scores.

The experiments show us that merely increasing the number of hidden layers does not guarantee improved performance.
On the contrary, it can lead to decreased accuracy and increased loss, especially the dataset size might not be sufficient
to warrant the increased complexity. For our tasks and data size, a simpler architecture is more effective.
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5.3.6 LoRA and DoRA

The first set of experiments are done to setup baseline and evaluate the feasibility of implementing LoRA, DoRA
and analyze the impact of varying hyperparameter. Below experiments were conducted on 1 Nvidia T4 GPU on
MultitaskBERT v1. We used default hyperparameter setting unless specified.

Exp. SST
Acc.

PARA
Acc.

STS
Corr.

Dev
Acc.

Training
Time Experiment Setup Additional Comments

1 0.429 0.735 0.366 0.510 10h Learning rate: 4e-5. Batch size: 32. Experiment to setup baseline

2 0.305 0.693 0.289 0.429 6h 25m
LoRA with MSFT lib [Hu et al.
(2022)] (Rank 16). Learning rate:
2e-15. Batch size: 32.

Reduction in accuracy with
LoRA

3 0.345 0.677 0.311 0.444 8h 20m
DoRA with Hugging Face PEFT lib
[Mangrulkar et al. (2022)]. Learning
rate: 4e-15. Batch size: 32.

Overall accuracy improved
with higher training time

Table 6: LoRA and DoRA on MultitaskBERT v1 experiment results

For Experiment 1, we observed training time is approximately 10 hours for T4 GPU. Experiment 2 with LoRA achieves
shorter training time compared to the DoRA implementation from Experiment 3. Variations in implementations of
Huggingface libraries and MSFT library may account for variation in training time. The higher accuracy of DoRA is in
line with expectations since it trains a higher number of parameters than LoRA.

Variations in learning rate in Experiment 3 with DoRA compared to previous one is inspired by Smith et al. (2018). In
the subsequent experiments, we use the Hugging Face PEFT library due to its diverse range of configurable options.

5.3.7 LoRA and DoRA with Profiling enabled and upgraded hardware

Based on the previous experiment, we conduct the below experiments with profiling enabled such that we can capture
hardware performance metrics. All experiments were conducted on MultitaskBERT v2 with 1 A100 GPU.

Experiment 1 is conducted to establish a baseline and represents the accuracy of the full fine-tuning case. The goal of
PEFT techniques is to achieve a trade-off by being closer to the baseline accuracy with minimum resource usage.

In the table below "Rank" refers to the rank of the trainable matrix (also called the "attention dimension"). "lora_alpha"
represents alpha parameter for LoRA scaling. The "module" represents a "target_module" which is the names of the
modules that applied to the adapter. Batch refers to Batch size and LR refers to Learning rate.

Exp. SST
Acc.

PARA
Acc.

STS
Corr.

Dev
Acc.

Training
Time Experiment Setup Additional Comments

1 0.481 0.905 0.880 0.756 2h 3m Batch 128; LR 4e-5; Epochs 20
Baseline Experiment
Peak GPU memory: 4750.8 MB,
GPU Utilization 53.91 % .

2 0.473 0.869 0.853 0.731 1h 53m
LoRA enabled(Rank 8)
lora_alpha 16,module:query,value
Batch 128; LR 4e-5; Epochs 20

Num trainable params: 0.2644%
Peak GPU memory: 2963 MB,
GPU Utilization 54 %

3 0.477 0.868 0.853 0.733 2h 28m
DoRA enabled(Rank 8),
lora_alpha=16,module:query,value
Batch 128; LR 4e-5, Epochs 20

Num trainable params: 0.2808%
Peak GPU memory: 3503 MB,
GPU Utilization 53.47 %

Table 7: Experiment results of LoRA and DoRA with pytorch profiling
We observe that with LoRA the memory used is reduced by almost 37%. It also takes less time to train. The memory
used by DoRA increases in comparison to LoRA. The DoRA training time also increases without significant increase
in accuracy. GPU utilization in all cases stay same around 54% indicating there is no impact of PEFT on utilization.
The lower accuracy on DoRA experiment as compared to full fine tuning might suggest that hyperparameter tuning is
required for DoRA to achieve accuracy that are on par with full fine-tuning results of baseline experiment.

From experiments from Table 7 on 1 A100 GPU, we observe that with LoRA/DoRA, number of trainable parameter
goes down as reflected in reduction in memory usage. However, DoRA seems to be more resource intensive in terms of
training time and memory usage without significant accuracy improvement over LoRA.

5.3.8 LoRA and DoRA with DDP, and Autocast

We implemented Distributed Data Parallel on MultitaskBERT v2 and used all 8 GPUs of single server node on A100
hardware. All experiments used a batch size of 128, a learning rate of 4e-5, 20 epochs, "lora_alpha" of 8, and
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"target_modules" as query and value. For LoRA configuration, we set lora_dropout=0.05, init_lora_weights=True, and
use_rslora=True for both LoRA and DoRA experiments. GPU utilization and GPU memory represents the maximum
utilization and memory respectively among all 8 worker GPUs.

Exp. SST
Acc.

PARA
Acc.

STS
Corr.

Dev
Acc.

Training
Time Experiment Setup Additional Comments

1 0.425 0.853 0.804 0.694 16m 5s Baseline experiment Peak GPU memory: 5545 MB,
GPU Utilization 56.83 %

2 0.382 0.816 0.782 0.660 14m 58s LoRA enabled, Rank 8
Num trainable params: 0.2644%
Peak GPU memory: 3397 MB,
GPU Utilization 56.32 %

3 0.388 0.826 0.783 0.665 18m 0s DoRA enabled, Rank 8
Num trainable params: 0.2808%
Peak GPU memory: 3989 MB,
GPU Utilization 59.92 %

4 0.384 0.820 0.771 0.658 14m 58s LoRA enabled, Rank 2
Num trainable params: 0.0662%
Peak GPU memory: 3344 MB,
GPU Utilization 58.2 %

5 0.361 0.802 0.774 0.645 18m 0s DoRA enabled, Rank 2,
Num trainable params: 0.0828%
Peak GPU memory: 3983 MB,
GPU Utilization 61.86 %

6 0.400 0.828 0.784 0.670 18m 26s
Autocast enabled with BF16
DoRA enabled, Rank 8

Num trainable params: 0.2808%
Peak GPU memory: 3990 MB,
GPU Utilization 60.42 %

Table 8: LoRA and DoRA with DDP, and autocast
The first experiment establishes a baseline for DDP experiments and represents the accuracy of the full fine-tuning case.
We vary techniques (LoRA/DoRA) as well as their rank hyperparameter to determine which configuration can get closer
to the baseline accuracy with minimum training time and GPU resources.

In above Table 8, we observe that LoRA with lower rank performs better than DoRA with rank 2 while underperforming
slightly at rank 8. Training time of DoRA is significantly higher(20 %) than LoRA and consumes more memory as
compared to LoRA. With autocast enabled, there is an positive accuracy impact(+0.005) and increase in GPU utilization.

Table 8 also shows that using 8 GPUs with DDP drastically reduces training time due to multi-GPU parallelism. However,
accuracy is significantly impacted, indicating a need for further hyperparameter tuning. DoRA (Rank 8) with DDP
achieves better accuracy than LoRA, suggesting higher resource usage by DoRA aids in DDP-based training.

Figure 8 compares GPU memory, utilization, and training time, while accuracy is compared in Figure 7 in the Appendix
section. Notably, GPU utilization decreases with higher rank, as Rank 8 has lower utilization than Rank 2, due to denser
trainable matrices in lower ranks. LoRA consumes lower memory than DoRA and baseline due to less number of
trainable parameters. DoRA performs well at higher ranks but consumes more memory and higher training time, as it
trains weight parameters in addition to the rank matrix. This undermines the purpose of PEFT if accuracy gains come at
the cost of increased training time and memory usage. AMP Autocast acts as a regularizer, providing slight accuracy
gains but increasing GPU utilization due to dtype conversion.

Based on above experiments, LoRA with rank 2 seems to be better choice of PEFT technique for Multitask BERT
considering resource utilization and accuracy tradeoff.

5.4 Best model

The following table presents the three top-performing models from our training experiments with the accuracy obtained
from the test leaderboard 1 . The third model is fine-tuned on "MultitaskBERT v2 with SMART" [Table 3], using the
same training procedure as "Data Sampling Experiment 2" [Table 4].

Model Name SST Acc. PARA Acc. STS Corr. Test Acc.
MultitaskBERT v2 with SMART 0.504 0.905 0.880 0.783

Data Sampling Experiment 2 0.524 0.907 0.880 0.790
Combined training techniques 0.511 0.905 0.883 0.786

Table 9: Best performed model comparison

6 Conclusion

Our project reveals several important insights into optimizing the performance of a multitask BERT model.

1In earlier table 3 and table 4, the overall accuracy were obtained from dev leaderboard.
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For our tasks and datasets a single hidden layer is more effective than multiple hidden layers. Paired sentence embeddings
are preferred for paraphrase detection and semantic textual similarly tasks. If the data source is limited a good quality of
small data can still provide comparable performance.

SMART regularization was shown to enhance dev accuracy and model robustness on the condition that a proper
regularization gradient ascent is configured. While SMART did not provide accuracy improvements on fine-tuning for
STS correlation compared to the baseline, it was able to increase the overall dev score for this training task. This is a fair
result because SMART proposes to deliver on model robustness to perturbations, and not necessarily improved overall
accuracy. Experiments show that improved robustness may generalize to downstream tasks outside of a given fine-tuning
task. Improved dev scores were consistent in SMART for both SST and STS finetuning. On MultitaskBERT v2, SMART
was able to improve the overall dev score to .781, further supporting the idea that it helps the model generalize.

Between PEFT techniques LoRA and DoRA, both successfully reduced the memory usage, however DoRA’s increased
GPU memory resources did not translate into significant accuracy gains compared to LoRA.

Distributed Data Parallel (DDP) proved to effectively reduce training time through GPU parallelism, and usage of
autocast improved accuracy slightly. Both approaches require more hyperparameter tuning to meet baseline accuracy.

In future experiments, a focus on optimizing hyperparameters to balance accuracy and computational efficiency,
particularly when using DDP and PEFT techniques. Further investigation into convergence criteria for SMART
regularization is needed to determine the optimal termination point for gradient ascent loops, potentially saving
computational resources and further optimizing the loss function. Additionally, expanding the analysis to include more
datasets and tasks will help validate whether or not our findings generalize. Further more, we would be interested in
identifying specific areas for optimization in model architecture and training techniques. Our results underscore the
importance of high-quality data sampling, strategic architectural choices, and meticulous tuning to achieve optimal
performance in multitask language models.

7 Ethics Statement

One of the goal of our project is to refine and improve multitask finetuning on top of BERT. Ethical challenges arise
with the ease of fine-tuning, potentially leading to hastily released models without thorough privacy considerations,
especially with multitask fine-tuning, where violations may be harder to detect. Rapid fine-tuning could also worsen
biases, reduce model generalizability, and overfit to specific tasks. To address these risks, robust bias detection is crucial,
including identifying layers responsible for bias amplification. Transparency in training data and evaluating models on
both fine-tuned and non-fine-tuned tasks can help maintain effectiveness across domains.

Sampling data could pose ethical concerns regarding under or misrepresentation, which can lead to biased models
that perpetuate or amplify existing societal inequalities. It’s crucial to prioritize equitable representation in sampled
datasets, ensuring that they are inclusive, diverse, and accurately reflect the real-world complexities they aim to model.
Effective sampling strategies also leads to lower training cost which can enable researchers and scientists with limited
resources to conduct impactfull research. Training on carefully sampled dataset not only reduce over fitting but also
reduce systematic bias which is found to be implicit in large datasets.

Additionally, large-scale model training demands significant GPU memory, contributing to environmental concerns.
This was major motivation for us to conduct research in resource utilization. We integrated pytorch profiling specifically
to measure resource impact of training and then implemented PEFT and DDP on BERT to efficiently use additional
resources when available. Further Mitigation strategies, such as utilizing Fully Sharded Data Parallel (FSDP) technique,
could help reduce energy consumption and carbon emissions.
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A Appendix (optional)

A.1 Data sampling

To sample the data, we used zero-shot classification with the facebook/bart-large-mnli model and provided it with a
list of predefined categories. Based on the resulting label distribution, we selected top k from each category, a total of
10,000 records. The distribution by category in our sampled data, listed below:

• Technology: 25.0% (2500 examples)
• Health: 25.0% (2500 examples)
• B2B/SaaS: 15.0% (1500 examples)
• Entertainment: 11.0% (1100 examples)
• Jobs and Career: 8.0% (800 examples)
• Finance: 6.0% (600 examples)
• Education: 5.0% (500 examples)
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• Electronics: 2.0% (200 examples)
• Automotive: 2.0% (200 examples)
• CPG (Consumer Packaged Goods): 1.0% (100 examples)

A.2 SMART Implementation References

• https://github.com/namisan/mt-dnn/tree/master/mt_dnn
• https://github.com/archinetai/smart-pytorch/tree/main/smart_pytorch

A.3 PEFT Reference library

• Mangrulkar et al. (2022)
• Hu et al. (2022)

A.4 Figures

Figure 3: Dev accuracy and train loss per task for experiment 1 and 2 over 10 epochs (1 in black, 2 in blue)
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Figure 4: Dev accuracy and train loss per task for N hidden layers experiments 1, 2 and 3

Figure 5: Dev accuracy and train loss per task for N hidden layers experiments 4 and 5

Figure 6: System specification used in training ( Cloud (2024)) .
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((a)) Baseline accuracy compared with DDP Dora accuracy. ((b)) Dora Dev accuracy compared with Lora rank 8.
Figure 7: Comparison of accuracy metrics with DDP

((a)) Peak GPU memory and GPU utilization ((b)) Training time comparison for each experiment setup
Figure 8: Resource usage in DDP experimental setups(R represents Rank, Auto means AMP Autocast)

Figure 9: Pytorch profiling of GPU with DDP DoRA training with DDP Dora Rank=8 experiment .
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Figure 10: Memory usage with pytorch profiling during DDP Dora(rank=2) experiment .
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