SMARTer Multi-task Fine-tuning of BERT

Stanford CS224N Spring 2024 Default Project

Disha Ghandwani Aditya Ghosh Rahul Kanekar
Department of Statistics Department of Statistics Department of Statistics
Stanford University Stanford University Stanford University

dishal23@stanford.edu ghoshadi@stanford.edu rkanekar@stanford.edu

Abstract

We develop and evaluate a minimalist BERT model (minBERT) with a focus on fine-
tuning for three distinct NLP tasks: sentiment classification, paraphrase detection,
and semantic textual similarity. Initial experiments reveal that training task-specific
linear layers with the pre-trained minBERT frozen yields poor performance. Fine-
tuning the entire model along with the task-specific layers shows some improvement
for individual tasks, but fails to deliver satisfactory results when applied jointly
to all three tasks. To address this, we incorporate the adversarial regularization
and proximal optimization techniques from the SMART framework by Jiang et al.
(2020). Our findings indicate that while SMART enhances performance, the onus
lies on the underlying model architecture. Among the various models and settings
we experimented with, the SMART framework with task-specific LSTM layers
trained with an exponentially decaying learning rate with a randomized task in
each iteration (SMARTer) seems to deliver the best performance.

TA mentor: Yuan Gao; External collaborators/mentor: None; Sharing project: No

1 Introduction

In recent years, large language models like BERT have revolutionized the landscape of natural
language processing (NLP). These models, however, face significant challenges when fine-tuned
on downstream tasks with limited data, often leading to overfitting and inadequate generalization.
Fine-tuning approaches that simply train a task-specific layer, freezing the pre-trained BERT model,
tend to deliver poor performance. Fine-tuning the full model (the task-specific layer(s) and the BERT
parameters) seems to improve the performance for individual tasks, but still struggles with overfitting,
especially in multi-task settings where the model must generalize across diverse objectives.

To address these issues, we explore an adversarial regularization technique, SMART, due to Jiang
et al.[(2020). We implement it via the Bregman proximal point optimization method from the same
paper, which constrains aggressive parameter updates. Our project focuses on three key NLP tasks:
sentiment classification, paraphrase detection, and semantic textual similarity. By implementing and
fine-tuning a minimalist BERT model (minBERT) with the SMART framework, we aim to improve
model robustness and generalization, providing a more efficient and effective solution for multi-task
learning applications.

Our experiments reveal that incorporating the SMART framework by Jiang et al.| (2020) helps
to enhance generalization by reducing overfitting compared to baseline approaches. However, its
effectiveness seems to be tied to the underlying model architecture. Among the models and settings we
explored, extending minBERT with task-specific LSTM layers and using an exponentially decaying
learning rate seemed most promising for the three tasks we consider. In all, we conclude that
successfully optimizing multi-task learning with minBERT remains a complex challenge heavily
dependent on designing the models for the particular tasks at hand.

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

Several techniques have been proposed to improve fine-tuning of large pre-trained language models
like BERT on downstream tasks. |[Liu et al.| (2019) introduced the MT-DNN framework which
allows effective multi-task learning by simultaneously training the full-model with task-specific
layers. To enhance generalization, Jiang et al.| (2020) introduced the SMART framework, which
combines adversarial regularization and Bregman proximal point optimization. This framework
encourages smoothness in the model outputs, making them more robust to small input perturbations,
and constrains parameter updates to prevent aggressive changes that could lead to overfitting.

Adpversarial regularization builds on earlier ideas proposed for training robust models, e.g., (Miyato
et al.| 2018)) proposed virtual adversarial training, a method that introduces small perturbations to the
input data to improve model generalization. While originally developed for NLP tasks, this general
technique has shown promise in domains like computer vision |[Shafahi et al.[| (2019) and speech
recognition |Conneau et al.|(2017) — providing a broadly applicable way to obtain fine-tuned models
invariant to input noise, akin to human language understanding.

Another line of work by |Hu et al.|(2021]) proposed LoRA — adapting pre-trained models by training
low-rank parameter updates rather than modifying the full model weights. This reduces the number
of trainable parameters (thus drastically reducing the training time) while still allowing effective
multi-task transfer learning.

3 Approach

We implement a working MT-DNN framework (L1u et al.,|2019) which can effectively handle the three
given tasks, namely, sentiment classification (SC), paraphrase detection (PD), and semantic textual
similarity (STS). For multi-task fine-tuning, we primarily utilize the adversarial regularization and
Bregman proximal point optimization techniques proposed by Jiang et al.[(2020). Before describing
the regularization approach and further refinements, we discuss below the baseline approaches that
we also implement from scratch.

3.1 Baseline models

First, we implement the self-attention and transformer layers of minBERT (for details, refer to the
default final-project handout on the class website).

Next, we fine-tune the minBERT model for SC on two datasets: Stanford Sentiment Treebank (SST)
and the CFIMDB movie reviews database. We consider two approaches: (1) freeze the parameters of
the pre-trained minBERT and train a linear layer on top it, for the specific task of SC; (2) fine-tune all
parameters of minBERT along with the linear layer, as described in|Liu et al.| (2019).

Finally, we fine-tune the minBERT model to perform three tasks: SC on the SST data, PD on the
Quora data and STS on the SemEval data (cf. Section ] for more details). We consider the following
baseline approaches: (3) add separate linear layers for each of the three tasks and minimize the sum
of the losses, freezing the parameters of the pre-trained minBERT; (4) fine-tune the entire minBERT
model and task-specific layers by minimizing the combined loss (summed) across tasks.

3.2 Adversarial regularization and Bregman proximal point optimization

Adversarial regularization aims to control model complexity by encouraging smoothness in the output
(Jiang et al.,2020). Given training data {(x;,y;)}"_; and a model f(z; ), the regularized objective
F 1s given by

1 Zé(f(x,;;&),yi)y

n -
=1

F(0):= L(0) + A\;Rs(0), where L(0):=
As is a tuning parameter, and R, (6) is the smoothness-inducing regularizer, given by

Rs(e);:lz max  Cs(f(%:0), f(2:;0)),

7=l <e



where £ is the symmetrized KL-divergence, defined as £5(P, Q) = Dx.(P||Q) + Dk (Q|| P). This
regularizer restricts the output f(x; ) to not change much when a small perturbation is added to the
input z;, thus controlling model complexity.

Following Jiang et al.| (2020), we plan to use momentum Bregman proximal point (MBPP) optimiza-
tion to minimize the regularized objective. Given a pre-trained initial model f(z;6)), the vanilla
Bregman proximal point update step at iteration (¢ + 1) is given by

6t+1 = arggmn{F(@) + MDBreg(ev gt)}ﬂ

where 1 > 0 is a tuning parameter, and Dgeg (6, 6;) is the Bregman divergence, defined as

n

DBreg(ev 02&) = %ng(f(xlv 0)7 f(ll, Ht)

=1

This approach constrains the updated parameters 6,11 to be within a small neighborhood of the
previous iterate 8;. This prevents aggressive updating during fine-tuning iterations. The procedure
can be further accelerated using a momentum term, resulting in the MBPP method (see Jiang et al.
(2020, Algorithm 1)).

In summary, adversarial regularization promotes smoothness by penalizing output changes under
small input perturbations, while Bregman proximal point optimization constrains parameter updates
to a local trust region, together preventing overfitting to the training data during fine-tuning.

3.3 Low-Rank Adaptation of Large Language Models (LoRA)

Hu et al.| (2021) proposed a slightly different method of fine-tuning large language models for
downstream tasks. They hypothesized that when fine-tuning pre-trained models, the changes to the
model parameters induced by downstream training often lie within much smaller subspaces. This
suggests that instead of adjusting all the model parameters, we can instead fine-tune them by freezing
the original parameters and then training low-rank perturbations.

We adopted LoRA in our setting to fine-tune the key and query matrices W, W}, of the BERT model.
Suppose the pre-trained key matrix is W}, of dimension d x d. During fine-tuning, we apply low-rank
updates as:

W,é =Wy + AB,

where A and B are d x m and m X d matrices respectively, with m < d. This low-rank for-
mulation reduces the number of trainable parameters from O(d?) to O(dm), with m = 4 in our
implementation.

We approached LoRA as an alternative to SMART, that can be used to fine-tune the model while
still constraining the deviations. Its effectiveness can be seen in the results we obtained. Using it in
tandem with the randomized training scheme described below greatly reduced the training time per
epoch while still giving results comparable to our other methods.

3.4 Finer approaches

First, we discuss two simple techniques that enabled us to improve upon the SMART and LoRA
frameworks:

* Randomizing the task: At every iteration, we add the loss for one of the three tasks, chosen
uniformly at random. While the SMART loss or LoRA takes care of overfitting, this simple trick
resolves the issue that the losses for different tasks could differ in scale. Further, it speeds up the
training process.

* Exponentially decaying learning rate: This simple idea (the name is self-explanatory) can
also reduce overfitting. Further, this appears to improve stability over the epochs.

Combining SMART with these two techniques, which we term SMARTer (SMART with exponentially
decaying Ir and randomized task-specific objective), delivered superior performance (see Table3)).
Additionally, we also explored other losses, e.g., cosine similarity loss for the STS task.



Among the models explored, SMARTer outperformed the others, except for the semantic textual simi-
larity (STS) task. Despite tuning various hyperparameters, the results on STS remained unsatisfactory.
We eventually realized the bottleneck was the underlying neural network architecture used for the task
output layers. Replacing the linear layers with (i) Transformer and (ii) LSTM architectures revealed
that SMARTer with LSTM layers achieved the best overall performance.

4 [Experiments
4.1 Data and evaluation method

We describe below the datasets we use, with the associated tasks and standard evaluation metrics.

¢ SST (Stanford Sentiment Treebank): Contains 11885 sentences from movie reviews with 215154
unique phrases labeled as negative, somewhat negative, neutral, somewhat positive, or positive.
Task: sentiment classification; evaluation metric: percentage accuracy of classification.

* CFIMDB (movie reviews database): Comprises 2434 highly polar movie reviews labeled as
positive or negative, with reviews potentially longer than one sentence.
Task: sentiment classification; evaluation metric: percentage accuracy of classification.

* Quora data: Consists of 404298 question pairs labeled to indicate if they are paraphrases.
Task: paraphrase detection; evaluation metric: percentage accuracy.

* SemEval data: Includes 8628 sentence pairs rated on a scale from 0 (unrelated) to 5 (equivalent).
Task: semantic textual similarity; evaluation metric: Pearson correlation.

For SC and STS tasks, we use the full datasets. For the PD task, we randomly select 10000 data
points per epoch to ensure diverse samples that we can train on within the time limit.

4.2 Experimental details and results

We summarize our experimental results in Tables [T] to [3] First, in Table [T we report how the
baseline approaches (1) and (2) described in Section @] perform when we use the two datasets
for sentiment analysis. Next, in Table [2] we report the performance of the different baselines for
multi-task fine-tuning. Finally, Table [3| compares the various multi-task learning approaches we
described in Sections [3.2]to[3.4] We delegate our analysis of these results to Section 5]

Hyperparameters: We run experiments with a learning rate of 10~ for running last-linear-layer
(approaches (1) and (3)) and 10~ for running full-model (approaches (2) and (4)). Due to GPU
constraints, we mostly use batch size of 16. For the hyperparameters for our SMART implementation,
we adhere to those outlined in the original paper by Section For the exponentially decaying
learning rate approach, we set the initial learning rate as 10~ and cut it down by a factor of .9 in
each epoch, running it for 20 epochs. Additionally, dropout with a probability of 0.3 is applied in all
models to prevent overfitting.

Loss functions: We used the cross-entropy loss for the SC task, the BCE loss for the PD task, and the
MSE loss for the STS task. In addition, we also tried other choices of loss functions; in particular, the
cosine similarity loss for the STS task.

Different scaling of losses: To manage potential scale differences among these losses, we introduced
the novel solution of randomly adding one of the losses in each iteration. This not only took care of
the issue of different scales, but also make the code run much faster, cutting down computation time
by almost a factor of 3.

Model: First, we implemented only linear layers for each task on the top of minBERT. Next, as
an attempt to improve the performance, we implemented more advanced models. For sentiment
analysis, we used a Bidirectional Long Short-Term Memory (BiLSTM) network with 2 layers and
a hidden size of 768, processing BERT embeddings to capture contextual information and predict
sentiment classes across 5 categories. For paraphrase detection, we implemented a Siamese BiLSTM
architecture, using two identical BILSTM networks with 2 layers and a hidden size of 768, to process
pairs of sentences and determine their similarity by comparing their LSTM outputs. Finally, for
Sentence similarity we also implemented a Transformer Encoder network composed of 6 layers and
8 attention heads, which models relationships between sentence tokens and outputs a similarity score.



These methods combine the contextual richness of BERT embeddings with the sequence modeling
capabilities of RNNs and transformers, leading to improved performance in each task.

Table 1: Performance of different baseline approaches for sentiment classification

SST CFIMDB
Train Acc  Dev Acc  Train Acc  Dev Acc

(1) Linear layer on minBERT 38.6% 39.3% 78.4% 78.8%
(2) Fine-tune the full model 97.9% 52.4% 98.5% 97.1%

Baseline Model

Table 2: Performance of different baselines for multi-task fine-tuning

Baseline model SC (accuracy) PD (accuracy) STS (correlation)
(3) Task-specific linear layers 38.1% 64.6% 0.228
(4) Jointly fine-tune the full model 49.9% 73.4% 0.305

Table 3: Performance of multi-task fine-tuning (full-model) with advanced techniques. Here random
refers to the randomized task technique and exp.Ir refers to the exponentially decaying learning rate
technique (cf. Section [3.4)

Training Accuracy Dev Accuracy
SC PD STS SC PD STS
Baseline 724% 747% 0907 499% 73.4% 0.305
SMART 48.6% 74.1% 0.636 429% 73.8% 0.275
SMART + random 80.1% 71.8% 0869 49.6% 71.1% 0.359

SMART + random + cosine-similarity 80.0% 71.4% 0.865 48.7% 70.4% 0.355
SMARTer (SMART + exp.Ir + random) 76.2% 70.9% 0.867 52.7% 73.5% 0.362

LoRA + exp.Ir + random 592% 68.3% 0.725 492% 689% 0.336
SMARTer + Transformer 72.0% 72.3% 0.801 51.3% 73.3% 0.390
SMARTer + LSTM 89.5% 75.8% 0938 50.5% 75.1% 0.483
SMARTer + LSTM (deeper) 94.0% 75.8% 0944 498% T42% 0.427

5 Analysis

Our preliminary results reported in Tables|l|and [2| suggest the following:

* Training task-specific layers alone, with minBERT parameters freezed, yields poor performance
for downstream tasks.

* Fine-tuning the entire model improves performance for a single task but the same for multi-task
fine-tuning is not satisfactory.

Next, we analyze Table [3] which summarizes the results from fine-tuning the full-model with
additional bells and whistles to reduce overfitting and improve generalization.

* The SMART regularization reduces the overfitting a lot, as compared to the baseline approach.

* The simple technique of exponentially decaying the learning rate greatly stabilized the results
across different epochs.

* The novel idea of adding the loss for one of the tasks chosen at random in every iteration not only
addressed potential scale differences between tasks effectively, but also reduced training times
almost by a factor of 3.

* LoRA seems to perform equally good as SMART in alleviating overfitting. Although we report
only the results for LoRA with additional safety nets of exponentially decaying learning rate and
the random loss technique, it did perform equally as good as SMART when applied without these
accessories.



* Merely increasing the depth of the LSTM layers did not improve the performance on the dev set.

¢ The performance of SMART and LoRA for the STS task remained unsatisfactory, despite the
additional techniques described in Section [3.4] This limitation was eventually attributed to the
simplicity of the models. Implementing transformer and LSTM approaches separately revealed
that the SMARTer approach combined with LSTM yielded the best overall performance.

» Playing with the loss function or hyperparameters did not drastically improve performance,
suggesting a sense of consistency and robustness in the ongoing research as a community.

6 Conclusion

We explored techniques to improve multi-task fine-tuning of the miniBERT model across sentiment
analysis, paraphrase detection, and semantic textual similarity tasks. Our key finding is that while
naive fine-tuning approaches struggle with overfitting and poor generalization, carefully designed
regularization methods can significantly boost performance. Specifically, combining adversarial
regularization from the SMART framework with techniques like randomized task sampling and
decayed learning rates proved effective at reducing overfitting. However, model architecture remains
critically important — extending miniBERT with task-specific LSTM layers delivered state-of-the-art
results among our experiments.

While promising, our work had limitations in fully optimizing semantic textual similarity, suggesting
multi-task fine-tuning remains a complex challenge heavily tied to tailoring models for each task.
Future research could explore more advanced architectures like adapters or prompts to better capture
cross-task relationships. Specifically, we suggest implementing the pairwise word interaction model
(PWIM) architecture by He and Lin|(2016) for the STS task; we could not do it for time limitation.
Additionally, investigating techniques to quantify and mitigate harmful biases inherited during pre-
training is crucial for ensuring fair and trustworthy fine-tuned models. Overall, achieving robust
multi-task generalization from large language models will require continued research efforts across
improved regularization, tailored architectures, and bias mitigation strategies.

7 Ethics Statement

One key concern is the propagation of biases inherent in pre-trained models and the datasets used
for fine-tuning. These biases could lead to discriminatory behavior, affecting marginalized groups
disproportionately. There is also a risk that our models could be misused to create fake reviews or
manipulate opinions, causing societal harm. To address these issues, we should evaluate and reduce
bias to ensure our models treat all groups fairly.

Additionally, the high computational resources required for training and fine-tuning models have
environmental impacts. Employing energy-efficient training methods and leveraging cloud services
powered by renewable energy sources could help reduce our carbon footprint.

8 Acknowledgement

We thank our mentor Yuan Gao for his helpful guidance and support during this project. All team
members — Disha Ghandwani, Aditya Ghosh, and Rahul Kanekar — contributed equally to the
conceptualization, implementation, analysis, and documentation of this project. We also thank the
entire CS224N Spring 2024 course staff for providing a great learning experience.

References

Alexis Conneau, Guillaume Lample, Marc’ Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
2017. Word translation without parallel data. arXiv preprint arXiv:1710.04087.

Hua He and Jimmy Lin. 2016. Pairwise word interaction modeling with deep neural networks for
semantic similarity measurement. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pages
937-948, San Diego, California. Association for Computational Linguistics.


https://doi.org/10.18653/v1/N16-1108
https://doi.org/10.18653/v1/N16-1108

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2177-2190.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. |Multi-task deep neural
networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4487-4496.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979-1993.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. 2019. Adversarial training for free! Advances in
neural information processing systems, 32.


https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/P19-1441

	Introduction
	Related Work
	Approach
	Baseline models
	Adversarial regularization and Bregman proximal point optimization
	Low-Rank Adaptation of Large Language Models (LoRA)
	Finer approaches

	Experiments
	Data and evaluation method
	Experimental details and results

	Analysis
	Conclusion
	Ethics Statement
	Acknowledgement

