
Tuning Up BERT: A Symphony of Strategies for
Downstream Tasks

Stanford CS224N Default Project

Nick Soulounias
Department of Computer Science

Stanford University
s0ul@stanford.edu

Abstract

This project explores the enhancement of foundation models like BERT, which are
extensively pretrained primarily through self-supervision and are adaptable across
various tasks through transfer learning. We focus on improving BERT’s perfor-
mance for three downstream tasks: sentiment analysis, paraphrase detection, and
semantic textual similarity. Our results indicate that cross-encoding improves the
performance for paraphrase detection and semantic textual similarity significantly
and that for the latter task multi-task learning further boosts performance. For the
challenging sentiment analysis task, we observe significant overfitting, which we
mitigate to some extent by generating synthetic data with GPT-3.5 and incorpo-
rating a SMART regularizer. Finally, we ensemble our multi-task and single-task
models to achieve the 1st place in the dev set leaderboard with an overall score of
0.803 and a test score of 0.793.

1 Key Information to include

Mentor: Ryan Li • External Collaborators: No • Sharing project: No

2 Introduction

In recent years, the field of Natural Language Processing (NLP) has been profoundly transformed
by the advent of foundation models. These large language models, such as the BERT Devlin et al.
(2018), have set new standards for a range of NLP tasks due to their deep contextual understanding
and adaptability. Extensive pretraining on massive and diverse corpora allows BERT to develop a
broad understanding of language dynamics before being fine-tuned to specific tasks. This approach
not only improves model performance but also significantly reduces the need for task-specific data,
making high-quality NLP capabilities more accessible. Our project taps into this potential by adapting
the BERT model for sentiment classification, paraphrase detection, and semantic textual similarity.

In this paper, we investigate both single-task and multi-task learning, explore different techniques for
sentence-pair tasks, mitigate overfitting by generating synthetic data and optimizing a regularized
optimization objective, compare different task sampling strategies for the multi-task problem setting
and implement model ensembling to further improve performance. Through iterative development
based on our experiments and insights, our final model achieves a significant performance boost for
all three downstream tasks compared to the baseline.

3 Related Work

Devlin et al. (2018) introduced the BERT model architecture and proposed handling sentence pairs
through a technique known as cross-encoding. In this setup, BERT processes a pair of sentences as a

Stanford CS224N Natural Language Processing with Deep Learning



single input, separated by a special token ([SEP]), which enables the model to jointly analyze the
sentences. Reimers and Gurevych (2019) proposed a more compute-efficient alternative for handling
sentence pairs by utilizing a siamese network structure, significantly reducing the required time and
computational resources by generating sentence embeddings that can be compared using cosine
similarity.

Jiang et al. (2019) addressed issues of model overfitting and knowledge forgetting when fine-tuning
pretrained language models like BERT and RoBERTa on relatively small downstream tasks. They
introduced a regularization penalty to ensure the model’s outputs do not drastically change with
small perturbations in the input and employed a trust-region method to prevent aggressive updates,
enhancing performance across multiple NLP benchmarks.

Stickland and Murray (2019) tackled the challenges of multitask learning when dealing with tasks of
varying dataset sizes, noting that smaller datasets often lead to model overfitting, while larger datasets
may result in underfitting. They developed a method called annealed sampling, which adjusts the
probabilities for selecting tasks based on their dataset sizes and strategically introduces tasks during
the training process to optimize learning outcomes.

Li et al. (2023) explored the generation of synthetic data using large language models (LLMs) for text
classification tasks, assessing the efficacy of this data in training models like BERT and RoBERTa.
Their research indicates that while synthetic data can partially substitute real data in training scenarios,
its effectiveness varies significantly with the task’s nature, particularly in terms of subjectivity.

Drawing inspiration from these works, our project seeks to enhance the capabilities of BERT across
three specific downstream tasks, aiming to significantly refine its adaptability and accuracy in diverse
NLP applications.

4 Approach

4.1 MinBERT Model Architecture

Figure 1: The architecture of the
minBERT base model

Figure 2: The embeddings for single-sentence inputs.

Figure 3: The embeddings for sentence-pair inputs.

The minBERT model is a minimal implementation of the BERT encoder-only Transformer Devlin
et al. (2018). The input sentence is tokenized with a WordPiece tokenizer Wu et al. (2016) with
a vocabulary of 30,000 tokens. The tokenizer adds a special [CLS] token at the beginning of the
sentence and a special [SEP] token at the end. The output is a list of token ids with a maximum length
of 512 and special [PAD] tokens appended if necessary after the last [SEP] token. Word pieces that
are not included in the vocabulary are tokenized as the [UNK] special token.

The model consists of an embedding layer, followed by 12 Transformer layers (Fig. 1). The
embedding layer takes as input a sequence of tokens ids and maps each of the tokens to a 768-
dimensional vector. This representation is obtained by summing the corresponding learned token

2



embeddings, the absolute position embeddings and the learned segment embeddings, which are
relevant only when tokenizing sentence pairs for cross-encoding (Fig. 2). The embeddings are
normalized with layer normalization and regularized by applying dropout.

Each transformer layer consists of two sub-layer modules, multi-head attention and the feed-forward
network. Multi-head attention allows for each token to attend to multiple representations of any
token in the sequence, other than the [PAD] ones, and update its information. The feedforward
network applies a linear transformation to every token representation with a GeLU activation function,
followed by another linear transformation. Each sub-layer employs a residual connection, followed
by dropout regularization and layer normalization.

Given that the model is fine-tuned for three tasks, we add a task-specific head per task, and use
the output embedding of the [CLS] token as the input for every head. For the 5-way sentiment
classification task, the task-specific head is a linear layer that outputs 5 logits. During training,
we minimize the cross-entropy loss between the predictions and the ground-truth labels. For the
paraphrase detection and the semantic contextual similarity tasks, which are both sentence-pair tasks,
we consider both a bi-encoding and a cross-encoding approach and differentiate the task-specific
head architecture accordingly.

4.2 Bi-encoding, Cross-encoding

For both the semantic textual similarity and paraphrase detection tasks, the model’s input is a sentence-
pair. Our initial implementation of minBERT was limited to to single-sentence inputs. To this end,
we consider two strategies to extend the model for the sentence-pair tasks: bi-encoding Reimers and
Gurevych (2019) and cross-encoding Devlin et al. (2018).

The bi-encoding approach fuses the information of the two sentences after they have been indepen-
dently processed by the base BERT model. Specifically, we obtain for each sentence the [CLS] output
and apply a linear projection to an embedding space with the same dimensionality. We compute
the cosine similarity between the embeddings of the two sentences. For the paraphrase task, if we
apply the sigmoid function to the cosine similarity score we get the probability that the sentences
are a paraphrase of each other and we minimize the binary cross-entropy loss between the predicted
logits and the ground-truth labels. For the semantic textual similarity score, we scale the cosine
similarity score in the [0, 5] range and minimize the mean squared error between the predicted and
the ground-truth score.

Cross-encoding does not fuse the information of the two sentences after processing them individually.
Instead the two sentences are tokenized together and an intermediate special [SEP] token is added
between them. Furthermore, the appropriate learned segment embedding is used in the embedding
layer depending on whether a token belongs in the first or the second sentence (Fig. 3). This
approach enables tokens to attend to information from both sentences and, as a result, the [CLS]
output embedding is a representation of the sentence-pair. For the paraphrase detection head, the task-
specific head contains a linear projection to 2 logits. By applying the softmax function to these logits,
we can obtain the probabilities that the sentence-pair is a paraphrase or not. We optimize the cross-
entropy loss between the predicted logits and the ground-truth labels during training. For the semantic
textual similarity task, we apply a linear projection which outputs the predicted score. During training,
we minimize the mean squared error between the predicted and the ground-truth scores, as previously.
We clip the predicted scores to be within the [0, 5] range only as a post-processing step during
evaluation.

4.3 Synthetic data generation

When minimizing the training loss for the SST-5 dataset, the loss on the development holdout set first
decreases and then increases, indicating overfitting on the training set. Collecting new data could
mitigate this, but manually assessing and labeling movie reviews for sentiment analysis requires
significant human effort. Instead, autoregressive large language models like GPT can generate
synthetic data in a scalable way.

Initially, we prompted the GPT model to generate both a movie review sentence and the appropriate
sentiment label. However, to ensure the synthetic data’s usefulness, the model’s assigned labels should
align with the labels of the SST-5 annotators. We tested the most capable GPT model, GPT-4 Turbo,

3



on the SST-5 development set and found its accuracy to be only 0.548. Preliminary investigations
for GPT-3.5 Turbo and GPT-4o on a subset of the development set indicated a further decrease in
performance. This low accuracy suggests a misalignment with the SST-5 dataset annotators, leading
us to explore other options.

Fine-grained sentiment classification can be challenging due to noisy labels, but paraphrasing a given
movie review is substantially easier. We qualitatively investigated paraphrased sentences generated by
GPT-3.5 Turbo and observed high quality, with minimal overlap in words with the original sentences.
We prompted the model to maintain the same sentiment in the paraphrased sentence and assign
the same label. Consequently, we were able to use GPT-3.5 Turbo, which is 10x cheaper than
GPT-4 Turbo, to generate a high-quality synthetic dataset with 100K new sentences, whose labels are
consistent with the real data.

4.4 SMART Regularization

Overtraining on the SST-5 dataset leads to overfitting on a training set with noisy labels and poor
generalization on the holdout development set. To this end, we investigate whether finetuning
with regularized optimization can improve the results. Specifically, we incorporate the Smoothness
Inducing Adversarial Regularization technique(SMART) Jiang et al. (2019) to our optimization
procedure. SMART aims to keep the model’s output consistent when small perturbations are applied
to the embeddings from the first layer of the language model, thereby improving the model’s ability
to generalize to unseen datapoints.

Concretely, the optimization objective, which we aim to minimize, includes a weighted smoothness-
inducing adversarial regularization loss Rs(θ) in addition to the standard task-specific loss function
L(θ):

θ∗ = argmin
θ

L(θ) + λsRs(θ)

where λs > 0 is a hyperparameter and the smoothness-inducing regularizer Rs(θ) is defined as:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

l(f(x̃i; θ), f(xi; θ))

The number of data point of the target task is denoted as n, xi and x̃i correspond to the embeddings
and the perturbed embeddings of the i-th datapoint, respectively, ϵ is a hyperparameter, and l is
defined as the symmetric KL-divergence for the sentiment classification and the paraphrase detection
tasks and as the mean-square error for the semantic textual similarity task. The computation of Rs(θ)
involves a maximization problem, which is solved by projected gradient ascent with a step-size η
hyperparameter. We note that in the original paper, the authors also included a trust-region-type
regularization named Bregman Proximal Point Optimization, which we omit.

4.5 Multitask Learning

Multi-task learning optimizes for all three downstream tasks simultaneously. The base model layers
are shared across tasks, while the heads are task-specific. For each parameter update step we select
one task randomly, sample a batch from the corresponding dataset and minimize the appropriate loss.
We consider two strategies to select the tasks, uniform sampling and annealed sampling.

Uniform sampling assigns the same probability to every task, i.e. pi = 1
3 . Given that different tasks

may have distinct optimal parameters, optimizing for one task for multiple gradient descent steps
may lead to a suboptimal subspace in the parameter landscape for the other tasks and escaping that
subspace may prove challenging. Thus, this sampling strategy does not prioritize one task over
another in order to learn a representation suitable for all three downstream tasks.

The main motivation behind annealed sampling Stickland and Murray (2019) is the significant
difference between dataset sizes. Uniform sampling exhausts the smaller datasets while having
processed only a small subset of the larger ones. Our hypothesis was that this could lead to overfitting
on the data-poor tasks, while undertraining on the data-rich ones. Annealed sampling addresses this
issue by prioritizing tasks with more data. Specifically, task i is sampled with probability pi, such

4



that:
pi ∝ N

1−0.8 e−1
E−1

i

where Ni is the dataset size, e the current epoch and E the total number of epochs. We consider
the generated synthetic data for the SST-5 dataset as a form of data augmentation on the original
sentences of the dataset that are paraphrased, and thus Ni always corresponds to the number of real
datapoints in the dataset. With annealed sampling, data-rich tasks are selected more often during the
first epochs and with more equal probability towards the end of training.

5 Experiments

5.1 Data & Evaluation

We finetune and evaluate the model’s downstream performance using three datasets. The Stanford
Sentiment Treebank Dataset (SST-5) Socher et al. (2013) consists of 11,855 phrases extracted from
Rotten Tomatoes movie reviews. Each phrase is labelled as negative, somewhat negative, neutral,
somewhat positive, or positive. The Quora Question Pair Dataset (QQP) Fernando and Stevenson
(2008) is used for paraphrase detection and consists of 404,298 two-sentence question pairs that are
labelled as either a paraphrase or not. The SemEVAL STS Benchmark Dataset (STS) Agirre et al.
(2013) consists of 8,628 two-sentence pairs of varying similarity on a scale from 0 (unrelated) to 5
(equivalent meaning).

When evaluating the performance of the model on the SST-5 and QQP datasets, we report the accuracy.
For the STS dataset, we use the Pearson correlation and the overall score is computed as the average
between the accuracies and the normalized Pearson correlation between 0 and 1.

5.2 Experimental details

Throughout our experiments, we set the dropout probability to 0.3 and select the batch size to be
16. All models were trained using the implemented AdamW optimizer with a learning rate of 1e-5
and coefficient parameters (β1, β2) = (0.9, 0.999) with no weight decay applied. In the single-task
setting, we train the model for the paraphrase detection task for 25 epochs and 2500 parameter update
steps per epoch. For the sentiment classification task and the semantic textual similarity task, the
model is trained for 150 epochs with 50 parameter steps per epoch. In the multi-task setting, all
the models are trained for 25 epochs with 1000 parameter update steps per epoch. Each model is
evaluated on the holdout development set once per epoch and we save the parameters that attained
the best score. All the methods that were described in the previous section were implemented from
scratch without using any external libraries.

5.3 Results

5.3.1 Sentence-pair encoding

Dev QQP Dev STS
Sentence-pair Encoding Accuracy Pearson Correlation

Bi-encoding 0.605 0.544
Cross-encoding 0.905 0.896

Table 1: The dev-set results for bi-encoding and cross-encoding sentence-pairs.

In our baseline implementation for the sentence-pair tasks we followed the bi-encoding strategy
proposed by Reimers and Gurevych (2019), which only required minimal changes in the provided
codebase. However, as the results in Table 1 indicate, the cross-encoding strategy Devlin et al. (2018)
resulted in a substantial improvement for both the QQP and the STS task.

These results indicate that the late-fusion of sentence information, employed by the bi-encoding
method, is not expressive enough to learn intricate dependencies between the two sentences. Instead,
cross-encoding, which allows the model to attend directly to interactions between elements of
both sentences throughout the entire network, can capture deeper and more nuanced relationships.

5



Following these results, we decide to use the latter encoding method for both sentence-pair tasks in
all subsequent experiments.

5.3.2 Synthetic data

During our experiments with the SST-5 task, we observed a notable trend of overfitting within the
training dataset, as highlighted in Figure 4. In an attempt to address this challenge, we incorporated
a combination of real and synthetic data into our training regimen. This adjustment resulted in a
modest performance enhancement, improving accuracy by 1%. Encouraged by their positive impact,
we decided to continue the use of synthetic data in the training phase for all subsequent experiments.
Nevertheless, we have to note that training on both synthetic and real data did not completely mitigate
overfitting.

Dev SST-5
Training Data Accuracy

Real data 0.530
Real + Synthetic data 0.540

Table 2: The effect of adding the synthetic data on the SST-5 training set.

Figure 4: The effect of synthetic data and SMART regularization on SST-5 overfitting.

5.3.3 SMART regularization

Motivated by the persisting issue of overfitting for the SST-5 dataset, we integrated the SMART
regularizer in our optimization objective. Furthermore, following the success of Jiang et al. (2019) in
QQP and the improvements of past CS224N projects Chijioke et al. (2024); Jack and Febie (2024)
in STS by incroporating SMART, we also investigate its applicability in our case. Following the
notation of Jiang et al. (2019), we use their recommended hyperparameters and set the perturbation
size ϵ = 10−5 and σ = 10−5, the adversarial learning rate η = 10−3, the norm p = ∞ and the
adversarial steps Tx̄ = 1. We experiment with the smoothing coefficient λs and report our results
in Table 3. SMART improved the accuracy on the SST-5 development set by 0.9%, but we did not
get any improvement for the other tasks. We verify the beneficial effect of SMART regularization to
overfitting in Figure 4.

Dev SST-5 Dev QQP Dev STS
SMART Accuracy Accuracy Pearson Correlation

(1) λs = 0 0.540 0.905 0.896
(2) λs = 1 0.543 0.904 0.882
(3) λs = 3 0.549 0.882 0.894

Table 3: The effect of incorporating SMART regularization for different smoothing coefficients λs.

5.4 Multi-task training

We began by investigating task sampling strategies within a multi-task framework. According to our
results in Table 4, uniform sampling demonstrates strong performance in the STS dataset and improves

6



the corresponding single-task model, while annealed sampling outperforms uniform sampling in both
the SST and QQP datasets. Given SMART’s success in single-task learning for the SST dataset, we
integrated SMART with λs = 3 in our multi-task setting. However, this regularization adversely
affected the QQP dataset, preventing any overall score improvement.

We theorize that uniform sampling underperforms relative to annealed sampling for the QQP task
due to insufficient training duration on QQP data. Extending training epochs poses a challenge, as
it leads to overfitting on the SST-5 task. To address this, we initialized BERT with the weights of
the single-task model that previously achieved the best performance on QQP. While this approach
achieved the highest accuracy on QQP, it led to suboptimal performance on the SST-5 and STS tasks,
primarily because the initial parameters did not lead to a landscape where the model could generalize
well for the SST-5 dataset.

Dev SST-5 Dev QQP Dev STS Dev Overall
Multi-task training strategies Accuracy Accuracy P/S Corr Score

uniform sampling 0.518 (0.527) 0.881 (0.881) 0.900 (0.902) 0.783
annealed sampling 0.534 (0.534) 0.895 (0.896) 0.888 (0.892) 0.791

uniform sampling + SMART 0.529 (0.529) 0.875 (0.875) 0.900 (0.902) 0.784
annealed sampling + SMART 0.530 (0.530) 0.885 (0.894) 0.894 (0.896) 0.787

uniform sampling + QQP initialization 0.526 (0.526) 0.901 (0.905) 0.895 (0.900) 0.791
Table 4: The effect of different training strategies in the multi-task setting. The scores in parentheses
correspond to best task-specific scores of the model, while the other scores correspond to best overall
model.

5.5 Model Ensembling

Finally, we chose to strategically ensemble some of the best single-task and multi-task models that we
had previously trained to further boost performance across the three tasks. For the classification tasks,
we ensembled the models by computing and averaging their assigned probabilities, and selected the
most probable class as the ensemble prediction. For the regression task, we simply averaged the
outputs of the models to compute the final prediction. We report our best results in Table 6 when
using a single model for all three tasks, at most one different model per task, and a model ensemble
comprising 1-4 models per task. It is important to note that, contrary to our expectations, ensembles
for the SST-5 task with more than one model led to worse results on the corresponding dev set.

Dev SST-5 Dev QQP Dev STS Dev Overall
Results Accuracy Accuracy P/S Corr Score

1 model / 3 tasks 0.534 0.895 0.888 0.791
1 model / 1 task 0.549 0.905 0.902 0.802

1 ensemble / 1 task 0.549 0.910 0.905 0.803
(1 model) (3 models) (2 models)

Table 5: The effect of ensembling on the dev set performance.

We evaluated the model ensembles that achieved the best results on the dev set for the hidden test set:

Test SST-5 Test QQP Test STS Test Overall
1 ensemble / 1 task 0.519 0.910 0.900 0.793

(1 model) (3 models) (2 models)

Table 6: Our final results on the hidden test set evaluation.

We observed that the dev set performance genrelizes to the test set for the QQP and the STS tasks
and there is some degradation for the SST-5 task, indicating that using an ensemble of models for this
task would have been helpful, despite the potentially lower dev performance.

7



6 Analysis

6.1 Sentiment Analysis

The confusion matrix in Figure 5 provides insights into the challenges of sentiment classification,
particularly in terms of the misclassifications occurring between adjacent sentiment categories. These
misclassifications underscore the inherent subjectivity embedded in sentiment analysis.

To explore this phenomenon further, we also conducted a qualitative investigation into specific
instances where the model’s predictions diverge from the originally assigned labels. Our findings are
presented in Table 7, where we highlight cases where the model’s predicted sentiments appear to be
more aligned with the context of the text than the assigned labels. Such discrepancies suggest the
presence of noisy labels within the training data, which is due to the subjective nature of the task and
the diverse interpretations of the annotators. We hypothesize that the inclusion of such noisy labels in
the training data is one of the reasons why employing SMART regularization led to improved model
performance, even when a substantial amount of synthetic data was available. In this way, the model
is discouraged from overfitting to the noisy training data and can generalize better on unseen datasets.

6.2 Paraphrase Detection

We visualize the confusion matrix for the QQP development set in Fig. 5. The figure demonstrates the
robust performance of the model, with the misclassifications being balanced between false positives
and false negatives. We inspect qualitatively the model’s failure cases and present some representative
examples in Table 8. We identify that the model often predicts a false positive when the sentences
have similar words or phrases that do not carry the same meaning in different contexts (Ex. 1). On
the other hand, the model’s false negatives occur when some secondary information are excluded
from one sentence (Ex. 2). We argue that in these cases labelling the sentences as a paraphrase or
not is subjective. Additionally, replacing a word with a synonym (Ex. 3) or changing the sentence
structure (Ex. 4) may also result in false negatives.

6.3 Textual Semantic Similarity

We visualize the model’s behavior for the STS task as a scatter plot in Figure 6, which indicates a
strong positive correlation between the predicted and true labels. The data points are more spread
for the mid-range scores, which is expected since this sentences have more subtleties and assigning
an accurate score as label can be challenging. The model predictions at the extreme values are very
accurate, which means that when the model identifies two sentences as completely unrelated or
related, this is indeed the case. However, the vice-versa does not always hold; not all completely
related or unrelated sentences are identified as such. As the examples 1 and 2 suggest in Table 9,
using abbreviations of words causes the model to misidentify two related sentence. Further, the model
is misled when the two sentences have many similar words and focus on the same general topic, the
inverse phenomenon is observed; the model considers somewhat related two semantically distinct
sentences (Ex. 3 and 4).

7 Conclusion

In this project we fine-tuned BERT model for specialized NLP tasks, achieving significant improve-
ments in paraphrase detection, sentiment analysis, and semantic textual similarity. Techniques such
as cross-encoding have significantly enhanced the model’s ability to analyze complex sentence rela-
tionships, while the integration of synthetic data and SMART regularization has effectively mitigated
overfitting in sentiment analysis. Furthermore, we showcased that multi-task learning can lead to
positive transfer for some tasks and further boost their single-task performance.

Despite these advancements, challenges remain, particularly in optimizing multitask learning to
balance the specific needs of all tasks simultaneously. Future research could focus on refining our
multitask strategies by integrating more advanced optimization methods, such as PCGrad Yu et al.
(2020) and more efficient ensembling strategies that do not require training multiple independent
models Lee et al. (2022), enhancing both the efficiency and accessibility of foundation models in
NLP.

8



Sentence Prediction Label
there ’s not enough here to justify the almost two hours . 0 1

a marvel like none you ’ve seen . 4 3
michael gerbosi ’s script is economically packed with telling scenes . 3 4

cool ? 2 3
half submarine flick , half ghost story , all in one criminally neglected film 1 2

Table 7: A qualitative investigation of the SST-5 results.

Figure 5: The normalized confusion matrices for SST-5 and QQP.

8 Ethics Statement

In this project, we demonstrate that large language models can be effectively fine-tuned for specific
downstream tasks. However, deploying these models in production requires a comprehensive un-
derstanding of their broader societal implications. The potential automation of tasks traditionally
performed by humans could significantly increase unemployment and concentrate wealth among a
small number of individuals. It is imperative for governments and organizations to evaluate these
risks and actively develop strategies to support the transition and reskilling of affected individuals.
Additionally, apart from assessing the model’s average accuracy, fairness across protected groups,
extensive testing and transparency about the model’s limitations are essential to ensure ethical
deployment.

Our best results were achieved through model ensembling, which involves training multiple models.
While this approach enhances performance, it also increases computational and energy demands,
consequently elevating the carbon footprint. Moreover, the reliance on extensive GPU resources
exacerbates the divide between GPU-rich and GPU-poor entities. Developing resource-efficient
ensembling techniques is critical to ensure equitable access to advanced machine learning technologies
and to minimize their environmental impact.

9



Sentences Pred Label

1 what are the uses of arduino ? 1 0what is the software used in arduino ?

2 how much will it cost for studying ms in germany 0 1how much does it cost for an ms in mechanical in germany in 2016 -2018 in inr ?

3 how do i write an android application ? 0 1how do i create an android application ?

4 will american parents in the future going to be the most paranoid parents in the world ? 0 1will american parenting in the future going to be very overprotective ?
Table 8: A qualitative investigation of the failure cases in QQP.

Figure 6: The scatter plot analyzes the error of the model in the STS dev set.

Sentences Pred Label

1 carney sets high bar to change at boe 2.93 5.00carney sets high bar to changes at bank of england

2 mitt romney wins maryland gop primary 3.71 4.80romney wins maryland republican primary

3 live blog: ukraine in crisis 1.07 0.00live blog: iraq in turmoil

4 3 killed , 4 injured in los angeles shootings 1.09 0.00five killed in saudi arabia shooting
Table 9: A qualitative investigation of the outliers in STS.

10



References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. * sem 2013

shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Mgbahurike Chijioke, Mlauz Iddah, and Ocran Kwame. 2024. Jack of all trades, master of some:
Improving bert for multitask learning. CS224N.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Samuel Fernando and Mark Stevenson. 2008. A semantic similarity approach to paraphrase detection.
In Proceedings of the 11th annual research colloquium of the UK special interest group for
computational linguistics, pages 45–52.

Le Jack and Lin Febie. 2024. Bert and beyond: A study of multitask learning strategies for nlp.
CS224N.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. arXiv preprint arXiv:1911.03437.

Yoonho Lee, Huaxiu Yao, and Chelsea Finn. 2022. Diversify and disambiguate: Learning from
underspecified data. arXiv preprint arXiv:2202.03418.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. 2023. Synthetic data generation with large
language models for text classification: Potential and limitations. arXiv preprint arXiv:2310.07849.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language
processing, pages 1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, pages
5986–5995. PMLR.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836.

11


	Key Information to include
	Introduction
	Related Work
	Approach
	MinBERT Model Architecture
	Bi-encoding, Cross-encoding
	Synthetic data generation
	SMART Regularization
	Multitask Learning

	Experiments
	Data & Evaluation
	Experimental details
	Results
	Sentence-pair encoding
	Synthetic data
	SMART regularization

	Multi-task training
	Model Ensembling

	Analysis
	Sentiment Analysis
	Paraphrase Detection
	Textual Semantic Similarity

	Conclusion
	Ethics Statement

