
AllBERT: Mastering Multiple-Tasks Efficiently

Thierry Rietsch
Stanford University

rietsch@stanford.edu

Joe Serrano
Stanford University

jserran0@stanford.edu

Abstract

We present AllBERT, a set of versatile multi-task models designed to deliver
top performance on three natural language processing (NLP) tasks: sentiment
classification, paraphrase detection, and semantic textual similarity. Starting from
the BERTBase model, we made architectural modifications, then rigorously trained
the model by implementing regularization methods such as SMART and LNSR
to combat overfitting. We also introduced an original loss function for sentiment
analysis that outperformed traditional approaches. To address the increase in
parameters from single-task models, we integrated low-rank techniques such as
DoRA for efficient fine-tuning. We also created a single model variant trained on
multiple tasks, and found greater success in ensembling these variants.

1 Introduction

Multi-task learning (MTL) models in NLP improve performance and generalization by sharing
information across related tasks, especially when labeled data is scarce. Training on large corpora
enables MTL models to capture common linguistic features, leading to robust representations (Ruder
(2017)). Parameter sharing improves data efficiency, model compactness and provides implicit
regularization (Caruana (1997)).

Our goal was to maximise performance on all three tasks. To this end, we first found beneficial
architectural changes, then designed a single task model for each task, with full-model fine-tuning. We
added more sophisticated task-dependent regularization techniques and created a new loss function
for the sentiment task. After an extensive hyperparameter sweep, our results were excellent. However,
this method presents a challenge: creating one model per task triples the number of parameters. So
we implemented parameter-efficient fine-tuning methods and created a second variant with similar
performance but significantly fewer parameters. We then implemented a true multi-task model, a
BERTBase model with one set of parameters, but such a model faces challenges in training. Fine-
tuning the whole model for each task can lead to gradient conflicts, where improving one task
harms another. To address this, we used conflicting gradient mitigation methods and data sampling
techniques. Finally, as these three variants made different errors, we aggregated all three into a large
ensemble to further improve performance.

2 Related Work

A pre-trained BERT (Bidirectional Encoder Representations from Transformers) model has signifi-
cantly advanced NLP by producing output embeddings and a pooled token that can be specialized
for various tasks (Devlin et al. (2018)). The baseline approach involves adding a linear layer to the
pooled token for each task, but architectural variations exist. For instance, in semantic similarity
tasks, a Siamese network can be used to compute representations for individual sentences, with the
results compared using cosine similarity (Reimers and Gurevych (2019)).

Fine-tuning any chosen architecture can easily lead to overfitting, so careful choice of regularisation
is required. Weight decay (van Wieringen (2023)) is a common technique, and adversarial training
via SMART (Jiang et al. (2019)) or LNSR (Hua et al. (2023)) injects noise to improve robustness
and reduce overfitting. In multi-task learning, fine-tuning for different tasks can cause conflict and
different methods are used to reduce this conflict. Using separate weights for each task is costly in
terms of memory and computation. To address this, parameter-efficient fine-tuning methods such as
LoRA (Hu et al. (2021)) and DoRA (Liu et al. (2024)) introduce low-rank matrices to pre-trained
weights, providing comparable performance with a fraction of the parameters.

Stanford CS224N Natural Language Processing with Deep Learning

3 Approach

We start with the BERTBase model as described in Devlin et al. (2018). The BERT model architecture
starts with an embedding layer that includes token and position embeddings to convert the input
tokens into contextualized vectors. It then processes these embeddings through a stack of 12
Transformer (Vaswani et al. (2017)) encoder layers, each of which consists of a multi-head self-
attention mechanism and a feed-forward neural network, with layer normalization and residual
connections ensuring stability. The output of the model consists of the last hidden states for each token,
providing rich contextual representations, with the representation of the first token corresponding to
the [CLS] token. We extended this architecture by adding a task-specific head consisting of a linear
output layer. This model represents our baseline model and the starting point for all modifications.

3.1 Baseline and Variants

To determine the impact of various changes on our model, we first established baseline performance
through single-task training for each task, using the hyperparameters given in the assignment and
fine-tuning only the task-specific head of the base model. We note that while some baseline numbers
are available in the literature (Devlin et al. (2018), Munikar et al. (2019)), we recreated ours to more
consistently measure the delta performance provided by our modifications. Four additional models
were then developed and compared to the established baseline:

• AllBERT-SF: An ensemble of single-task models, each full-model fine-tuned.
• AllBERT-SD: An ensemble of single-task models, each fine-tuned using DoRA.
• AllBERT-M: A full-model fine-tuned using multi-task sampling / gradient techniques.
• AllBERT-A: An ensemble model combining AllBERT-SF, AllBERT-SD and AllBERT-M.

One motivation to build these models is to compare the performance of a multi-task model (AllBERT-
M) against an ensemble of single-task fine-tuned models (AllBERT-SF). Since ensembling three full
models together triples the parameters, we also researched the performance of a parameter-efficient
model (AllBERT-SD) for comparison. Finally, we investigated whether an ensemble of all the
previously mentioned models could further increase performance. Each of these variants incorporates
architectural and training improvements, which are described in detail below.

3.2 Architectural Improvements

We extended the baseline model by adding a dense layer to each task-specific head, comprising
a linear layer, a nonlinear activation function, and a dropout layer, placed before the final linear
output layer. This extension ensures that the dense pooling layer of the baseline model (partially
bypassed) is replicated, preventing conflicts between tasks from interfering with the final hidden layer.
Additionally, we enhanced the BERT model with segment embeddings to provide greater flexibility
in handling sentence pairs for semantic similarity and paraphrase detection tasks.

We explored Cosine Similarity for the Semantic Textual Similarity (STS) task using techniques from
Reimers and Gurevych (2019), but the results were unsatisfactory. To improve this, we developed
a hybrid approach. Instead of using the [CLS] token from concatenated sentences, we used all
embeddings from the final hidden layer. We split these embeddings back into their original sentence
segments, zeroed out the padding token embeddings, and averaged the remaining embeddings to
create two new [CLS] tokens. We then calculated the cosine similarity between these two tokens,
scaling the result to get the STS score. Mathematically, let h1 and h2 be the final hidden layer
embeddings for input sentences s1 and s2. Using mT () as the mean pooler and a1, a2 as the attention
masks for non-padding tokens, the score is given by

score = α
mT (h1 · a1) ·mT (h2 · a2)
∥mt(h1 · a1)∥∥mt(h2 · a2)∥

+ β (1)

where α and β scale and shift the cosine output to match the range of the corresponding labels.

We further implemented Heinsen Routing in our architecture but did not adopt it due to its lack of
performance improvement. For more details on those topics see Appendix A.1.

3.3 Training Improvements

Even with a strong architecture, effective training is crucial for good results. We used AdamW as the
optimizer with weight decay for regularization. For learning rate scheduling, we compared the effects

2

of the “Exponential” and “Cosine Annealing Warm Restarts” schedulers. Instead of Cross Entropy
(CE) for SST-5, we developed our own Ordinal Cross Entropy (OCE, see 3.3.2). For STS, we used
Mean Squared Error (MSE) and for QQP, Binary Cross Entropy (BCE). To enhance our scores, we
performed an extensive grid search over hyperparameters like learning rate, dropout rate, and weight
decay. Details are in Section 4.

3.3.1 Regularization: SMART and LNSR

While pre-training uses large data corpora, downstream tasks often rely on limited data, making
aggressive fine-tuning prone to overfitting, where small input changes cause large output variations.
To counter this, we implemented two adversarial regularization methods on our own: SMART and
LNSR. Adversarial regularization penalizes the loss function for large responses to injected noise.
SMART introduces noise at the input embeddings and employs Vanilla Bregman and Momentum
Bregman Proximal Point Optimization (VBPP / MBPP) to prevent aggressive updates during training.
LNSR, on the other hand, injects noise between BERT layers, enforcing stability across these layers.
For more details, see Section A.2.1.

SMART performed well on sentiment and paraphrase tasks. However, for the semantic similarity
task, where a linear layer regressor (y = Ax+ b) is used, SMART’s regularizing term becomes:

Rs =
1

2
max

∥x̃i−xi∥<ϵ
((Ax̃i + b)− (Ax+ b))

2
=

1

2
max

∥δ̃x∥<ϵ
(Aδx)

2

Here, δx = x̃i − xi = AT , meaning the regularizing effect on A is similar to weight decay.
Consequently, we opted for LNSR for this task.

LNSR regularizes by making higher BERT layers resilient to Gaussian noise injected into lower
layers, enforcing stability across intermediate layers. This method effectively improved scores for the
semantic similarity task.

3.3.2 Loss Function: Ordinal Cross Entropy Loss

We developed the Ordinal Cross Entropy Loss to tackle the challenges of sentiment classification,
which involves categorizing movie reviews into five ordered classes. Unlike typical classification
tasks, sentiment classification benefits from considering the distance between classes. For example,
predicting ’1’ (negative) when the true label is ’4’ (somewhat positive) is worse than predicting ’3’
(neutral). Our Ordinal Cross Entropy Loss accounts for this by penalizing predictions based on their
distance from the actual class, enhancing the model’s sensitivity to the ordinal nature of the data.

Mathematically, for classes {1, 2, . . . , C}, labels yi, predicted probabilities pij(θ) and a regularization
constant λ, the OCE loss for a batch of inputs xi where i = 1, . . . , N is given by:

Loce(θ) = −
N∑
i=1

 C∑
j=1

1(yi == j) log(pij(θ))− λ

C∑
j=1

pij(θ)|yi − j|

 (2)

Here, 1 is the indicator function, 1(x) = 1 if x is true (for algorithmic description see Appendix 1).
This approach is inspired by the ordinal log-loss function in Castagnos et al. (2022), but retains the
cross-entropy term and includes a tunable hyperparameter to balance the two components. Similar
concepts were also explored in Hou et al. (2017).

3.3.3 Parameter-Efficient Fine-Tuning: LoRA and DoRA

Because of the size of transformer-based models, we implemented two low-rank adaptation meth-
ods on our own: LoRA and DoRA. DoRA enhances LoRA by decomposing weight updates into
magnitude and direction components. It adjusts weights using a combination of low-rank matrices,
allowing for dynamic and fine-grained updates. This results in improved flexibility and slightly better
performance. For more details, see Section A.2.3.

3.3.4 Multi-Task Learning: Sampling Strategies / Conflicting Gradients

To train our multi-task model, we implemented several advanced techniques. We used two data-
sampling methods: Round-Robin-Sampling and Annealed-Sampling Stickland and Murray (2019).
To address conflicting gradients, we implemented PCGrad Yu et al. (2020) and utilized CAGrad Liu
et al. (2021). For a detailed description, see Section A.2.4.

3

4 Experiments

4.1 Data

We use the following data sets for the project. For the sentiment classification task, we used the
Stanford Sentiment Treebank (SST-5) Socher et al. (2013b) which consists of 11,855 single sentences
from movie reviews, each annotated with one of five sentiment labels. The Quora Question Pairs
(QQP) 1 dataset contains over 400,000 question pairs with binary labels indicating if the questions are
duplicates. This was used for the paraphrase detection task. Finally, for the semantic similarity task
we use the Stanford Textual Similarity (STS) Agirre et al. (2013) dataset. It includes 8,628 sentence
pairs, each rated on a scale from 0 to 5 to indicate their semantic similarity.

4.2 Evaluation Methods

To evaluate our models we use accuracy between the true and predicted labels for both the sentiment
task (accsst) and the paraphrase task (accqqp). For the semantic similarity task, we use Pearson
correlation (pearsst) of the true and predicted values. The average score is calculated as defined in 8.

4.3 Experimental Details

All our experiments have been run on one of the following NVIDIA GPUs: RTX 4090 (24GB), A100
(24GB) or H100 (80GB). The constant parameters over all experiments are a batch size of 64, 20
epochs and the usage of AdamW as optimizer with β1 = .9 and β2 = .999. All other parameters
have been adjusted based on the task and fine-tuning approach.

4.4 Results

In total, we ran more than 1000 experiments to test our architectural improvements and training
improvements and to find the best performing hyperparameters. The best scores of our models and
the baseline are shown in Table 1. A discussion of certain aspects is provided afterwards. All other
training metrics and configurations can be found in the code archive.

Model Training STS SST-5 QQP AVG # of Parameters
(Trainable/Total)

Baseline Single-Task 0.732 0.477 0.796 0.713 1.77M / 111.25M

AllBERT-SF Single-Task 0.903 0.562 0.913 0.809 333.77M / 333.77M

AllBERT-SD Single-Task 0.894 0.541 0.890 0.793 6.27M / 112.21M

AllBERT-M Multi-Task 0.877 0.547 0.889 0.791 111.25M / 111.25M

AllBERT-A - 0.907 0.573 0.913 0.813 449.20M / 556.91M

Table 1: Best dev scores per model variant

We submitted our best model, the AllBERT-A to the dev and test leaderboard on Gradescope. The
received test score and rank at time of submission are listed in 2.

Leaderboard STS SST-5 QQP AVG Rank
AllBERT-A Test 0.902 0.556 0.912 0.806 1

Table 2: Test leaderboard score and rank

4.4.1 Baseline / Hyperparameter Search

For the baseline, we performed single-task training with last-layer-only fine-tuning over 10 epochs,
using one dense layer for each task head. For the other fine-tuning approaches, the configurations are
summarized in Table 3. Across all fine-tuning methods, employing segment embeddings consistently
enhanced performance, particularly for sentiment analysis and paraphrasing tasks. For instance, in
the STS task, the best full-model fine-tuning configuration achieved a score of 0.903 with segment
embeddings compared to 0.884 without.

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

4

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

Task Learning
Rate

Weight
Decay Token Type Task Head

(Act., Drop.)
LR

Scheduler

Baseline

SST 1e-3 1e-6 Unpooled ReLU, 0.1 ✗

QQP 1e-3 1e-6 Unpooled Tanh, 0.3 ✗

STS 1e-3 1e-6 Unpooled Tanh, 0.3 ✗

Full-Model Fine-Tuning

SST 5e-5 1-e4 Pooled ✗ ✗

QQP 5e-5 1-e8 Pooled ✗ Exp., 0.9999

STS 5e-5 1-e8 Pooled Tanh, 0.3 ✗

DoRA Fine-Tuning

SST 1e-3 1e-1 Unpooled ReLU, 0.1 ✗

QQP 1e-3 1e-1 Unpooled ReLU, 0.3 Exp., 0.9999

STS 1e-3 1e-1 Unpooled Tanh, 0.3 Exp., 0.9999

Multi-Task Fine-Tuning

SST
QQP
STS

5e-5 1-e8 Unpooled
SST: ReLU, 01
QQP: Tanh, 0.3
STS: Tanh, 0.3

✗

Table 3: Fine-Tuning Hyperparameters

4.4.2 SMART / LNSR / Bregman

Regularizing with SMART and LNSR was crucial in enhancing scores across all fine-tuning methods.
SMART yielded better results for QQP and SST tasks, while LNSR excelled in the STS task. We
also experimented with Vanilla Bregman Proximal Point (VBPP) and Momentum Bregman Proximal
Point (MBPP) optimizations, finding that VBPP consistently outperformed MBPP. However, using
VBPP posed a memory consumption challenge, as it requires storing all data points between training
epochs to prevent aggressive updates. Detailed hyperparameters for these regularization methods are
listed in Tables 4 and 5.

Data Set Fine-Tuning λ T ϵ η σ2 VBPP µ

QQP DoRA 0.25 10 1e-6 1e-5 1e-5 0.5

QQP Full-Model 15 10 1e-6 1e-5 1e-5 0.9

SST-5 DoRA / Full-Model 15 10 1e-6 1e-5 1e-5 1

QQP, SST, STS Multi-Task 1.5 1 1e-6 1e-5 1e-5 0.9

Table 4: SMART and VBPP parameters for best performing models (SST and QQP)

Data Set Fine-Tuning λ B σ2 VBPP µ

STS DoRA 0.0005 12 1e-5 1.4

STS Full-Model 0.005 10 1e-5 0.9

Table 5: LNSR and VBPP parameters for best performing models (STS)

4.4.3 LoRA / DoRA

To compare LoRA and DoRA, we performed single-task training with full-model LoRA and DoRA
fine-tuning for each dataset. We kept the hyperparameters constant across data sets for full-model
training and constant for LoRA/DoRA training. As shown in Table 6, while full-model fine-tuning
achieved the highest scores, both LoRA and DoRA performed comparably well, using only about
2% of the parameters for training. This suggests that allowing the model to retain the core weights
learned from BERT, while only adjusting the additional weights in the form of low-rank matrices,
provides sufficient flexibility to successfully adapt to new data.

5

Fine-Tuning Variant STS SST-5 QQP # Trainable Param.
(per Task)

Full-Model 0.885 0.520 0.871 111.2M

LoRA [Rank 8, Alpha 8.0] 0.883 (-.002) 0.514 (-.006) 0.854 (-.017) 2.07M

DoRA [Rank 8, Alpha 8.0] 0.884 (-.001) 0.515 (-.005) 0.855 (-.016) 2.09M

Table 6: Fine-tuning comparison between Full-Model / LoRA / DoRA

In DoRA, the rank represents the size of the low-rank matrices, and α is a hyperparameter that
regularizes the adaptation to these learned low-rank matrices. To evaluate the optimal values, we
conducted a comprehensive experiment on the SST-5 and STS datasets, as shown in table 10. Unlike
the other experiments, this one was run for 10 epochs. For each data set, the configuration was
kept constant, with only the DoRA rank (DR-R) and α (DR-A) being adjusted. As DoRA slightly
out-performed LoRA, we used it for our parameter-efficient model.

4.4.4 Ordinal Cross Entropy Loss

The application of the Ordinal Cross Entropy Loss (OCE) helped to increase the performance on
SST-5. Using the best-performing configuration, the highest score reached 0.562 with OCE compared
to 0.540 with the standard Cross Entropy (CE) loss. We observed a similar pattern when running
OCE with a base configuration without regularization, though on a smaller scale. In this scenario,
OCE achieved a score of 0.526, whereas CE reached 0.523.

4.4.5 Multi-Task / Data Sampling / Conflicting Gradients

We experimented with various data sampling strategies, gradient conflict handlers, regularization
techniques and hyperparameter adjustments to train our multi-task model. Each experiment was run
for 20 epochs, with a maximum of 80 iterations per epoch, totaling 5,120 data points per epoch (80
iterations ×64 batch size). Table 7 shows that annealed sampling except for one case outperformed
round-robin sampling. While both methods performed similarly on STS and SST-5, they showed
significant differences on QQP. This is because round-robin sampling gives equal exposure to each
dataset, leading to underfitting on the larger QQP dataset. In contrast, annealed sampling adjusts
exposure based on dataset size, providing a balanced approach (see Table 8).

STS SST-5 QQP AVG
Annealed Sampling / CAGrad 0.888 0.524 0.886 0.785
Annealed Sampling / PCGrad 0.879 0.508 0.884 0.777

Annealed Sampling 0.885 0.517 0.884 0.781

Round Robin Sampling / CAGrad 0.895 0.521 0.863 0.777

Round Robin Sampling / PCGrad 0.888 0.513 0.852 0.769

Round Robin Sampling 0.890 0.515 0.860 0.773

Table 7: Comparison of data sampling and conflicting gradient handler techniques

STS SST-5 QQP
Annealed Sampling 489 580 3,731

Round Robin Sampling 1,600 1,600 1,600

Table 8: Data points seen in training run by sampling strategy

In mitigating conflicting gradients, CAGrad consistently outperformed PCGrad across different
data sampling strategies (see Table 7). This is likely due to CAGrad’s dynamic weighting, which
provides greater flexibility by explicitly modeling conflicts and adjusting the importance of each
task’s gradient. In contrast, PCGrad may lead to suboptimal updates as it doesn’t fully account for the
magnitude and direction of conflicts. However, the introduction of VBPP reduced the effectiveness
of both methods. Specifically, using annealed sampling with VBPP and CAGrad resulted in a lower

6

score (0.783) compared to using VBPP without CAGrad (0.790). We suspect that the regularization
effects of VBPP are negatively impacted by the conflicting gradient mitigation, leading to decreased
performance.

4.4.6 Ensembling AllBERT-A: Mixture of Best Models

We combined our existing models into a comprehensive ensemble, AllBERT-A, to leverage their
strengths and improve overall performance. Using a majority vote for SST and QQP, and a mean
prediction for STS, we selected the highest-scoring versions of each model. This approach aimed to
harness the diverse error patterns of individual models. Our ensemble, AllBERT-A, showed enhanced
performance on SST and STS but not for QQP, indicating the need for careful model selection based
on task-specific strengths. We therefore reverted for QQP to using the AllBERT-SF model.

To optimize ensemble inclusion, we examined multi-task models at various training epochs, recogniz-
ing that peak average scores don’t always align with optimal performance for all tasks. We found
that AllBERT-M at epoch 20 was better for SST, and at epoch 16 for STS, despite not having the
highest average scores. This highlighted the importance of considering more than just peak accu-
racy. For STS, we fine-tuned the ensemble by weighting predictions differently: AllBERT-SF eight
times, AllBERT-SD once, and AllBERT-M twice. Our final AllBERT-A included the top-performing
AllBERT-SF and AllBERT-SD models.

STS SST-5 QQP AVG
AllBERT-MBestAvg_EP10

Equal Mean STS, MajV. SST/QQP 0.903 0.569 0.904 0.808

Weighted Mean STS, MajV. SST, AllBERT-SF QQP 0.905 0.569 0.913 0.811

SST: AllBERT-MBestAvg_EP20 / STS: AllBERT-MBestAvg_EP16

Weighted Mean STS, MajV. SST, AllBERT-SF QQP 0.907 0.573 0.913 0.813

Table 9: Scores of AllBERT-A experiments

5 Analysis

In order to better understand our system (e.g. how it works, when it succeeds and when it fails), we
have examined the key features and outputs of our model. We give a qualitative evaluation for each
task, based on the AllBERT-SF model.

5.1 Sentiment Classification

While accuracy is a useful metric for the SST dataset, it ignores the fact that some answers are more
wrong than others. To see the extent of the errors, rather than just their presence, we visualised them
using a histogram showing the difference between the predicted class and the label. See figure 1(a).
The vast majority of errors were within one of the labels (had a difference of +1 or -1), indicating that
the model is actually much better than its accuracy would suggest. Given the difficulty a human has
in consistently reporting the same score, this suggests that the model’s performance may actually be
almost human. An example of non-human-like difficulty can be seen in the sentence “hilariously inept
and ridiculous”, where the label is 0 and the predicted score is 3. It appears that the model is confused
by the use of the words “inept” and “ridiculous” as comedic positives. To improve the current
model, either more specific embedding for movie reviews might help, or perhaps more advanced
pre-processing using something like recursive neural tensor processing (Socher et al. (2013a)).

5.2 Paraphrase Detection

The confusion matrix for the paraphrasing task is shown in Figure 1(b). The results are generally
very good, but while the errors are balanced between the two classes, the classes themselves are
slightly unbalanced. To get a sense of the problems the model has with the QQP dataset, we looked
at a handful of misclassified sentence pairs. The pair “how do i write an android application?” and
“how do i create an android application?” was labelled as a paraphrase, but was not predicted to be
one. Here the model clearly has difficulty recognizing the similarity of the words “write” and “create”
when restricted to programs.

7

5.3 Semantic Textual Similarity Analysis

We can visualize the model’s effectiveness using a scatter plot of the sentence pairs’ predicted
similarity versus labeled similarity. See figure 1(c). While the plot shows, as expected, a good
correlation between the two sets, it also shows some interesting outliers. The worst example is the
sentence pair “work into it slowly” versus “it seems to work”, which had a prediction of 2.86 but a
label of 0.0. It seems that the model is struggling with the fact that both sentences are short with very
similar words. One solution is to try to use word embeddings that do a better job of isolating different
meanings for a single word, as the word "work" here changes meaning from “go” to “function”.

(a) Histogram of SST errors (b) Confusion matrix for QQP (c) Scatter of STS predictions

6 Conclusion

In this report, we studied various methods to enhance the performance of BERT on three downstream
tasks. We experimented with different architectural modifications and training techniques. Key archi-
tectural improvements included replicating the pooling layer across tasks, using segment embeddings,
and developing an enhanced version of cosine similarity. Training enhancements involved the use
of SMART and LNSR regularization methods and the introduction of a novel loss function for the
sentiment task. Our confidence in the results stems from the extensive grid search for hyperparameters
that we employed.

We also implemented LoRA and DoRA, demonstrating that, with a similar increase in weight
size, DoRA outperformed LoRA. While the parameter efficiency of these methods is beneficial in
many contexts, it slightly reduced performance and was thus not included in the final model for
the leaderboard. Through improvements in architecture, the choice of regularization methods, and
comprehensive hyperparameter tuning, we achieved excellent performance. By ensembling our three
models into AllBERT-A, we even surpassed the performance of the AllBERT-SF model, which was
based on single-task full-model fine-tuning with all parameters replicated.

7 Ethics Statement

As our project focuses on fine-tuning the BERT model, we anticipate the primary ethical challenge to
be the reinforcement or amplification of biases present in the training data. While our model is not
intended for mission-critical applications, mitigating the risk of reinforcing racial or gender bias or
providing misleading responses remains important.

Since fine-tuning can potentially amplify existing biases, we conducted an experiment using sentiment
prediction. To evaluate this, we used ChatGPT-4 to generate two new movie review data sets (see
Section A.5). The content of the reviews in both data sets is identical, but one dataset uses names
commonly associated with white people, while the other uses names commonly associated with
people of color. In our initial experiment, we deliberately focused on positive reviews to determine if
the sentiment rating worsened when names associated with people of color were used.

We evaluated these data sets with our models to verify if the sentiment predictions for each review
remained consistent, regardless of the names used. Our results showed that the predictions were the
same across both data sets, indicating that our models did not exhibit increased bias through our
fine-tuning adjustments. Although this experiment is not conclusive, it provides an initial indication
that our adjustments have not exacerbated existing biases.

8 Key Information

Default Project / Mentor: Soumya Chatterjee / No external collaborators, external mentors / Project
not shared with any other class.

8

Both Thierry and Joe independently coded the base BERT model, with Joe noticing the improve-
ment from replicating the pooling layer and Thierry discovering the improvement from segment
embeddings. We shared the implementation and analysis of the SMART and LNSR algorithms. Joe
investigated the use of cosine similarity for semantic similarity, while Thierry designed the new loss
function for sentiment encoding and was responsible for the implementation of LoRA, DoRA and the
multi-task training regimes.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

R. Caruana. 1997. Multitask learning. CoRR, 28.

François Castagnos, Martin Mihelich, and Charles Dognin. 2022. A simple log-based loss function
for ordinal text classification. In Proceedings of the 29th International Conference on Computa-
tional Linguistics, pages 4604–4609, Gyeongju, Republic of Korea. International Committee on
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Le Hou, Chen-Ping Yu, and Dimitris Samaras. 2017. Squared earth mover’s distance-based loss for
training deep neural networks.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models.

Hang Hua, Xingjian Li, Dejing Dou, Cheng-Zhong Xu, and Jiebo Luo. 2023. Improving pretrained
language model fine-tuning with noise stability regularization. IEEE Transactions on Neural
Networks and Learning Systems, page 1–15.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
SMART: robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. CoRR, abs/1911.03437.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. 2021. Conflict-averse gradient
descent for multi-task learning. CoRR, abs/2110.14048.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-decomposed low-rank adaptation.

Manish Munikar, Sushil Shakya, and Aakash Shrestha. 2019. Fine-grained sentiment classification
using bert.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

Sebastian Ruder. 2017. An overview of multi-task learning in deep neural networks.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A.Y. Ng, and C. Potts. 2013a. Recursive
deep models for semantic compositionality over a sentiment treebank.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. 2013b. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA. Association for Computational
Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. BERT and pals: Projected attention layers for efficient
adaptation in multi-task learning. CoRR, abs/1902.02671.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. CoRR, abs/1706.03762.

9

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.1023/A:1007379606734
https://aclanthology.org/2022.coling-1.407
https://aclanthology.org/2022.coling-1.407
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1611.05916
http://arxiv.org/abs/1611.05916
http://arxiv.org/abs/2106.09685
https://doi.org/10.1109/tnnls.2023.3330926
https://doi.org/10.1109/tnnls.2023.3330926
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/2110.14048
http://arxiv.org/abs/2110.14048
http://arxiv.org/abs/2402.09353
http://arxiv.org/abs/1910.03474
http://arxiv.org/abs/1910.03474
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1706.05098
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1902.02671
http://arxiv.org/abs/1706.03762

Wessel N. van Wieringen. 2023. Lecture notes on ridge regression.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

A Appendix

A.1 Additional Architectural Details

A.1.1 Heinsen Routing

Heinsen Routing is an algorithm designed to process sequences of vectors, such as the outputs from
each BERT layer, and generate a new sequence with a specified length and size. Motivated by its
current best score on the SST-5 dataset, we decided to give it a try. The algorithm is an extended
expectation-maximization (EM) algorithm that operates through three iterative steps: the Expectation
Step (E-Step) to calculate the probabilities of assigning input vectors to output vectors, the Data
Step (D-Step) to determine how much data from each input vector should be used or ignored, and
the Maximization Step (M-Step) to update the output vectors by maximizing their usefulness. This
iterative process refines the output vectors to better represent the input data. By leveraging the output
from each BERT layer, we assume Heinsen Routing can summarize and enhance the information
captured at different BERT layers, resulting in more accurate and efficient representations. For the
implementation, we relied on the code made available by the paper at 2 and 3.

Our attempts to replicate the improvements with Heinsen Routing were unsuccessful. Single-task
training (without any further improvements) on the SST-5 dataset yielded a best score of 0.515 with
Heinsen Routing compared to 0.520 without it. Notably, the 0.515 score was achieved in the first
epoch, after which performance deteriorated in each subsequent epoch. We hypothesise that the lack
of improvement could be due to the different base models used in training (Heinsen Routing used
RoBERTa).

A.1.2 Cosine Similarity

Semantic Textual Similarity (STS) aims to assign a score to a pair of sentences indicating the degree
of similarity between them. The basic method for determining the STS score is to concatenate the
sentences at the BERT input and then use the resulting [CLS] pooling token as input to the task head.
This technique, known as cross-encoding, was introduced in the original BERT paper. An alternative
method, proposed by Reimers and Gurevych (2019), processes each sentence independently with
BERT, then calculates the cosine similarity of the two output pooling tokens. This value is scaled to
give the final STS score. This approach is also called bi-encoding.

Let B(s) be the resulting pooled token output from BERT for sentence s. The bi-encoding method
gives the result:

score = a
B(s1) ·B(s2)

∥B(s1)∥∥B(s2)∥
+ b (3)

where a and b scale and shift the cosine output to match the range of the corresponding labels.
Denoting s1 + s2 as the concatenation of the two sentences, cross-encoding gives the result:

score = A ·B(s1 + s2) + b (4)

The two approaches have different strengths. The bi-encoding strategy creates a signature for each
sentence, making it easier to compare with other sentences, while the cross-encoding method learns
relationships between sentences, allowing it to better estimate their true similarity.

We have developed a hybrid of these two approaches. We start with cross-encoding, where the
sentence pair generates one BERT output. Instead of using the [CLS] token as the output, we use all
the hidden layer embeddings. We split the outputs corresponding to the original two sentences and
set the embeddings corresponding to the padding tokens to zero. We then average each of the two
segments to obtain two values, which are used as the new [CLS] tokens. Finally, we compute the
cosine similarity of these two newly formed [CLS] tokens and use its scaled value as the STS score.
In equation form, let h1 and h2 be the last hidden layer of the BERT model with input sentences s1
and s2. Let mT (h) be the mean pooler over time, so that mT (h) is a vector, and let a1 and a2 be the

2https://github.com/glassroom/heinsen_routing
3https://github.com/glassroom/heinsen_routing_2022_paper

10

http://arxiv.org/abs/1509.09169
http://arxiv.org/abs/2001.06782
https://github.com/glassroom/heinsen_routing
https://github.com/glassroom/heinsen_routing_2022_paper

attention masks denoting the non-padding and padding tokens. Then the score from this method is
given by:

score = a
mt(h1 · a1) ·mt(h2 · a2)
∥mt(h1 · a1)∥∥mt(h2 · a2)∥

+ b (5)

and a and b are as defined in 3.

To evaluate performance effects, we tested three algorithms on the STS task: classic BERT baseline,
bi-encoder siamese network from Reimers and Gurevych (2019), and our improved cosine similarity.
The three models were trained for 20 epochs using the hyperparameters from the project handout
(learning rate of 1 × 10−5, dropout probability of 0.3, weight decay of 1 × 10−4). The baseline
achieved a correlation of 0.878, while the bi-encoder achieved 0.504. The improved cosine similarity
cross-encoder achieved a correlation of 0.885. Since we had already achieved high scores using other
techniques, we did not continue to pursue Cosine Similarity.

A.2 Additional Training Details

A.2.1 Regularization: SMART

While pre-training uses large corpora of data, downstream tasks may rely on more limited data.
Aggressive fine-tuning can lead to overfitting, where the model fails to generalize to unseen data.
Overfitting can be characterized by small changes in the input causing large changes in the output.
The SMART tuning algorithm aims to mitigate this by penalizing parameter selections that lead to
such instability. It measures this by injecting a small amount of noise into the input and observing
the resulting output changes. This type of training is known as “adversarial” training, as it attempts
to “challenge” the model by modifying the input data. Specifically, SMART uses a “smoothness-
inducing” term of the form

Rs =
1

N

N∑
i=1

max
∥x̃i−xi∥<ϵ

ls(f(x̃i; θ), f(xi; θ)) (6)

where ℓs is the function, usually either Mean Squared Error (MSE) or Symmetric Kullback-Leibler
(SKL) divergence, that characterizes the change in the two terms. To prevent aggressive updates,
SMART adds a Bregman penalty of the form

B =
1

N

N∑
i=1

ls(f(xi; θ), f(xi; θt)) (7)

where θt produces the output to stay near, θ is the parameter set to be optimized and ℓs is as in Eq. 6.
Taken together, these two terms try to alter the gradient used in the descent algorithm to seek a θ with
an output that is smooth (less overfitting) and similar to the previous output. The version described
here is the Vanilla Bregman Proximal Point (VBPP) method. θt can also be calculated by momentum
to give the Momentum Bregman Proximal Point (MBPP) method.

When SMART is used on a regressor with a last linear layer y = Ax+ b where A ∈ R1×h, as in the
case of Semantic Similarity, the regularizing term becomes

Rs =
1

2
max

∥x̃i−xi∥<ϵ
((Ax̃i + b)− (Ax+ b))

2
=

1

2
max

∥δ̃x∥<ϵ
(Aδx)

2

From the constraint, we can deduce that δx = x̃i − xi = AT , which means that in this case, the
regularizing effect on A is the same as weight decay.

We implemented SMART, as well as the Vanilla Bregman Proximal Point (VBPP) and the Momentum
Bregman Proximal Point (MBPP) optimization, on our own.

A.2.2 Regularization: LNSR

Another adversarial training algorithm is Layerwise Noise Stability Regularization (LNSR). While
SMART restricts itself to injecting noise at the input embeddings and measuring the effects at the
output, LNSR imposes an additional optimization term that forces higher layers of BERT to be
resilient to Gaussian noise injected into lower layers. It features a novel layer-wise regularization that
explicitly enforces noise stability in middle layers. The regularization term is conceptually simpler
than SMART, relying on standard mean squared error induced by noise injected at lower levels. Given

11

an injection at layer b of an L-layer model, a measurement at layer r ≥ b, a constant λb,r, an input to
layer b of x perturbed by the injected noise to x̃, the regularization termRLNRS is augmented by

Raug(x) =

L∑
i=b

λb,r∥f b,r(x)− f b,r(x̃)∥2.

Here, f b,r represents the portion of the model that maps inputs at layer b to outputs at layer r. After
augmenting the regularization term for each x in the batch, the gradient with respect to the parameters
can be calculated.

Compared to SMART, LNSR measures the effects of noise more broadly. While SMART only
assesses the impact of noise at the output, LNSR regularizes noise at the interior layers. Its cost
function, MSE, is also simpler than the KL-divergence used in SMART. However, the significance of
interior noise stability is less clear than stability at the output. Additionally, LNSR involves tuning
more constants, as each input-output layer gain can be individually adjusted.

We implemented LNSR in its standard version on our own.

A.2.3 Parameter-Efficient Fine-Tuning

Because of the size of transformer based models, we integrated two methods of low-rank adaptation.
LoRA Hu et al. (2021) is the more basic idea. A transformer based system has many linear operations
performing matrix multiply like in the calculation of keys, queries, and values in attention. For
example, the query term in head i is formed from the queries Q and the weight matrix WQ

i . Full
parameter retraining can be viewed as finding a matrix ∆WQ

i so that the sum

W ′ = W +∆W

is a more optimal weight matrix. To reduce the number of parameters learned, LoRA introduces two
low-rank matrices A and B such that

W ′ = W +∆W = W +AB

and the rank of both A and B are both much smaller than the rank of W . This greatly reduces the
number of parameters to learn with only a small loss in performance versus using a full-rank matrix
for ∆W .

The DoRA Liu et al. (2024) algorithm improves on LoRA by decomposing the update matrix into
magnitude and direction components. Specifically, this takes the form

W ′ = m
V +∆V

∥V +∆V ∥
= m

W0 +AB

∥W0 +AB∥
where ∆V is the incremental directional update learned from multiplying A and B, and m is a
trainable parameter controlling the magnitude of the direction vectors. The change in the training
method allows DoRA to attain slightly better performance than DoRA while altering almost the same
number of parameters.

A.2.4 Multi-Task Learning: Sampling Strategies / Conflicting Gradients

In multi-task model training, data sampling methods significantly impact performance Stickland and
Murray (2019). The paper discusses ’round-robin sampling,’ which cycles through tasks in a fixed
order. This approach can lead to overfitting on smaller datasets and under-training on larger ones, as
it treats all tasks equally, regardless of dataset size. To address this, the paper proposes ’annealed
sampling,’ a strategy that adjusts sampling probabilities to balance training across tasks of different
sizes. Annealed sampling begins by sampling data proportionally to the size of each task’s dataset
using

pi ∝ Nα
i ,

where pi is the probability of selecting task i, Ni is the number of training examples for task i, and α
controls the disparity. Over time, α is dynamically adjusted according to

α = 1− 0.8
e− 1

E − 1
,

where e is the current epoch and E is the total number of epochs. This transition ensures a gradual shift
from size-proportional sampling to equal sampling, preventing smaller tasks from being neglected as
training progresses. We implemented both strategies on our own.

12

A further key challenge in optimising multi-task models is the presence of conflicting gradients,
dominating gradients and high curvature introduced by reducing the loss for different tasks (Yu et al.
(2020)). To tackle this problem, we tested two different approaches, PCGrad and CAGrad.

Project Conflicting Gradients (PCGrad, Yu et al. (2020)) and Conflict Averse Gradient Descent
(CAGrad, Liu et al. (2021)) are techniques designed to address conflicting gradients in multi-task
learning. PCGrad resolves conflicts by projecting one gradient onto the normal plane of another.
For gradients gi and gj from tasks Ti and Tj , respectively, it calculates their cosine similarity. If the
similarity is negative, indicating a conflict, PCGrad adjusts gi to

gPC
i = gi −

gi · gj
∥gj∥2

gj ,

making gPC
i orthogonal to gj , thus preventing interference. CAGrad, on the other hand, dynamically

adjusts the combination of gradients from multiple tasks by combining them into

G =
∑
i

λigi,

where λi are weights optimized to minimize conflicts. This optimization aligns G with a desired
direction while reducing the negative impact of any conflicting gradients, ensuring a conflict-averse
update. We implemented PCGrad ourselves and used the CAGrad implementation from 4 5.

A.3 Ordinal Cross Entropy Loss

Algorithm 1 Ordinal Cross Entropy Loss

Require: input: Predicted labels
Require: target: True labels
Require: n_classes: Number of possible classes
Require: weight: Rescaling weight for cross_entropy
Require: λ: Weight for the distance penalty

1: ce_loss← cross_entropy(input, target, weight)
2: predicted_probs← softmax(input)
3: class_indices← array_range(n_classes)
4: distance← absolute(class_indices - true_class)
5: distance_penalty← sum(predicted_probs * distance)
6: loss← ce_loss + λ * distance_penalty
7: return loss

A.4 DoRA

DoRA Parameters SST STS
DR-R 8, DR-A 16.0 0.512 -

DR-R 8, DR-A 8.0 0.514 0.867
DR-R 8, DR-A 4.0 0.505 0.866

DR-R 8, DR-A 2.0 0.504 0.866

DR-R 8, DR-A 1.0 0.504 0.863

DR-R 4, DR-A 8.0 0.509 0.866

DR-R 4, DR-A 4.0 0.503 0.863

DR-R 4, DR-A 2.0 0.501 0.864

DR-R 4, DR-A 1.0 0.507 0.865

Table 10: Dev scores for SST-5 / STS with different DoRA ranks and alphas

4https://github.com/Cranial-XIX/CAGrad
5https://github.com/Cranial-XIX/FAMO

13

https://github.com/Cranial-XIX/CAGrad
https://github.com/Cranial-XIX/FAMO

A.5 Ethics - Movie Review Data Sets

id Id Sentence Sentiment
0 c1c6... John gave a brilliant performance , making the movie an absolute delight . 4

1 5ac0... Emily ’ s role was captivating and truly added depth to the story . 3

2 eed9... Michael ’ s portrayal of the character was both nuanced and compelling . 4

3 a442... Jessica ’ s performance brought an emotional richness that was unforgettable . 3

4 6920... David ’ s interpretation of the role was simply mesmerizing . 4

Table 11: Excerpt from data set with names commonly associated with white people

Id Sentence Sentiment
0 c1c6... Jamal gave a brilliant performance , making the movie an absolute delight . 4

1 5ac0... Ebony ’ s role was captivating and truly added depth to the story . 3

2 eed9... Malik ’ s portrayal of the character was both nuanced and compelling . 4

3 a442... Jasmine ’ s performance brought an emotional richness that was unforgettable . 3

4 6920... DeShawn ’ s interpretation of the role was simply mesmerizing . 4

Table 12: Excerpt from data set with names commonly associated with people of color

A.6 Evaluation Methods

avg_score =
1

3

(
accqqp + accsts +

(
1

2
+

1

2
∗ pearsst

))
(8)

14

	Introduction
	Related Work
	Approach
	Baseline and Variants
	Architectural Improvements
	Training Improvements
	Regularization: SMART and LNSR
	Loss Function: Ordinal Cross Entropy Loss
	Parameter-Efficient Fine-Tuning: LoRA and DoRA
	Multi-Task Learning: Sampling Strategies / Conflicting Gradients

	Experiments
	Data
	Evaluation Methods
	Experimental Details
	Results
	Baseline / Hyperparameter Search
	SMART / LNSR / Bregman
	LoRA / DoRA
	Ordinal Cross Entropy Loss
	Multi-Task / Data Sampling / Conflicting Gradients
	Ensembling AllBERT-A: Mixture of Best Models

	Analysis
	Sentiment Classification
	Paraphrase Detection
	Semantic Textual Similarity Analysis

	Conclusion
	Ethics Statement
	Key Information
	Appendix
	Additional Architectural Details
	Heinsen Routing
	Cosine Similarity

	Additional Training Details
	Regularization: SMART
	Regularization: LNSR
	Parameter-Efficient Fine-Tuning
	Multi-Task Learning: Sampling Strategies / Conflicting Gradients

	Ordinal Cross Entropy Loss
	DoRA
	Ethics - Movie Review Data Sets
	Evaluation Methods

