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Abstract

Language models today have demonstrated remarkable capabilities and revolution-
ized our understanding of machine intelligence. Yet even still, transformations
to model inputs—even those seemingly insignificant to the human eye—have the
power to completely confuse the model and derail its outputs. We refer to these
transformations as text obfuscation, and in this project, we explore methods to
patch the vulnerabilities presented by text obfuscation in a BERT-based abusive
text classification model. In particular, we experiment with combining inputs from
Vision Transformer models to augment BERT’s ability to "see" and correctly clas-
sify a wider range of text inputs. Our methods show a performance improvement of
+7.8% in accuracy and +10.4% in precision on a benchmark dataset for obfuscated
hate speech detection.
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2 Introduction

Consider the interaction with chatGPT shown in Figure 1. While we can easily make out the text—
which depicts a stylized version of the words "GITHUB ACTIONS"—one of today’s most powerful
language models is completely unable to decipher it, instead guessing that it says "HELLO WORLD".

This result likely poses many kinds of problems to applications of language models in a variety of
situations, but we will focus on one very specific problem in this area: adversarial inputs to a language
model used for content moderation. For example, suppose we run a social media platform and want
to minimize the amount of hate speech posts on our platform. We maintain a language model that
classifies each post as hate_speech or not_hate_speech and removes the hate_speech posts.
While it could have very high accuracy on regular non-obfuscated posts, adversarial users could
bypass the model by obfuscating their text in some way that makes it unreadable to the model but
easily decipherable by other human users.

In this project, we finetune a BERT model on hate speech data to use as a toy example of a content
moderation model. We create a simple custom text-obfuscation library that turns ASCII characters
into similar-looking non-ASCII characters that are untokenizable by our BERT classifier and we
demonstrate the model’s shortcomings on a hate speech dataset obfuscated using our library. Then we
explore ways to recover some performance of the BERT classifier by first rendering the obfuscated
text as an image, then passing it through a finetuned Vision Transformer (ViT), and then feeding signal
from the ViT to our BERT classifier for classification, with the hope that the Vision Transformer acts
as "eyes" for our BERT model and allows it to more accurately read the obfuscated text.
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Figure 1: When asked to read an ASCII-art-rendering of the text "GITHUB ACTIONS", chatGPT
mistakes it for "HELLO WORLD", demonstrating the text obfuscation problem for language models.

For this project, we restrict our attempts at performance recovery by never re-training the finetuned
BERT model and never training our hybrid ViT-BERT model end-to-end. This choice is to simulate
the lengthy training times an industry-level model likely has for training their base models—which
could be hundreds of billions of parameters large and take weeks or months to retrain—and to
preserve the good performance already inherent in those base models, which are already optimized
for abuse detection. Instead, what we want to do is to demonstrate a way to build on top of that
foundation and add additional functionality (the ability to read obfuscated text) with minimal changes
to the underlying model.

In the end, we show that by passing signals from a finetuned ViT model to our fixed BERT classifier,
we are able to improve upon the accuracy and precision over the original "blind" BERT model by
7.8% and 10.4% respectively when classifying obfuscated hate speech text.

3 Related Work

3.1 Vision Transformer

In their paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, Doso-
vitskiy et al. (2021) introduce a novel approach to image classification by adapting the Transformer
architecture, traditionally used for natural language processing, to visual data. Instead of using
convolutions, the Vision Transformer (ViT) divides an image into a sequence of fixed-size patches,
linearly embeds each patch, and feeds these embeddings into a standard Transformer encoder. This
approach allows the model to capture long-range dependencies and global context more effectively.
The paper demonstrates that ViT can achieve state-of-the-art performance on image classification
benchmarks with significantly fewer computational resources compared to traditional convolutional
neural networks, especially when pre-trained on large datasets.

2



For our problem we hypothesized that because ViT and BERT share the transformer architecture, it
would be easier to align their representations of information and easier to pass information between
the two models than it otherwise would be for two models that do not share similar architectural
components. With this line of reasoning, we chose to finetune ViT models to read rendered images of
text and pass their representation of those images to the BERT classifier for inference.

3.2 Contrastive Learning Methods

To align the representation of information between the two models, we took inspiration from con-
trastive learning methods, one being CLIP and another being simCLR.

CLIP (Contrastive Language-Image Pre-training), developed by Radford et al. (2021) is a framework
that learns visual concepts from natural language supervision by leveraging a contrastive loss. The
model consists of separate image and text encoders, which project images and their corresponding
textual descriptions into a shared embedding space. The contrastive loss function is used to bring
the embeddings of matching image-text pairs closer together while pushing non-matching pairs
apart. This training paradigm enables CLIP to perform zero-shot transfer learning, demonstrating
impressive performance across various visual tasks without requiring task-specific fine-tuning. The
use of contrastive loss is central to CLIP’s ability to align visual and textual representations effectively.

We had a related problem, where we wanted to align separate image encoders (from ViT) and text
encoders (from BERT) so that the image encoders would represent images of text closely to how the
text encoders would represent the original text. We ended up using some of their techniques, such as
projecting into a shared embedding space.

Another paper we took inspiration from is simCLR. Chen et al. (2020) introduce a straightforward
and effective approach to unsupervised visual representation learning using contrastive learning in
their paper A Simple Framework for Contrastive Learning of Visual Representations. The framework
consists of four main components: data augmentation, a neural network base encoder, a projection
head, and a contrastive loss function. The key idea is to maximize the agreement between different
augmented views of the same image in the latent space while minimizing the agreement between
views of different images. This is achieved by applying various augmentations to the input images,
passing them through the encoder and projection head, and then using a contrastive loss to train the
model. SimCLR shows that strong data augmentation, a large batch size, and a carefully designed
projection head are critical for achieving high-quality visual representations that rival or surpass those
learned with supervised methods on various downstream tasks.

The elements that we learned from here were their loss function, which they introduce as NT-Xent
(the normalized temperature-scaled cross entropy loss) and which we will describe in further detail
below, and the projection heads—both elements worked well empirically for our use case.

4 Approach

4.1 Baselines

First we finetuned a BERT model for the hate speech classification task using a pretrained checkpoint
from Huggingface (google-bert/bert-base-uncased) (model developed by Devlin et al. (2019)) and
data from Mody et al. (2023). We achieved 83.8% accuracy and 85.0% precision on a non-obfuscated
test set. This model became our fixed base model for hate speech classification.

Next, we created a custom obfuscation library that maps uppercase and lowercase ASCII characters
in a given string into non-ASCII characters (see Figure 2 for an example).

Figure 2: Example use of text obfuscation library.
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After applying obfuscation to our test dataset, we observed 49.4% accuracy and 49.4% precision
from our BERT classifier.

We then rendered all of the text datasets (obfuscated and non-obfuscated) as images in preparation
for our experiments (see Figure 3).

Figure 3: A 4x4 grid of examples of our rendered obfuscated test set. Images are 224 by 224 pixels
to match the input size expected for ViT models.

4.2 Vision-enhanced BERT

Figure 4: Vision-enhanced BERT architecture diagram.

Our vision-enhanced BERT classifier consists of two main parts. First, a ViT model takes in an input
image of text and generates embedding representation of the text. Second, our already-finetuned
BERT classifier takes the ViT model’s embedding and outputs a score, which we pass through a
threshold gate to determine the final classification decision.

More details will follow in the next section, but from a high level, we used contrastive learning to
steer the embeddings generated by the ViT model to be aligned with the embeddings generated by our
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BERT classifier (i.e., for a given text input and its corresponding rendered image, we tried to have the
ViT model generate an embedding for the image that was as close as possible to the BERT model’s
embedding for the original text). We hoped that in doing so, the ViT model would embed obfuscated
text close to its non-obfuscated version and generate embeddings that are not only interpretable but
also still correctly classifiable by the BERT model.

5 Experiments

5.1 Data

We use a balanced Hate Speech Dataset from Mody et al. (2023), which contains short text comments
and labels designating each comment as hate speech or not. While the dataset contains 700,000
items, we shuffle and use only 8000 for training, 1000 for validation, and 1000 for testing. Due to the
balanced nature of the dataset, roughly half of each set is hate speech and the other half is not.

For the test set, we use our custom obfuscation library to generated an obfuscated copy. We also use
the Python Imaging Library (PIL) to generate rendered 224x224 pixel images of each text datapoint
(see Figure 3 for an example). We generate an obfuscated version of only the test set because we
want to simulate a industry production setting, where we may not be aware of an adversarial user’s
obfuscation methods, so we cannot augment our training data using the same obfuscation techniques.

5.2 Evaluation method

We use accuracy and precision metrics to evaluate our model. We purposely exclude recall, another
commonly used metric, because it is easy to score perfectly on recall by labeling all datapoints as
hate speech—in fact, this is how the baseline BERT classifier behaves on the obfuscated dataset, and
we do not want to consider this a good model.

We set out to compare our vision-enhanced BERT model to two baseline models. The first point
of comparison is the BERT classifier’s performance on the obfuscated test set. The second point
of comparison is the BERT classifier’s performance on the obfuscated test set pre-processed by an
off-the-shelf optical character recognition (OCR) tool that attempts to deobfuscate the text into ASCII
characters. We use pytesseract, a commonly used Python OCR tool for this step. We will compare
the performance of these models with our vision-enhanced BERT model in the Results section below.

5.3 Experimental details

5.3.1 Initial attempts

In our very first experiment, we tried passing the embeddings from a pretrained ViT with no finetuning
straight into our BERT classifier. We observed that everything was classified as hate speech, which
matched the first baseline’s performance of 49.4% on both accuracy and recall.

We hypothesized that if we could get the embeddings from the ViT model for a given image to line
up with the BERT model’s embeddings for the corresponding original text, then we would have some
improvement gain. We implemented our first attempt at aligning the embeddings by generating BERT
embeddings for the training dataset and finetuning the ViT model with a mean-squared-error (MSE)
loss between the ViT model’s CLS embeddings and the BERT model’s text embeddings. During
training, we noticed that the loss was barely changing, so we decided to take another look at our data.

5.3.2 Data rendering improvement

At first, we had a more basic text-to-image rendering method, which simply rendered the images in
non-standard rectangles where the text was all in one line. When passing these to the ViT model, we
had to transform them into 224x224 pixel images which warped the text, making it hard to read. This
could explain our ViT model’s stagnant loss during finetuning.

We tried to remedy the problem by adding padding. This did not fix the stagnant loss problem.
Taking another look at this data, we saw that while padding resolved the warping issue, there was
now a scaling issue, where long text comments would still be in one line but they would be rendered
extremely small and the text was often illegible. Furthermore, without any data augmentation here,
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we guessed that observing text at different scales might confuse the model when finetuning on this
data.

Finally, we implemented our current version of the rendering step, which uses a consistent font size
and adds new lines where necessary so that the text is rendered legibly and at a consistent scale in a
224x224 pixel image (see Figure 3).

5.3.3 Projection heads and new loss function

With this new data, we unfortunately still observed no progress on the loss, so we looked to other
papers involving contrastive learning, such as CLIP and simCLR, for inspiration.

Our first change was changing our loss function from MSE to NT-Xent, which simCLR showed
performed well for contrastive learning. For an in-depth explanation of NT-Xent loss, see Chen et al.
(2020).

Another new technique we implemented was adding a projection head layer that would project both
the ViT CLS embeddings and the BERT text embeddings to a smaller dimension and calculate the
loss between those smaller vectors. Supposedly, having a smaller projection layer makes it easier for
two representations to become aligned.

The default size for both the ViT and BERT embeddings is 768, and after trying various values for
a smaller projection layer, ranging from 128 to 512, we observed some progress in the loss for a
projection dimension of 512.

5.3.4 Extended training, learning rate scheduling, and score mode

Thus far we had been training all of our models for 5 epochs but with various learning rates and
weight decay values. We finally found a configuration that seemed to work, with the 512-dimensional
embedding projection space, the NT-Xent loss function, and a learning rate of 1e-3. For this model,
we continued training for 30 epochs with an additional learning rate exponential decay with a gamma
value of 0.9. At this point the loss had decreased from 1.3865 on the validation set to 1.2158 and
roughly stabilized.

We ran this on the test set, and yet we still saw no progress made. At this point, we re-examined how
we got the final classification decision and looked into the logits themselves. We made a modification
for the BERT model to output a score between 0 and 1 for the final classification decision and we
wrote a function to grid-search for the optimal threshold for accuracy and precision. Using this new
method, we were able to achieve positive results!

5.4 Results

Given that we modified the final model to use a score mode plus threshold gating, we modified the
baselines to use the same method to make a fair comparison. Results reported here reflect the best
results obtained using the score mode (which was always at least as good as the original classification
performance).

Dataset Model Accuracy Precision

Obfuscated Text
BERT 0.494 0.494

OCR + BERT 0.595 0.559
Vision-enhanced BERT (ours) 0.572 0.598

Original Text BERT 0.852 0.824

Table 1: Comparison of model accuracy and precision on two datasets

Our model improves upon the BERT baseline by 7.8% on accuracy and 10.4% on precision. We
underperform the OCR + BERT baseline on accuracy by 2.3% but we beat it on precision by 3.9%.
Overall, we achieved our goal of recovering some performance using a vision model to enhance our
BERT classifier. Moreover, the fact that we were able to achieve roughly on-par performance with a
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professionally developed OCR tool suggests that our approach is promising. With further exploration
in text representation in rendering and data augmentation for further alignment between the ViT
and BERT embeddings, we can likely do even better. However, we are still far from the BERT’s
original performance on the original text, which suggests that there is significant headroom for future
improvements.

6 Analysis

One crucial area for our method is the quality of embeddings. While we were able to steer our ViT
model towards some level of alignment with the BERT embeddings, it is still not quite there. Below
are some visualizations of the embeddings for different experiments we ran.

Figure 5: Pretrained ViT
Figure 6: Finetuned ViT with 128-dim projec-
tion space

Figure 7: Finetuned ViT with 512-dim projec-
tion space, trained for 5 epochs

Figure 8: Finetuned ViT with 512-dim projec-
tion space, trained for 30 epochs

Figure 9: Comparison of various ViT models against BERT embeddings. The left figures show a
dimensionally reduced representations of all of the ViT embeddings for the validation set. The right
figures show dimensionally reduced representations of all the BERT embeddings for the validation
set. We aspire to have them be the same.

Confusingly, we see that while Figure 8 arguably looks furthest from the associated BERT embeddings
we are striving towards, it has the best performance. It is also possible that while the other three
representations occupy more volume like the BERT embeddings, they may not actually match in
terms of individual embeddings. Overall, the ViT embeddings are not very much aligned with the
BERT embeddings at all, which shows us that there is a lot of room for improvement. Theoretically,
if we are able to achieve more accurate alignment, we should see a great boost in performance.

7 Conclusion

We introduce a new vision-enhanced BERT model for obfuscated text abuse detection. We demon-
strated significant limitations of a vanilla BERT model when faced with obfuscated text and presented
a new paradigm. Our model, a Vision-enhanced BERT model that uses contrastive learning to align
ViT image embeddings with text embeddings from a fixed BERT model, shows a 7.8% improvement
in accuracy and 10.4% improvement in precision over the original model. These results were on par
with Python’s pytesseract OCR tool, which suggests that our approach is a promising one.

In the future, given more exploration in improving the alignment between ViT and BERT embeddings,
there is much headroom in further enhancing a BERT model’s performance on obfuscated text using
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vision. Some avenues of future work might include using various data augmentation techniques to
transform the renderings of text so that the ViT model becomes more robust against different kinds of
obfuscations (perhaps scaling and warping could be useful after all, as long as the ViT model is able
to learn that they are all the same underlying text). It could be useful to explore the literature on how
OCR models are trained and adapt those techniques to the finetuning of the ViT model. It would also
be interesting to evaluate a Vision-enhanced BERT model on ASCII art obfuscations.

8 Ethics Statement

Suppose we are to deploy such a classifier into production for a social media platform. One ethical
challenge could be potential over-enforcement or under-enforcement due to misclassification or
choice of operating point. Over-enforcement might look like excessive censorship against users and
under-enforcement may leave potentially harmful or violence-inciting content on the platform. As
the engineers, we would have to be careful in the development process to mitigate as many false
positives and false negatives as possible. Additionally, if we use a classifier that outputs a score and
we need to choose a threshold above which a piece of text is considered harmful, we would have
to carefully consider what operating point that is. We would have to strike a fair balance between
precision and recall to enforce at just the right level to keep users content and to prevent abuse. One
way to approach this might be to measure the exact volume of comments that are false positives and
false negatives and make a qualitative judgment based on that study. For instance, it is likely that
almost all comments on the platform are good comments and very few are bad. In this case, it might
be allowable to have a higher false positive rate because the proportion of false positives relative to
the entire pool may not be that high.

Another more specific ethical challenge could be evaluating fairness on various textual terms relating
to protected groups like those based on gender, sexuality, race, etc. For instance, we want to be fair
when classifying comments that contain the words "man" vs. "woman", or various LGBT terms
like "gay" or "lesbian" compared with comments that do not contain those words. To address this
issue, we could sample a representative subset of the daily comment traffic coming into the model
and run an analysis on various categories of protected groups to determine whether or not there is an
imbalance. If there is, we could address the problem by augmenting the training data to include more
or less comments containing such a term that is over- or under-enforced by the current model.
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