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Abstract

“Retrieval-Augmentation Generation“ (RAG) systems have emerged in response to
the current constraints faced by large language models (LLMs) when applied to
domain-specific tasks, as discussed by Lewis et al. (2021). These systems harness
the power of LLMs to perform complex reasoning across tightly focused document
sets, proving particularly valuable in specialized research areas or within specific or-
ganizational contexts, such as company business processes that rely on proprietary
or department-specific documentation. At the International Conference on Learning
Representations (ICLR) Sarthi et al. (2024) introduced “Recursive Abstractive Pro-
cessing for Tree-Organized Retrieval“ (RAPTOR), an innovative strategy designed
to address the inherent limitations of RAG systems. The RAPTOR framework is
fundamentally segmented into two main components: 1) retrieval and 2) construc-
tion of the underlying retrieval tree system. In this project, I focused on critically
evaluating and enhancing the construction component of RAPTOR. Through my
investigation, I identified several key limitations of the existing framework and
developed a new simplified approach that completely redesigns the construction of
retrieval trees. This new methodology not only consistently surpassed the original
system in handling both abstractive and extractive queries but also facilitated the
development of more profound retrieval tree structures, enhancing the system’s
capacity to interpret and utilize different segments of documents effectively.

1 Key Information

• TA mentor: Anna Goldie

• External collaborators or mentor: No, Sharing project: No

2 Introduction

RAG systems have been developed to address the constraints faced by LLMs when dealing with
domain-specific queries. These systems enhance LLM capabilities by augmenting prompts with
domain-specific contexts, initially retrieved from a dedicated information retrieval system (Lewis
et al., 2021). Despite the innovations in retrieval technology, current methods exhibit a significant
limitation: they only process contiguous chunks of text, thereby failing to grasp the complete semantic
depth of documents.

To address these challenges, the innovative RAPTOR, as proposed by Sarthi et al. (2024), aims to
transform how information is processed and structured. RAPTOR enhances document understanding
by recursively clustering related text chunks and summarizing them. This approach enables the
construction of a hierarchical tree from the bottom up, effectively capturing both the meaning and the
structural hierarchy of a document across various levels of abstraction. By integrating this structured
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data into RAG systems, LLMs can access a richer context within prompts, potentially leading to
more nuanced and contextually aware responses.

Despite its potential, RAPTOR exhibits certain limitations that can hinder its effectiveness in practical
applications. One notable issue is the tendency to produce relatively flat tree structures, which may
not adequately represent the complexity of the information within large documents. This is partly
due to its reliance on Gaussian Mixture Models (GMMs) as the primary clustering algorithm, which
can be suboptimal for managing high-dimensional text chunks. Furthermore, the expected benefits of
soft clustering, which could theoretically enhance the granularity of document processing, are not
fully realized in handling typical document sizes found in narratives or comprehensive NLP research
papers. This shortfall diminishes the anticipated advantages of employing GMMs. Additionally, the
current implementations of RAPTOR have shown a suboptimal approach to sentence tokenization,
which could further compromise the system’s efficacy in nuanced text parsing and retrieval tasks.

Building on the foundational ideas of RAPTOR, my approach involves a completely redesigned
and simplified method for constructing the retrieval tree. It leverages the inherent tree structure
generated by agglomerative clustering. Moreover, by incorporating positional information of text
chunks, my method enhances insight into the underlying structure of documents, which is crucial
for the clustering algorithm to effectively respect and utilize. The reimagined architecture of the
retrieval tree through my approach has resulted in deeper tree structures that provide more levels
of abstractive summaries. Consequently, the answers generated from these structures exhibit a
profound understanding of various document sections, enriching the interpretative depth significantly.
In comparative evaluations, my new approach consistently outperforms the original across both
abstractive and extractive queries. Furthermore, the streamlined nature of this new approach renders
the clustering component of tree construction computationally negligible.

3 Related Work

In the realm of RAG systems, foundational work by Lewis et al. (2021) and Akyurek et al. (2022)
has explained the motivations behind retrieval augmentation, particularly highlighting the limitations
of LLMs. This body of work has set the stage for my project, which further explores and extends
the capabilities of RAG systems. Sarthi et al. (2024) introduced the innovative RAPTOR approach
as a solution to overcome the limitations identified in previous RAG systems. I have chosen this
particular study as the foundational paper for my project, aiming to delve deeper into its limitations
and potential enhancements. Further advancements in RAG systems include the “RAG-end2end“
proposal by Siriwardhana et al. (2023), which aims to create a more dynamic RAG system capable of
adapting to domain-specific knowledge bases by updating all components of the external knowledge
base during training. This proposal aligns closely with the objectives of my project, which seeks to
refine the adaptability and efficiency of RAG systems.

Additionally, the introduction of rotational positional embeddings “Roformer“ applied on transformer
models by Su et al. (2023) has inspired the integration of positional embeddings within the context
of RAPTOR trees in my project, aiming to enhance the structural and contextual understanding of
document clusters. The application of sentence embeddings in my project is heavily influenced by
the work of Reimers and Gurevych (2019), who introduced Sentence-bert (SBERT). This paper has
been instrumental in providing the necessary insights for generating improvements in the clustering
algorithms used in the RAPTOR system. Lastly, the QASPER dataset and evaluation script provided
by Dasigi et al. (2021) are utilized in my project to assess the efficacy of the proposed improvements,
ensuring that the enhancements are not only theoretical but also practical and measurable.

4 Approach

To find possible improvements for the RAPTOR clustering algorithm I start by taking a closer look at
the existing implementation.

Chunking Text: The first step is chunking the text of a document into continuous chunks of 100
tokens. To prevent chunk splits within sentences, full sentences are exclusively used for chunking.
Examining the official implementation reveals that the current method of text chunking, which relies
on predefined delimiters and regular expressions, often splits sentences inappropriately, disrupting
contextual relationships. Consequently, I have substituted this approach with the sentence tokenizer
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from the Natural Language Toolkit (NLTK)1, which produces cleaner and more contextually coherent
text chunks.

Generating Embeddings: At the next step RAPTOR generates embeddings of the text chunks using
the SBERT model from Reimers and Gurevych (2019). SBERT is a modification of BERT, that can
generate semantically meaningful sentence embeddings, ideal for comparisons with cosine-similarity.
For each text chunk the output is a single high-dimensional embedding, representing its full meaning.

Clustering: To cluster the resulting embeddings RAPTOR applies GMMs. They assume that data
points are generated from a mixture of several Gaussian distributions. This way a data point can be
“softly“ clustered into multiple clusters, which seems to better represent the contextual nature of text,
where sentences can be relevant to several topics. An observed challenge in the RAPTOR paper is the
high dimensionality of the embeddings for GMMs, creating the need for dimensionality reduction. A
possible down-side is the loss of information from the original SBERT embeddings. Additionally, as
mentioned in the RAPTOR paper, GMMs may not perfectly align with the nature of text data, which
follows a more sparse and skewed distribution. However, their empricial findings show that GMMs
still are applicable. (Sarthi et al., 2024)

Summarization: In the next step the clustered text chunks are summarized using a LLM with a
summarization prompt and the text chunks within a cluster as context. With the resulting output text
another embedding is created with SBERT. The new text and embedding is then used to build the tree
structure.

Tree Building: With all previous steps in place the tree building process of RAPTOR begins. It starts
with the leaf nodes containing the initial text chunks and their embeddings. The next upper level
consists of their parent nodes according to the clustering result, containing the summarized texts and
their embeddings. The process of clustering, summarizing and tree building is repeated until no more
upper layers can be created.

Alternative Summarization Approach: Looking at this process it caught my attention, that the
task of generating embeddings within SBERT is actually very similar to the task of generating
summaries over text chunks with an LLM. I therefore propose to examine the possibility of creating
the summaries directly with the embeddings of the text chunks, using a similar approach as SBERT.
This would avoid the extra step and possible loss that comes with summarizing on text chunks using a
summary prompt and might even lead to a reduction of the reported 4% hallucination rate in RAPTOR
summaries in Sarthi et al. (2024).

Adding Positional Information: One other notable aspect of the RAPTOR process, particularly in
terms of text chunking and clustering, is that the clustering does not respect any positional information
of the text chunk it clusters. Assuming that near text chunks generally have a higher probability
of belonging to the same context I propose to capture positional information of text chunks within
their embeddings, so they can be respected during clustering. This could be implemented by 1)
using absolute positional information and encode it in the embeddings or 2) using relative position
embeddings, such as rotational position embeddings that were applied to transformers in Su et al.
(2023). Using an alternative clustering algorithm to GMMs that would avoid dimensionality reduction
could also help to maintain this added positional information for clustering.

Visualizing the tree: To get a better intuition of the resulting tree I present a tree visualization in
Figure 1.

Figure 1: RAPTOR tree for Cinderella story.

1https://www.nltk.org/api/nltk.tokenize.html
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The visualization has been realized based upon the provided code of a pull request, that adds tree
visualization capabilities to the official RAPTOR implementation2 I added a slight modification to
differ between the actual RAPTOR nodes (in blue) and an artifically created top node (orange) for
visualization purposes. It shows the structure of a generated RAPTOR tree for the Cinderella story,
which is used as a simple demo text. We can observe, that the result is actually not a single tree,
but six distinct trees. And the overall structure is generally very flat. It consists of six root nodes
containing all the leaf nodes. In order to better support the retrieval I suggest to create a final single
root node on top of the sub-trees, containing a summary over all content. Besides that, the trees do
not show any soft clustering applied in the way, that a leaf node would have been assigned to multiple
parent nodes. As a response to a review question on soft clustering the authors of the RAPTOR
paper commented, that they observed actual soft clustering with documents over 14,300 tokens3. The
Cinderella narrative contains about 2,600 tokens and a sample of an NLP paper from the QASPER
dataset contains about 6000 tokens. This negates the originally proposed advantage of GMMs to be
able to perform soft clustering for these kinds of documents. And in terms of wording, if we were to
envision the structure with applied soft clustering, it would actually no longer be a tree, but a directed
acyclic graph (DAG), resembling an interconnected web more than a tree.

Visualizing Embeddings and Clustering: To get a an additional intuition for the way the em-
beddings are clustered with GMMs, I present a visualization of a sample clustering result in figure
3 in Appendix A. In this 2D representation it appears, that clusters are formed in various shapes
across the embeddings, which was a highlighted advantage of GMMs. Moreover, very discrete
cluster boundaries can be observed, with a few exceptions, suggesting that soft clustering may not be
effectively applied.

Finding Clustering Alternatives: To identify possible alternatives for GMMs as the clustering
algorithm I have conducted several discussions with the authors of the RAPTOR paper and worked
through the comments of the reviewers on Open Review. One reviewer specifically suggests to try
agglomerative clustering as an alternative.3 Additionally, scikit-learn.org provides a comprehensive
overview on clustering algorithms.4 After reviewing different options, I suggest considering several
alternatives for experimentation, including: 1) agglomerative clustering, 2) a neural clustering
approach where a trained model can perform the clustering task. A neural approach seems to be
especially promising considering the high dimensionality of text embeddings.

Collecting Suggestions and Scope: Table 1 collects all identified suggestions from the upper
sections for improving RAPTOR, that resulted from my analysis. As a scope for this project I select
to implement and experiment on agglomerative clustering, NLTK sentence tokenizer, positional
embeddings and adding a single root node at the top of the tree.

Agglomerative clustering is a hierarchical clustering method in which each input element initially
represents its own cluster. These clusters are then progressively merged according to a specified
distance criterion until all elements are contained within a single cluster. The steps executed during
this process are recorded in what is known as a linkage matrix, which can be visualized in a
dendrogram (see figure 4). This methodology allows for a detailed examination of relationships
between data points and clusters at different levels of abstraction.5

For configuration, the agglomerative clustering library supports various linkage criteria. I opted for
the average method, which computes the average distance between elements in one cluster and a
merge candidate at each step. This method is particularly suitable for sentence embeddings. Given
that SBERT vectors are optimized for cosine similarity, this measure is utilized to determine distances
in agglomerative clustering. This approach effectively leverages the inherent properties of SBERT
vectors to capture semantic similarities between text chunks.

Examining the dendrogram shown in Appendix B figure 4, I observed that the resulting structure
already represents a complete tree, making it seem like an ideal candidate to construct hierarchical
summaries such as intended in the RAPTOR paper. Moreover the linkage matrix already contains all
information for subsequent clusters from bottom up. In contrast to the original RAPTOR approach
utilizing GMMs, the clustering in this case does not need to be applied iteratively to determine

2https://github.com/parthsarthi03/raptor/pull/40
3https://openreview.net/forum?id=GN921JHCRw
4https://scikit-learn.org/stable/modules/clustering.html
5https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
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Area Suggestions

Alternatives to GMMs as base clustering
algorithm

• Agglomerative
• Neural

Chunking Text, Embeddings

• NLTK sentence tokenizer
• Integrate positional embeddings

– absolute
– relative (e.g. rotary)

Summarization and tree building

• Merge sentence embeddings
using a model similar to SBERT

• Add a single root node to the tree
with a full document summary

Table 1: Suggestions for Improving RAPTOR Clustering Algorithm

subsequent clusters. In the redesign of the clustering process, I have simplified each step by elimi-
nating the need for iterating over nodes to check sizes and perform reclustering. Additionally, the
original two-step clustering approach, which transitioned from broad to detailed clustering, and
the need to repeatedly apply GMMs to determine the optimal number of clusters (e.g. up to 50
iterations), have been removed. This streamlining significantly simplifies the entire process. In my
observations of the tree-building process with document sizes around 6000 tokens, such as those
found in NLP research papers, the clustering component was practically negligible. Instead, the
process is predominantly influenced by the round-trip times of LLM prompts for QA and summaries.
Additionally, dimensionality reduction is no longer necessary, making clustering directly on full
SBERT embeddings more meaningful. However, the replacement of GMMs with agglomerative
clustering necessitates a full redesign of the tree-building process, as the clustering algorithm cannot
simply be replaced.

New tree building: To avoid flat and loose structures as observed in the current RAPTOR trees,
I propose a tree structure with a total of four levels: the leaf layer, two intermediate layers, and
a single top root node at the top of the tree. To establish the intermediate layers, I cut the tree
structure in the dendrogram at two predefined positions (with n being the number of leaf nodes):
1) at n/3 merge steps and 2) at n/6 merge steps, counted from the last merge at the top of the
dendrogram. This segmentation strategy is anticipated to result in n/3 and n/6 clusters at these
respective points, enhancing the structural depth and organization of the tree. The choice of these
specific cuts was determined by examining the dendrogram and through several trials examining
resulting tree visualizations, appearing sensible for an initial design. However, it may be beneficial to
reconsider these values in the future and to explore experimentally various configurations. This could
include a dynamic approach that allows for more levels in the tree, potentially yielding a more refined
and adaptive clustering structure. The linkage matrix, that results from applying agglomerative
clustering, can be used to extract clusters at specified distances, which is pictorially like cutting the
tree structure in the dendrogram at a certain position on the y-axis. For implementation I use the
hierarchical clustering library from scipy.6 Finally, the top root node is realized by summarizing the
texts of the nodes of the upper intermediate layer to get one condensed comprehensive summary over
the whole document within a certain token threshold, which can serve as a short high-level overview
for RAG prompts. An example for the new resulting tree can be seen in figure 2.

Positional embedings: To conduct initial experiments with the idea of positional embeddings I start
by extending the SBERT embeddings of the text chunks with elements containing absolute positional
information. To realize this I create three elements for each text chunk containing 1) its index 2) its

6https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.
fcluster.html
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distance to the end of the document, 3) the section it is contained in, assuming three equally sized
sections in a document. These positional elements are normalized and scaled to be in the range of
-0.1 to 0.1, so that they match the range of the SBERT embeddings and do not undermine their effects.
In the final step, I introduce a priority factor that multiplies the magnitude of the positional elements.
This adjustment enables experimentation with the extent to which positional information is integrated
with the semantic information of the SBERT embeddings for the calculation of cosine similarity.
With a few tests and qualitative observations of resulting tree structures I found a priority factor of 5.0
to be a good balanced starting point for quantitative experiments. The extended embeddings are only
used for the agglomerative clustering process. They are not used for retrieval, which is still using the
original SBERT embeddings to match against queries.

Implementation: To implement my proposals I have used the official RAPTOR implementation7 and
made substantial changes to the cluster-tree-builder class and rewrote the whole RAPTOR-clustering
class to integrate with the new tree builder and to use agglomerative clustering. Additionally I have
adjusted the split-text function in the utils class to use NLTK for sentence tokenization as descibed in
the upper section “Chunking Text“.

Baseline and Experiments: To set a baseline, I start by running the RAPTOR system as it is currently
published on Github, evaluate the current state with the official QASPER dataset in Dasigi et al.
(2021) and compare the results to those published in the RAPTOR paper. I use Google’s Gemini
1.0 Pro as the language model to perform the baseline test, to contribute new experimental data.
Therefore, I extend the current RAPTOR implementation to use Gemini as the language model for
text summarization and QA. A challenge with this extension are the safety blocks of Gemini. As a
modification I adjust the safety filters to block as little as possible, but 9 out of 416 papers cannot be
summarized and have to be skipped for the experiment. A challenge with reproducing the original
RAPTOR paper’s QASPER experiments is to determine the specific prompting method for the QA
part, that satisfies the QASPER evaluation expectations for the answers and their four different answer
types. To perform the baseline test I write a Jupyter Notebook to extract the evaluation data from the
QASPER dataset, run it against the RAPTOR implementation and collect the results of the evaluation
questions. As a final step I use the official QASPER evaluation script to calculate the resulting
quantitative metric.

5 Experiments

5.1 Data

Data: QASPER contains 5,049 questions across 1,585 NLP papers divided into three sets. The test
set contains 416 papers. Each paper dataset contains questions and reference answers. QASPER
expects a model’s answer to match one of four different answer types: 1) Extractive, 2) Abstractive,
3) Boolean (yes/no), 4) None (“Unanswerable“) (Dasigi et al., 2021).

5.2 Evaluation method

The accuracy of the QASPER evaluation is measured using an Answer-F1 metric. It is reported as a
general Answer-F1 over all answers and for each answer type individually.

5.3 Experimental details

For the QASPER evaluation I use Gemini 1.0 Pro as the language model for text summarization
and QA prompts and SBERT from Reimers and Gurevych (2019) as the model for creating the
embeddings for text chunks. With these prepared I generate RAPTOR trees for the papers contained
in the QASPER test set. In a next step I generate answers to the given questions in the test set, using a
prepared prompt. With the generated answers I run the official QASPER evaluation script to compute
the Answer-F1 score and the scores for individual answer types. The full experiment over all 416
papers in the test set takes several hours to complete on a local machine (Macbook M1 Pro 2021).
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Metric Baseline New tree POS 5.0 POS 5.0 (II)

Answer F1 39.79% 38.07% 39.26% 36.01%

Answer F1 by Type

Extractive 37.37% 39.17% 40.19% 37.53%

Abstractive 17.48% 18.86% 18.33% 19.11%

Boolean 56.15% 40.89% 42.62% 40.68%

None 85.36% 76.16% 80.88% 68.52%

Missing Predictions 64 31 34 42

Table 2: QASPER Results for RAPTOR with SBERT and Gemini 1.0 Pro

5.4 Results

Table 2 presents the Answer-F1 metric as 39.79% for the baseline experiment. This result falls
between the 36.70% achieved using UnifiedQA-3B and the 53.1% obtained with GPT-3.5 as the
language model, as reported in the original RAPTOR paper by Sarthi et al. (2024). The results for
the new tree approach show distinct improvements for extractive (+1.8%) and abstractive (+1.38%)
questions. At the same time, the results for the answer types boolean and none declined significantly,
leading to a worse total Answer F1 (-1.72%). The next experiment including positional embeddings
into the new tree approach showed further improvements for extractive questions (+1.02%), a
decrease on abstractive questions (-0.53%) and a better performance on boolean and none-type
questions leading to a better total Answer F1 (+1.19%). The enhanced performance observed for both
extractive and abstractive questions for the new tree approach aligned with initial expectations and
qualitative assessments. However, the substantial decline in performance for boolean and none-type
questions was unexpected. This performance is contingent upon several factors, including the right
interpretation of the LLM of the expected answer type and format. To find the precise causes of
these discrepancies, further analyses and experiments are necessary. It is interesting to note that the
integration of positional embeddings with a priority factor of 5.0 further enhanced the results obtained
from the new tree approach. The count of missing predictions indicates the number of questions
that remained unanswered due to the Gemini blocks previously described. The QASPER test set
comprises a total of 1,451 questions. A secondary test using the new tree structure and positional
embeddings showed significant outcome variations, particularly in the ’none’ category, with a 2-3%
deviation in the extractive category questioning the QASPER Answer F1 metric’s reliability for my
experiments. Despite deterministic clustering and text chunking operations, and setting the QA and
summarization prompts’ temperature on Gemini 1.0 Pro to 0.0 for reproducibility, inconsistencies in
Gemini’s response behavior suggest potential causes for these deviations. Further investigation is
needed to confirm this. Nonetheless, all tests with the new setup outperformed the original RAPTOR
method in F1-score for extractive and abstractive responses, indicating potential improvements,
pending validation with a more stable setup and possibly more insightful metrics.

6 Analysis

To analyse the effects of the new tree building approach let us take a look at the newly constructed
retrieval tree for the Cinderella narrative in figure 2 and compare it to the original one from figure 1.
As before the orange colored node is an artifically created node for visualization purposes. In the
new tree figure it directly leads to the newly created top root node, which contains a comprehensive
summary over the whole narrative including different parts of it, which seems accurate to me. Overall
the tree seems balanced and it displays a much deeper structure with more levels of abstraction
that can be utilized in the retrieval process. Taking a qualitative look at the responses generated by

7https://github.com/parthsarthi03/raptor
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the new versus the old tree approach, I’ve observed that the new one identifies more nuances and
provides a more comprehensive response than the original. For instance, when asked, "How did
Cinderella achieve her happy ending?" the new approach generated an answer that displayed a deeper
understanding of the prince’s role in the story, whereas the old approach, while correct, seemed
somewhat superficial. This observation suggests that the new tree structure offers a more detailed and
insightful analysis, enhancing the depth of response interpretation.

Figure 2: New RAPTOR tree for Cinderella story.

7 Conclusion

In the course of analyzing the current RAPTOR framework, I’ve compiled a series of improvement
suggestions, as outlined in table 1. The primary limitations of the existing RAPTOR approach include
the reliance on GMMs as the foundational clustering algorithm. This choice necessitates dimension-
ality reduction and typically results in the generation of flat tree structures. Furthermore, there is
a notable absence of soft clustering for standard document sizes and a suboptimal implementation
of sentence tokenization. Through my investigation, I found that agglomerative clustering, with
its inherent tree-like hierarchical structure, serves as an ideal basis for constructing the envisioned
RAPTOR retrieval tree. This method significantly simplifies the overall tree-building process, render-
ing the clustering component computationally negligible for document sizes typically encountered
in academic papers. Moreover, positional embeddings have demonstrated considerable utility in
capturing and conveying the structural nuances of documents, thereby enhancing the clustering
algorithm’s effectiveness. As a result of my work, there has been a comprehensive redesign of the
tree-building and clustering processes, leading to a significant simplification and computational
efficiency, particularly well-suited for textual applications. Qualitatively, this redesign facilitated the
creation of deeper, more balanced retrieval tree structures and fostered a more profound understanding
in the system’s responses. Quantitatively, it consistently surpassed the original approach in handling
both abstractive and extractive questions. However, the limitations of my project predominantly arise
from the quantitative experiments using the QASPER dataset. In these experiments, the new approach
exhibited performance declines in addressing yes/no questions and in determining “unanswerable“
queries. Moreover, the experiments demonstrated considerable variability, which poses challenges to
the reliability of the experiments precisely measuring possible performance enhancements. Generally,
the QASPER F1 metric with its strict token-based comparisons, does not seem to effectively gauge
the improved abstractive understanding of underlying documents in a retrieval system. Finally, given
the time constraints, my evaluation was limited to using only the QASPER dataset for NLP papers,
which restricts the generalizability of the findings across diverse datasets, contexts and different
metrics.

As avenues for future work, it would enhance the validity of my findings to conduct additional
experiments on varied datasets, such as those from medical, narrative, or legal fields, and to explore
smarter evaluation methodologies beyond token-based metrics, for example, employing LLMs as
model-based judges. Moreover, identifying and eliminating the causes behind the observed deviations
in the experiments is crucial for further validation of my results. Further experimentation with applied
hyperparameters in tree construction and positional embeddings could also be beneficial. Lastly,
there are numerous potential modifications and enhancements that could be explored to improve
the system. These include implementing proposed rotational position embeddings, exploring neural
clustering approaches, and investigating ways to realize soft clustering to create a retrieval DAG
instead of a tree. Additionally, enhancements on the retrieval side should be considered, including
reevaluating tree retrieval methods and learned retrieval methods. Implementing weights, potentially
through a neural approach, could further optimize retrieval performance and accuracy.
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8 Ethics Statement

Looking at the original RAPTOR paper I did not find any ethical considerations and the reviewers
for the ICLR conference did not raise a flag for a necessary ethics review of the paper. However,
when looking at the topic with a broader perspective, I could think of a few societal risks that
might arise from improved retrieval systems and RAG architectures in general. And I think it all
comes down to who uses this advanced technology and for what purposes it is used. Let us say
somebody builds a retrieval system with information about malicious activities, such as collections
with detailed instructions for committing cyber crimes. Or even just using collections of information
on cyber security to build a RAG retrieval system, but then using it for question and answering
to get instructions to exploit weaknesses of IT systems. This exploitation by malicious actors to
automate and maybe even scale harmful activities could provide a serious societal risk. Another
consequence of advanced RAG systems for society could be the cessation of workplaces. The better
RAG systems and LLMs generally become, the less knowledge workers might be needed in economy.
The increased efficiency of these systems could raise fears in society about losing jobs and AI as
being harmful or dangerous in general.

To address the issue of malicious intentions when using advanced RAG systems the connected LLMs
could have built-in detectors for ill-intended prompts and refuse to provide requested answers. But
this would only work in cases where malicious users do not control both the RAG system and the
LLM they use. To address the issue of general societal fears about advancements in AI one could
increase efforts to educate about real risks, opportunities and current technological possibilities, while
trying to reduce the spread of misinformation and unreasonable fears.
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A Cluster Visualization

Figure 3: RAPTOR clustering with GMMs on initial text chunks from a NLP paper.

This visualization was created following the example code provided by OpenAI for embedding
and cluster visualization8. As a preparatory step, I extracted the generated RAPTOR tree from an
NLP paper in the QASPER dataset and retrieved the assignments of leaf nodes to their parents.
With this mapping, I was able to modify the OpenAI script to visualize the clustering of RAPTOR
for the leaf nodes. Additionally, I adapted the dimensionality reduction to use Uniform Manifold
Approximation and Projection for Dimension Reduction (UMAP) from McInnes et al. (2020) to
replicate the approach used in the original RAPTOR paper, hoping that the 2D representation would
provide greater insight into what actually occurs during RAPTOR’s clustering. However, it should be
noted that the 2D representation, resulting from dimensionality reduction, is merely an abstraction of
the embeddings and clustering, and not an exact depiction of the underlying events.

8https://cookbook.openai.com/examples/clustering
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B Agglomerative Clustering Dendrogram

Figure 4: Dendrogram of Cinderella story using cosine distances and average linking.
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