
BERT’s Got Talent: Advanced Fine-Tuning Strategies
for Better BERT Generalization

Stanford CS224N Default Project

Grace Luo
Department of Computer Science

Stanford University
luograce@stanford.edu

Danny Lin
Department of Computer Science

Stanford University
dannylin@stanford.edu

Abstract

Transfer learning has transformed NLP by allowing a singular language model pre-
trained on extensive text to extend to multiple downstream NLP tasks. In this paper,
we explore various strategies to enhance the BERT model’s performance across
three specific sentence-level tasks: sentiment analysis, paraphrase detection, and
semantic textual similarity. We implemented numerous strategies, and found that a
combination of single-task models, cross-encoding, mean pooling, and SMART
loss regularization in addition to considerations of dataset quality produced a strong
model. We achieve an accuracy of 0.791 on the test set as a result of our extensive
exploration.

1 Key Information to include

• Mentor: Johnny Chang

• External Collaborators (if you have any): None

• Sharing project: No

• Contribution: We both contributed equal and substantial efforts to the design choices,
implementations, and writeup.

2 Introduction

Natural Language Processing (NLP) has achieved remarkable success with the advent of Transformer-
based architecture models, such as the large pre-trained BERT model Devlin et al. (2018), by enabling
robust and generalizable language understanding. There are various strategies for fine-tuning these
models to different downstream tasks, for instance single tasks and multitasking. But, they struggle
from overfitting and task interference respectively, hindering the model’s ability to generalize to
diverse tasks.

Our paper aims to explore and compare various strategies to determine which yield the best per-
formance for sentiment analysis, paraphrase detection, and semantic textual similarity tasks, ex-
perimenting with single-task and multitask. We ultimately propose three single-task models that
leverage cross-encoding with token type embeddings to improve learning for semantic tasks, SMART
regularization to combat overfitting, input preprocessing to counter data inconsistencies, and mean
pooling for meaningful sentence embeddings to produce a robust, high-performing model. We also
experiment with variations of a multitask model to compare performance. We achieve significant
improvements over baseline models, with the final model achieving a test accuracy of 0.791.

Stanford CS224N Natural Language Processing with Deep Learning

3 Related Work

The success of BERT in Devlin et al. (2018) and potential for generalizations to downstream tasks
sparked much additional research.

In the SentenceBERT paper, Reimers and Gurevych (2019) discuss mean embedding pooling as an
alternative to the default CLS pooling strategy. It was adopted to create more comprehensive and
semantically meaningful sentence embeddings since CLS embeddings yieled poor performance for
semantic tasks. The paper also discusses the use of bi-encoding with cosine similarity to evaluate
semantic similarity of embeddings. Bi-encoding entails inputting individual sentences through BERT
to derive separate embeddings.

This is in contrast with the cross-encoding strategy of the original BERT (Devlin et al. (2018)).
Cross-encoding involves concatenating pairs with a [SEP] token before inputting through BERT, thus
producing one embedding. The original BERT model was also trained with token-type embeddings,
which distinguish sentence order. Although used for next-sentece prediction, these embeddings could
also reinforce the [SEP] token’s role of distinguishing the two sentences in addition to leveraging
BERT’s pre-trained ability.

Additionally, overfitting is a common issue when fine-tuning large pre-trained models for smaller tasks.
Jiang et al. (2019) proposes Smoothness-Inducing Adversarial Regularization, which encourages
robustness against small perturbations in the input. This is achieved by incorporating an adversarial
regularizer that penalizes the model if its predictions vary significantly from slight input changes.

Finally, Wei and Zou (2019) propose random deletion as a form of data augmentation to improve
classification task performance, deleting each word of a sentence with a variable probability p. It
yields comparable results to other similar augmentation techniques (as in Kobayashi (2018) and Hu
et al. (2017)) without requiring additional datasets.

4 Approach

As a baseline, we implement the basic, multitask BERT model with task-specific linear classifiers for
each task. We implemented different loss functions for each of the three downstream tasks. Sentiment
analysis (SST) uses cross-entropy loss, paraphrase detection (Para) uses binary cross-entropy loss,
and semantic textual similarity (STS) uses mean squared error loss. All the base BERT parameters
frozen and only the task-specific classification and regression heads are fine-tuned.

We then built upon this with two additional baselines. One model included with fine-tuning of BERT
parameters along with to task-specific layers. This served as the upper bound for multitask BERT
from solely fine-tuning. The last baseline consisted of three single-task models with full-model
fine-tuning. This served as the upper bound of single-task accuracy from fine-tuning.

Mean Embeddings. Upon evaluating baselines, we noticed acceptably higher scores for SST
and Para (compared to the leaderboard), but very low STS scores. We observed that most of the
STS predictions were within the 4.0 − 4.9 range, which indicated that the embeddings were all
very similar. So, we proposed using mean token embeddings instead of the baseline ’[CLS]’ token
embeddings to capture more meaningful, representative sentence embeddings, as demonstrated in
Reimers and Gurevych (2019). The mean embeddings are calculated by taking the average of all
the token embeddings in a sentence. It therefore might be able to provide a more comprehensive
representation of the sequence because it incorporates information from all parts.

CosineEmbeddingLoss. Further inspired by Reimers and Gurevych (2019), we also implemented
CosineEmbeddingLoss to further boost STS scores. It calculates the cosine similarity between two
mean embedding vectors u and v as cos(θ) = u·v

||u||||v|| , returning a value in the range [−1, 1]. −1 in-
dicates absolutely opposite vectors, 0 no correlation, and 1 absolutely similar. CosineEmbeddingLoss
aims to maximize the similarity for semantically similar pairs and minimize for the semantically
dissimilar. To then scale the final score to the desired [0, 5] range, we used a sigmoid function and
then multiplied the result by 5. Intuitively, optimizing cosine similarity suits STS because seman-
tically alike sentences should have embeddings with greater cosine similarity. Because the task’s
goal is to evaluate the semantic likeness of sentences, appropriately maximizing and minimizing
embedding similarity ensures the model can better capture the necessary semantic relationships
between sentences.

2

Input preprocessing, Data Augmentation. After noticing considerably lower SST scores for most
groups, we decided to look at the training data to see if there were flaws causing issues across the
board. We noticed variations of certain characters and contractions that lead to inconsistencies in
BERT’s tokenizing process. The characters "-LRB-" and "-RRB-" represent "(" and ")", respectively.
Apostrophes have spaces before them (the dataset has "has n’t", "reader ’s" instead of "hasn’t",
"reader’s"), leading to different tokens from the tokenizer. The quotation marks are also inconsistent,
with some represented with a normal quotation character (") and others as two singular quotations (“),
leading to different interpretations by BERT. Therefore, we pre-processed the data so that ["-LRB-",
"-RRB-"] become ["(", ")"], [" ’"] becomes ["’"], ["“"] becomes ["""].

We also noticed largely unequal representations of sentiment classes in the data (A.4). So, we
augmented the data by increasing the number of sentences in each of the classes to match the number
for the most-represented label (label 3, 2322 sentences). This was done using random deletion, as
mentioned in Wei and Zou (2019). Each word in a sentence is randomly removed with probability 0.1
(as per the paper), and the modified sentence is then added to the dataset with the same label. As
stated in Wei and Zou (2019), one of its tasks was sentiment analysis, and augmenting the original
sentences largely maintained the same labels of the originals.

(a) Bi-Encoding (Cosine Similarity) (b) Cross-Encoding

Figure 1: Bi-encoding vs. Cross-encoding

Cross Encoding and Token Type Embeddings. To further address the Para and STS scores, we
investigated cross-encoding (Reimers and Gurevych (2019)). In our baseline, paraphrase used bi-
encoding (Figure 1a), which put each sentence of a sentence pair through BERT to get individual
sentence embeddings. The embeddings for the pair were then concatenated and passed through a
linear layer to produce one logit, which was compared with the label using binary cross-entropy loss.
For STS, the model did not concatenate the individual sentence embeddings, but instead calculated
their cosine similarity for CosineEmbeddingLoss.

Cross-encoding (Figure 1b) was introduced as part of the original BERT model in Devlin et al. (2018).
As opposed to bi-encoding, two individual sentences of a sentence pair are concatenated with a ’[SEP]’
token in between. Then, the concatenated result is forwarded through the BERT model and linear
layer to produce one value prediction. For paraphrase, BCELoss is still applied to the labels, while
L1 Loss was used for STS instead. In passing concatenated sentences through BERT, the model must
process a pair at the same time, potentially pushing it to learn more complex, fine-grained semantic
relationships between the sentences. Further, the model could develop a stronger understanding of
contextual relevance, as it could better recognize certain words or phrases in one sentence that have
specific meanings only when viewed in the context of the other sentence.

We also integrated token-type embeddings (segment embeddings in Devlin et al. (2018)) to further
assist cross-encoding. Token type embeddings (TTE) are vectors added to the input embeddings
to indicate which segment or sentence each token belongs to. Cross-encoding distinguishes two
sentences with the ’[SEP]’ token, and TTE would solidify the model’s differentiation. Further, BERT
was pre-trained for next-sentence prediction (NSP), which used TTE. Although Para and STS are not

3

the same as NSP, understanding the relationship between two sentences is crucial for all three tasks.
BERT’s pretraining could therefore leverage its learned ability to process and compare sentence pairs
with TTE’s explicit segment information.

Hyperparameter Tuning. We observed overfitting, mainly in the SST and STS datasets, so we
tested dropout rates to see which was optimal for each task. We tried dropout rates of 0.1, 0.2, and
0.3 on the cross-encoded, single-task SST and STS models. We also experimented with batch sizes
of 8, 16, and 64 to find a balance between performance and speed.

SMART Regularization. We investigated SMART regularization (Jiang et al. (2019)), specifically
integrating smoothness-inducing adversarial regularization, as an alternative to combat overfitting in
SST and STS.1 SMART regularization operates by introducing small perturbations to the input embed-
dings and penalizing the model if its output changes significantly in response to these perturbations.
This method encourages the model to be smoother and more robust, improving its generalization to
unseen data. The optimization objective is defined as:

min
θ

F(θ) = L(θ) + λsRs(θ),

where L(θ) represents the task-specific loss function, λS is the tuning parameter, and Rs(θ) is the
smoothness-inducing adversarial regularizer. The regularizer Rs(θ) is given by:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs(f(x̃i; θ), f(xi; θ)),

where x̃i denotes the perturbed embedding, generated by adding small noise to the original embedding
xi. Minimizing F(θ) encourages the model to have stable predictions by demonstrating robustness to
small perturbations to xi, thus potentially mitigating overfitting. The loss functions ℓs were selected
based on the task (as per Jiang et al. (2019)), with symmetrized KL-divergence used for classification
tasks (SST) and mean-squared error for regression tasks (STS). For Para, we did not implement
regularization because it is expensive and overfitting was not pronounced for the task. Jiang et al.
(2019) discusses Bregman Proximal Point Optimization, but our implementation opted for the default
ADAMW Optimizer. Dropout negatively impacts SMART loss as per Hayes (2023), so we decided
to remove it to best gauge SMART’s performance effect.

Multitask Learning Techniques. Given that Para and STS have similar tasks (learning and compar-
ing semantic sentence meanings) and both use cross-encoding, we decided to explore if multitasking
on Para and STS would boost STS because it would train on more data. So, we would have two total
models instead of 3: one single-task SST model, and one multitask model for Para and STS. Initially,
we trained a multitask model that iterated through the Para and STS dataset each once per epoch.
We realized that Para and STS however, had a significantly disproportionate amount of data and the
model would therefore underfit to STS.

So, we implemented a cycling approach, where for each epoch, it would train on the entire Para
dataset once per epoch and cycle through STS dataset to match the amount of Para data. This strategy
seeks to leverage the entirety of the Para dataset, but cycles through STS just under 50 times per
epoch when trained on all 280K examples, likely leading to overfitting.

We therefore experimented with another way to combat the issue of disproportionate data without
cycling and its overfitting issue: re-weighting the losses. Our objective changed from minimizing
[para-loss + sts-loss] to minimizing [para-loss + w · sts-loss], where w was the pro-
portion of the Para dataset to the STS dataset size. This strategy seeks to ensures that the larger
dataset does not dominate the training process by increasing the influence of the smaller dataset.
We effectively aim to effectively normalize the contribution of each dataset to the overall training
objective in an attempt to mitigate STS underfitting. We could still fully utilize the vast Para dataset
without excesssively exposing the model to nearly 50 times as much cycled STS data.

5 Experiments

5.1 Data

For sentiment analysis, use the Stanford Sentiment Treebank (SST) dataset of extracted movie review
sentences, each with one of five labels: negative, somewhat negative, neutral, somewhat positive,

1https://github.com/archinetai/smart-pytorch

4

and positive (labeled on [0, 4] integer scale). It is split into 8, 544 train, 1, 101 dev, and 2, 210 test
examples. For paraphrase detection, we used the Quora dataset of question pairs, labeled with a 0 or 1
to indicating whether sentences are paraphrases of one another. It is split into 283, 010 train, 40, 429
dev, and 80, 859 test examples. For semantic textual similarity, we use the SemEval STS Benchmark
Dataset of sentence pairs labeled with a similarity score on a scale of [0, 5]. It is split into 6, 040 train,
863 dev, and 1, 725 test examples.

5.2 Evaluation method

We evaluate the model’s performance with three task-specific metrics: accuracy between predicted
and true labels for SST and Para, and the Pearson correlation coeeficient for STS, which is the linear
correlation between the predicted and true similarity scores. The overall performance is measured by
averaging the scores.

5.3 Experimental details

Our hyperparameters for all experiments are as follows, unless otherwise specified: 10 epochs,
learning rate of 2e-5, dropout of 0.2, batch size of 16. We optimize the model with the ADAMW
algorithm. For SMART, we use the recommended hyperparameters in Jiang et al. (2019): Tx̃ = 1,
σ = 1× 10−5, ϵ = 1× 10−6, η = 1× 10−3, and we experimented with λs values. Given the large
size of the paraphrase dataset, we opted to initially train on a smaller subset of the data of 8000
paraphrase sentence pairs unless otherwise specified. This is done for the sake of speed when testing
different strategies. For the final model, we train on the full 280K pairs.

5.4 Results

Baseline. We first experimented with the three baseline variations and found the 3 single-task models
to have the best performance (A.1). This matches our expectation, as each model has more focused
optimization.

Pooling Techniques. Afterwards, we committed to training three separate models and compared the
performance of the baseline CLS pooling mean embeddings (ME) pooling for all tasks (results in
Table 1).

Pooling SST Para STS Dev Acc
CLS 0.519 0.765 0.381 0.555
Mean 0.520 0.765 0.390 0.558

Table 1: CLS vs. Mean Embeddings

While the score for SST improved minimally (0.001) and Para remained unchanged, the STS score
experienced a much larger increase, suggesting that mean embeddings were more representative of
the varying meanings of input sequences. Since STS and Para focus on encapsulating meaningful
semantic embeddings, we implemented mean embeddings for both tasks. The improvement in SST
was not as substantial and it could be due to random seed, but since ME did not noticeably worsen
performance and it performed much better on STS, we decided to use ME for all three tasks.

Input Pre-processing and Data Augmentation. The next experiment focused on SST, and the
results for input pre-processing and data augmentation are shown in Table 3.

Model SST
No preprocessing/data aug 0.516

w/ Input pre-processing 0.518
w/ Data Augmentation 0.513

Table 2: Input pre-processing and Data Aug

We observe a slight enhancement from input pre-processing, but a worse performance with data
augmentation. While we were expecting a more substantial increase from pre-processing, the result
indicates that standardizing the inputs had some benefit. The decrease in augmentation could be
because the data was not suitable for random deletion, possibly because sentences are shorter. We
noticed that the data augmentation reached 0.513 at first epoch, then dropped to 0.470− 0.480 range

5

every epoch after, while input pre-processing exhibited more consistent growth. This suggests that
the model possibly overfit to the augmented sentences, thus reducing performance. As such, we
chose to keep input pre-processing and leave data augmentation.

CosineEmbeddingLoss, Cross-Encoding. We then tested the effectiveness of switching from
MSELoss to CosineEmbeddingLoss on STS. Similarly, we also wanted to see how cosine similarity
would yield compared with the cross encoding method, so the results were combined into Table 3.

Model Para STS Dev Acc
Bi-Encoding (MSE) – 0.390 –

Bi-Encoding (Cosine) – 0.725 –
Cross Encoding 0.869 0.868 0.754

Cross Encoding + Token Type 0.878 0.880 0.761
Table 3: STS Loss and Encoding Techniques

We tried 4 approaches: bi-encoding with MSELoss for STS, bi-encoding with CosineEmbeddingLoss
for STS, cross encoding (now with L1 loss for STS), and cross encoding with TTE. For all the cases,
BCELoss was used for Para. As shown, cosine similarity significantly improved STS performance to
a more acceptable value. However, cross encoding substantially improved both STS and Para scores,
as expected (or even more than expected) because the model could better learn the relationships
between the two sequences. TTE, although more minimal growth, still consistently improved both
scores. Consequently, we chose to implement cross-encoding with TTE for our final model.

Model SST Para STS Dev Acc Time (Min:Sec)
Batch size 8 0.518 0.869 0.884 0.757 15:56

Batch Size 16 0.525 0.878 0.880 0.761 12:43
Batch Size 64 0.520 0.868 0.872 0.753 10:19

Table 4: Batch Size

Batch Size. Experimenting with batch sizes, we found that 16 produced the best STS, and the
medium size produced the best SST, Para, and overall accuracy by a considerable amount, a pleasant
surprise because it balanced generalization and speed. Larger batch sizes tended to run faster (a 2-3
minute difference between trials), and we expected it to also reduce performance due to less noise
and gradient estimates with lower variance. Considering that we only train on 8000/280K Para pairs
during experimentation, the difference in time will be exacerbated when training on the full dataset.
Therefore, we opted to maintain a batch size of 16.

Dropout and Regularization. Noticing overfitting, we first experimented with dropout values (A.2).
0.3 dropout resulted in a 0.006 jump in SST to produce a highest score of 0.531 observed thus far.
However, STS experienced similar small increases of 0.004 and 0.003 for 0.1 and 0.3, respectively,
resulting in unclear conclusions. Given that dropout had a more significant impact on SST and
inconclusive results on STS, we changed dropout to 0.3 for SST and maintained 0.2 dropout for STS
(also to strike some balance between 0.1 and 0.3).

Table 5 reveals the effect of SMART regularization, a more effective technique, where we experi-
mented to find the best λs and analyzed SST, STS, and average iterations per second.

λs SST STS Max Dev Epoch Avg It/s
0 0.531 0.884 9 47.1

0.05 0.520 0.895 9 23.6
0.1 0.512 0.893 6 23.5
5 0.528 0.896 5 23.2

15 0.518 0.900 6 22.8
Table 5: Experimenting SMART tuning paramenter values

As shown, λs = 15 yields the best result for STS seen thus far, with a 0.016 increase. However,
any λs does not yield as high of a SST score as the model without SMART. We believe SMART
produced much higher STS because the small perturbations to input data allows the model to become
more sensitive to subtle semantic differences, while dropout does not provide the same targeted
improvement for capturing subtle interactions between words. For SST, the model might have overfit
to specific words that are generally indicative of sentiment but have complex nuances, so dropout

6

could encourage it to learn sentiment more holistically. We observe λs = 5 converged the quickest,
reaching its maximum dev accuracy at epoch 5 and the second highest STS score. The halving of
it/s with SMART indicates high computational overhead, as expected from generating adversarial
examples and computing the additional loss. However, λs = 15 produced an STS score 0.900,
which was significantly higher than any previous observations and 0.004 higher than the next highest
observed STS score with SMART. Further, it peaked at epoch 6, an improvement compared to the
model without SMART, which peaked at epoch 9. Thus, we decided to adopt λs = 15 for STS, as it
balanced both high scoring and computational efficiency.

Multitask. Despite already high Para and STS scores, we were curious if there was a more efficient
way to also achieve high scores via multitasking. There are four models: original single-task models,
multitasking without cycling (training on each dataset once per epoch), multitasking with cycling
(per epoch, train Para once and train STS until reach same amount of examples seen), multitasking
without cycling and re-weighted loss. We tested on 24000 pairs for the cycling models to better gauge
the extent to which overfitting, an anticpated effect due to disproportionate data, occurs.

Model Para STS Dev Acc
No Multitask-Partial 0.878 0.900 0.889

Multitask w/o cycling-Partial 0.886 0.892 0.889
Multitask w/ cycling-Partial 0.895 0.896 0.896

Multitask w/o cycling, re-weighted-Partial 0.809 0.887 0.848
Multitask w/ cycling-Full-Dev 0.911 0.892 0.902
Multitask w/ cycling-Full-Test 0.902 0.726 0.814

Table 6: Multitask Models

Observing that multitasking with cycling produced the best results, we were wary of the overfitting
and decided to train on the whole dataset for further examination. For the dev set, the model exhibited
similar scores, with an expected higher Para due to training on all data. STS, however was much
lower (−0.170) score compared to the cycling experiment on partial data. This indicates that the
model struggles to generalize to STS tasks and that the test set could contain more challenging and
diverse examples. No-cycling multitask models also performed worse or comparably on STS, and we
believe the difference in datasets would be exacerbated with the full Para data, so we did not further
consider any multitask model.

Final Results.

Model SST Para STS Acc
Baseline (Dev) 0.310 0.647 0.113 0.357

Final Model (Dev) 0.510 0.907 0.899 0.789
Final Model (Test) 0.523 0.904 0.892 0.791

Table 7: Baseline vs. Final Model

Our final model consists of 3 single-task models, ME pooling for all, cross-encoding for Para and
STS, SMART regularization with λs = 15 for STS, input pre-processing for SST, dropout 0.3 for
SST and 0.2 for Para, and batch size of 16 for all. We report a test accuracy of 0.791. 2

6 Analysis

Sentiment Analysis. We plotted a confusion matrix (A.3) to visualize the model’s accuracy. The
relatively high percentages along the diagonal indicate that the model is able to successfully classify
sentiment the majority of the time and rarely deviates more than 1 sentiment class. However, a
considerable number of milder predictions are actually in more extreme adjacent classes; 39% of
true "negative"s are predicted "slightly negative" and 38% of true "positive"s as "slightly positive".
This could be due to the imbalance in data shown in (A.4), with examples labeled 1 and 3 occupying
53.14% of training data and examples labeled 0 and 4 occupying 27.85% of data. Furthermore, the
model struggles with neutral labels and identifies them correctly 35% of the time, likely due to the
intrinsically complex nature of neutrality. We also noticed that many errors arose from focus on literal
words rather than sentiment. For instance, we and the true label classify "If Steven Soderbergh ’s ‘

2The test model was trained on both the training and dev set.

7

Solaris ’ is a failure it is a glorious failure" as positive, but the model identified "neutral". We believe
this is because the model incorrectly assumes "glorious" (pos) and "failure" (neg) offset each other
(as many training examples do, see Ex. 7), failing to recognize nuanced sentiment. We found many
training labels were flawed as well; we classify "Like shave ice without the topping, this cinematic
snow cone is as innocuous as it is flavorless" as negative, but it is labeled neutral.

Paraphrase Detection. We plotted a confusion matrix (A.5) and again saw high accuracies for
the diagonal. We noticed the model tends to incorrectly identify paraphrases as distinct (13%)
more than distinct sentences as paraphrases (7.5%). Upon further investigation (A.6), we notice
false negatives with sentences that require deeper understanding of word meanings and contexts as
opposed to basic word matching. For instance, in Ex. 1, the model fails to realize that "sunblock" and
"sunscreen lotions" are equivalent, and that the addition of "during summer" does not affect overall
semantic meaning because sunblock is typically applied during summer. This requires a much deeper
awareness of context and word meanings that could extend beyond the limitations of our model,
which likely needs more data to achieve such an understanding. Incorrect predictions overall tend to
occur with sentences that vary by a word or two (Ex. 2, 3, 4). In Ex. 4 for example, the words used
are identical (with the exception of "biochemistry" added to sentence 2), but have opposite meaning
due to the swapping of "vitro" and "non-vitro", which the model failed to recognize. This is indicative
of the model’s challenge in discerning deeper meaning of similar pairs.

Semantic Textual Similarity. We visualized the model with a scatter plot (A.7), which demonstrates
strong correlation. Upon analyzing the points with lowest accuracy (A.6), we notice trends of
incorrectly low similarity predictions due to varying words with synonymous meaning (Ex. 5) and
incorrectly high similarity predictions due to the same word used in different contexts (Ex. 6). In Ex.
6, "work", although used as a verb in both sentences, means "to put in effort" in one sentence and "to
function successfully" in the other, a nuance the model does not distinguish. This indicates the model’s
limitation lies in its reliance of literal word usage, as opposed to deeper semantic understanding of
contexts and synonyms.

Model Analysis. We plot the lengths of the SST dataset sentences (A.8) and observe they are skewed
towards shorter values, mostly in the range of 11-30 words. This could explain why data augmentation
via random deletion was not effective for SST, because deleting word(s) in shorter sentences is more
likely to remove crucial information. We observe that the addition of TTE to cross-encoding yielded
improvements in Para and STS by a considerable 0.009 and 0.012, despite TTE having no explicitly
new contribution to the encoding and embedding process. This supports our hypothesis that TTE
possibly enhances existing cross-encoding features, improving ability to discern subtle differences
or similarities between pairs. Multitasking with re-weighted losses revealed a large drop in scores,
especially for Para (unsurprising because less weight was given to it). However, it is the fact that STS
also dropped which suggests re-weighting is insufficient for such large dataset size discrepancies.
Another observation is the relatively drastic fluctuations in SST scores, despite no changes to the
model. When we implemented CosineEmbeddingLoss for STS, the SST score dropped from 0.520 to
0.516. After implementing cross-encoding, which did not affect SST, the values jumped from 0.518
to 0.525. This could be due to random seed, and also the imbalanced and faulty data as mentioned
above, which could impact consistency. We believe this explains the drop in SST scores for the final
dev performance.

7 Conclusion

Our paper extensively explores a wide range of extensions for improving the BERT model. We
implement and evaluate pooling techniques, cross-encoding, SMART loss, creative multitasking
strategies. Ultimately, a combination of single-task training, differing optimal hyperparameters,
encoding, and regularization arising from comprehensive testing emerged as a powerful model. It
highlights how different tasks can require varying techniques, and the importance of experimenting
new strategies with clear intent from prior observations. We experience limitations with regards to
data, as our models trained on flawed SST data and focused on sentences in Quora and movie reviews
without generalizing to broader human language contexts. In the future, we would explore additional
STS datasets to address the crux of the issue with multitask cycling. Additionally, investigating
more advanced data augmentation techniques, more efficient techniques (given SMART overhead),
ensemble methods, and the integration of external knowledge bases could enhance model performance
and robustness.

8

8 Ethics Statement

Our project investigation and analysis focused on overfitting and data quality. We attempted to
mitigate overfitting, which yielded positive and negative results for different tasks, and addressed
flaws and imbalance in the SST dataset. However, we did not implement regularization or higher
dropout for the Para task because we did not observe overfitting, nor did we notice many obvious
mislabelings. Upon further reflection of the Quora dataset, we realize that the model could overfit to
certain biases present in Quora and learned relationships that may have yielded high performance
on the test set, but are harmful in other broader language contexts. Our models are single-task,
so they have greater tendencies to overfit. For instance, while there is no official data on the user
demographic, we noticed many questions that would be asked by the younger generation (questions
about older experiences, prepping for exams, puberty, etc.). We also noticed many US and India-
specific questions, indicating a high percentage of users are from those countries. Training well to
Quora could yield solid performance for this project, but the model could be learning implicit ageist
or culturally harmful biases. To mitigate these, we propose policymakers implement a benchmark
for diversity in training data. Models trained on solely one type of data with the intent of going on
to more general tasks should not be deployed unless they meet a certain benchmark of training on
various datasets that are comprehensive of the type of classification/regression tasks it will perform.

Another ethical issue is the computation overhead. We use single-task models, which are more
computationally expensive than multitask, in addition to implementing SMART on one of the model.
This could lead to unsustainable practices (higher emissions, infrastructure costs, etc.) due to the
resource-intensiveness, should the model be scaled incredibly larger. While we were conscious of
the cost, we prioritized performance for this project and had more than enough compute power. Our
strategy is not wasteful, though, as we do consider offsetting with batch size and only implementing
SMART for one model (when absolutely necessary). However, in cases where the compute power
needed infringes on the environment, we believe maintaining full GPU utilization to reduce the usage
of resources by unutilized GPUs. Moreover, there should be policy enforcing ESG (environment,
social and governance) benchmarks for companies using the model. We also propose that more
resources be devoted to creating central dashboards that can efficiently track metrics as companies
scale the model to ensure they are meeting ESG goals.

9

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Matthew Hayes. 2023. Serbertus: A smart three-headed bert ensemble. In Stanford CS224N Default
Project.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P. Xing. 2017. Controllable
text generation. CoRR, abs/1703.00955.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
SMART: robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. CoRR, abs/1911.03437.

Sosuke Kobayashi. 2018. Contextual augmentation: Data augmentation by words with paradigmatic
relations. CoRR, abs/1805.06201.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. CoRR, abs/1908.10084.

Jason W. Wei and Kai Zou. 2019. EDA: easy data augmentation techniques for boosting performance
on text classification tasks. CoRR, abs/1901.11196.

10

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1703.00955
http://arxiv.org/abs/1703.00955
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/1805.06201
http://arxiv.org/abs/1805.06201
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/1901.11196

A Appendix

A.1 Baseline Table

Model SST Para STS Dev Acc
Baseline-Multitask-Last Linear Layer 0.310 0.647 0.113 0.357

Baseline-Multitask-Full Model 0.490 0.762 0.361 0.537
Baseline-Single Task-Full Model 0.520 0.765 0.381 0.555

All reported baselines are from dev test.

A.2 Dropout Table

Dropout SST STS
0.1 0.525 0.884
0.2 0.525 0.880
0.3 0.531 0.883

Table 6: Dropout

A.3 SST Confusion Matrix

A.4 SST Training Data Label Distribution

11

A.5 Paraphrase Confusion Matrix

A.6 Specific Sentence Examples

Example Sentence 1 Sentence 2 Prediction Actual
1 Should black people wear

sunblock?
Do black people need to put
on sunscreen lotions during
summer?

0 1

2 How do plants produce oxy-
gen?

How do plants produce oxy-
gen during photosynthesis?
Do all plants do this?

0 1

3 Why do I need a catalytic
converter?

Do you really need a cat-
alytic converter?

0 1

4 What are some molecules
that are toxic in vitro and
non-toxic in vivo?

Biochemistry: What are
some molecules that are non-
toxic in vitro and toxic in
vivo?

1 0

5 It’s also a matter of taste. It’s definitely just a matter of
preference.

2.78 5.0

6 Work into it slowly. It seems to work. 2.49 0.0
7 fast , frantic and fun , but also

soon forgotten
N/A N/A 2

12

A.7 STS Scatter Plot

A.8 SST Sentence Length Distribution

13

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix
	Baseline Table
	Dropout Table
	SST Confusion Matrix
	SST Training Data Label Distribution
	Paraphrase Confusion Matrix
	Specific Sentence Examples
	STS Scatter Plot
	SST Sentence Length Distribution

