
Forticode: A Benchmark for Evaluating the
Robustness of Code Generation Models Against

Adversarial Syntax Preserving Mutations
Stanford CS224N Custom Project

Amrit Baveja
Department of Computer Science

Stanford University
abaveja@stanford.edu

Anant Singhal
Department of Computer Science

Stanford University
saanant@stanford.edu

Abstract

As code generation models continue to grow in size, the likelihood of problems
in benchmarks like HumanEval and MBPP being present in their training data
increases. These benchmarks, which primarily consist of common computer
science problems, may not provide a fair assessment of the models’ capabilities.
Additionally, pass@ scores, although somewhat useful for relative comparison, do
not offer insights into the specific aspects of code generation where the models
struggle. To address these limitations, we propose Forticode, a new benchmark
that evaluates the performance of code generation models based on their robustness
against adversarial syntax preserving mutations. We implemented nearly 50 syntax
preserving AST transformations and instruction mutations that can be applied
to HumanEval and MBPP code examples. By comparing the benchmark results
of CodeLlama2 Instruct and Meta Llama3, we found that while CodeLlama2
generally performs worse in completing code with semantic mutations, it exhibits
surprising resistance to instruction token replacement, variable obfuscation and
renaming. This suggests that Codellama 2 may be better equipped to handle less
readable code. Forticode provides a novel approach to assessing the robustness and
generalization capabilities of code generation models, offering valuable insights
beyond traditional evaluation metrics.

1 Key Information to include

• Mentor: Rashoon Poole

• External Collaborators (if you have any): Azalia Mirhoseini (SAIL)

• Sharing project: No

2 Introduction

In recent years, the development of large language models trained on source code has opened up new
possibilities for automating and enhancing various aspects of software development. These advanced
models can streamline time-consuming and repetitive tasks, such as debugging and generating
documentation, by utilizing sophisticated algorithmic techniques (Barenkamp et al., 2020). They also
enable structured analysis of large datasets, revealing hidden patterns and novel insights that can
greatly improve the efficiency and effectiveness of software engineering practices. (Barenkamp et al.,
2020) The impact of these models goes beyond routine tasks, as they have also shown promise in the
area of test development (Battina, 2019). Empirical studies have demonstrated the transformative
potential of these models. For example, one recent study found that developers who used an AI pair

Stanford CS224N Natural Language Processing with Deep Learning

programming tool completed tasks 55.8% faster than those who did not use the tool (Battina, 2019).

The last few months have seen a wave of innovative code models from both commercial and
open-source initiatives. OpenAI’s Codex model, released a couple of years ago, set a notable
benchmark in this field, showcasing the potential of large language models for source code. The
evaluation of Codex used the HumanEval dataset (Chen et al., 2021), a carefully curated collection of
164 handcrafted programming problems designed to test a wide range of skills, such as language
comprehension, logical reasoning, algorithmic proficiency, and basic math. Each problem in the
HumanEval dataset includes a function signature, documentation, implementation body, and a
comprehensive set of unit tests, with an average of 7.7 tests per problem. (Chen et al., 2021)

To measure the performance of code models on the HumanEval benchmark and similar
datasets, the pass@k metric has become the standard. This metric represents the percentage of
problems for which the model can generate a solution that successfully passes all associated unit tests
within a specified number of attempts (k). (Chen et al., 2021) While the pass@k metric provides
a high-level indication of a model’s skill, it lacks the granularity needed to pinpoint the specific
strengths and weaknesses of individual models. The binary nature of the metric—a problem is either
solved or unsolved—doesn’t capture the nuances in difficulty across different problems and the
diverse set of skills required to solve them effectively. Moreover, the pass@k metric doesn’t account
for the potential memorization of solutions by the models, which can lead to inflated performance
scores and hinder the accurate assessment of a model’s true capabilities.

Recent advances in the field have introduced more sophisticated models that surpass the performance
of Codex. Notable examples include DeepSeek Coder and CodeQwen 1.5, both of which have
reported impressive results on the HumanEval and MBPP benchmarks.(DeepSeek-AI et al., 2024)
(Bai et al., 2023) However, the evaluation of these models relies heavily on the pass@k met-
ric, which, as discussed earlier, has limitations in terms of granularity and robustness to memorization.

The problem of memorization and data contamination poses a significant challenge in accu-
rately assessing code models. While datasets like HumanEval try to mitigate this issue by using
simple, handwritten problems, recent research has shown that code models still exhibit a concerning
degree of memorization (Yang et al., 2024). A study conducted on a 1.5B parameter model found that
a worrying 57% of the generated outputs contained memorized code snippets from the training data.
This finding highlights the need for more robust evaluation methods that can effectively distinguish
between genuine understanding and mere memorization. Another critical aspect of evaluating code
models is the coverage of programming concepts within the benchmark datasets. A recent study
Yadav and Singh (2024) analyzed the distribution of programming concepts in the HumanEval and
MBPP datasets, revealing that five main concepts—Mathematics, Control Flow and Conditions,
Basic Data Structures, Variables and Data Types, and Built-in Functions—account for over 70%
of the problems. This imbalance and lack of comprehensive coverage raise concerns about the
generalizability of the models’ performance to real-world programming scenarios.

To address these limitations and provide a more comprehensive and robust evaluation framework
for code models, we introduce Forticode. This novel benchmarking system uses adversarial
mutations to enable a granular assessment of code models’ capabilities while mitigating the impact
of memorization. The key contributions of Forticode are:

• Introducing a benchmarking process that allows for a fine-grained analysis of a model’s code
completion abilities across various programming features. This process can be seamlessly
integrated with existing code completion datasets, including HumanEval and MBPP.

• Developing a comprehensive set of nearly 50 rigorously tested abstract syntax tree mutations
that preserve semantic equivalence, enabling the generation of diverse and challenging test
cases.

• As far as we know, the first framework to apply adversarial robustness to avoid memorization
in benchmarking language models.

• Creating an open-source framework that can be easily extended to accommodate the bench-
marking of additional programming features and concepts, promoting collaboration and
continuous improvement within the research community.

2

By using Forticode, we aim to provide a more accurate and nuanced understanding of the strengths
and weaknesses of different code models. This granular evaluation approach will help researchers
and practitioners make informed decisions when selecting and deploying code models in various
software engineering contexts. Furthermore, the insights gained from Forticode will guide the
development of future models, focusing on addressing the identified limitations and enhancing their
overall performance and generalizability.

3 Related Work

TThe field of code modeling and evaluation has witnessed significant advancements in recent years,
with researchers focusing on various aspects of model performance, robustness, and benchmarking.
In this section, we discuss some of the most relevant and influential works that have shaped the
current state of the art. Liu et al. Liu et al. (2023) introduced a novel approach to evaluate large
language models for code generation by combining LLM-based and mutation testing techniques.
Their methodology aimed to generate a more comprehensive set of test cases, addressing the
limitations of existing benchmarks like HumanEval. Interestingly, their study revealed significant
issues with the HumanEval dataset, including incomplete or incorrect test cases. By providing a
corrected version of the dataset, they observed a 19.3% to 28.9% reduction in the pass@k metric
across the models tested, highlighting the importance of rigorous evaluation and the impact of
benchmark quality on model performance assessment. Yadav et al. Yadav and Singh (2024)
proposed PythonSaga, a new benchmark designed to evaluate code-generating large language models.
They crafted a set of 185 problems that cover a wide range of programming concepts, such as
object-oriented programming, dynamic programming, and data structures. This approach aimed
to mitigate the bias towards basic programming features found in previous benchmarks. While
PythonSaga offers a more comprehensive representation of a model’s performance compared to
HumanEval, it has limitations. The human-written examples are time-consuming to create and
may introduce bias. Moreover, establishing causality between specific code concepts and model
performance remains challenging.

Li et al. (2022) explored the use of gradient-based adversarial attacks to assess the robust-
ness of code classification models. Rather than using discrete and known mutations, they created a
continuous and differentiable embeddings space to find candidates for gradient-based attacks that
break the model’s ability to classify the underlying source code. Their approach focused on renaming
identifiers to avoid breaking semantic correctness. The authors found that incorporating a specific
adversarial training process can help improve accuracy, but vanilla adversarial training alone is not
sufficient to significantly reduce accuracy.

While these studies have made significant contributions to the field, they also expose the
limitations of current benchmarking practices and the need for more comprehensive and granular
evaluation frameworks. The reliance on human-written examples, the difficulty in establishing
causality between specific code concepts and model performance, and the limited scope of code
transformations used in robustness assessments are some of the key challenges that need to be
addressed.

Forticode builds upon the insights gained from these previous works and aims to provide a
more rigorous and comprehensive evaluation framework for code models. By leveraging adversarial
mutations and a wide range of programming concepts, Forticode enables a granular assessment
of model performance while mitigating the impact of memorization and data contamination. Our
approach extends the scope of code transformations beyond identifier renaming, allowing for a more
thorough evaluation of model robustness. Furthermore, the open-source nature of our framework
facilitates collaboration and continuous improvement within the research community.

4 Approach

4.1 High-Level Overview

Let us assume we have a pretrained model M and our dataset D, which can be either HumanEval or
MBPP. The following steps outline our approach:

3

1. Seed Selection: Prune D to find programming problems S, where S ⊆ D, with known
solutions that maximize a seed selection criteria function.

2. Canonical Solution Estimator: For a given problem s, sample kc = 200 solutions from
the model and find the correct solution with the maximum cumulative log probability of the
generated tokens. If no such solution can be found, remove that seed from consideration.

3. Mutations: Process the canonical solution and transform it into an AST. If the mutation
operates directly on the source code, there is no need for AST transformation, and trans-
formation sites are identified iteratively. If the mutation operates on the AST, walk the
tree in depth-first order and detect valid transformation sites. Apply the mutation to each
transformation site to produce mutated versions of the original source code.

4. Stem Parsing: Calculate the mutation point using the stem parsing algorithm and truncate
the original and mutated code to the mutation point, yielding two prefixes.

5. Sampling: Sample ks = 200 sequences from the model, prompting it to complete the
original stem. Concatenate each sequence with its original stem to yield the full solution.
Repeat the process with the mutated stem.

6. Scoring: Evaluate each sequence for correctness and calculate the pass@1, pass@5, and
pass@10 scores for the original and mutated sequences. Provide the ratio of the pass@k
scores between mutated and original, as well as the difference, to compare the model’s
performance relative to the baseline.

4.2 Seed Selection

Although HumanEval is a relatively small dataset (n = 168), each mutation can produce several
new sequences that need to be tested, making the application of our benchmark to the entire dataset
computationally expensive. To address this, we find k seeds that are likely to yield the most applicable
mutations by computing a seed selection criteria function for each ground truth solution provided in
the dataset. We have implemented the following metrics using the Radon library:

4.2.1 Cyclomatic Complexity

Cyclomatic complexity measures the number of linearly independent paths through a program’s
source code. McCabe (1976) It is calculated using the following formula:

CC = E −N + 2P (1)

where E is the number of edges in the control flow graph, N is the number of nodes, and P is the
number of connected components.

4.2.2 Halstead Volume

Halstead volume is a measure of the size of a program based on the number of operators and operands.
Fenton and Pfleeger (2014) It is calculated using the following formula:

V = N log2 n (2)

where N is the total number of operators and operands, and n is the number of unique operators and
operands.

4.2.3 Logical Lines of Code

Logical lines of code (LLOC) is the number of executable statements in the source code, excluding
comments and blank lines.
To find the seeds, we score each sequence and order them in descending order based on the seed
criteria function. We then take the first k seeds.

4.3 Canonical Solution Estimator

To determine the types of mutations that prevent the model from completing the rest of the sequence,
it is crucial to start from a sequence that the model can generate confidently. Given a seed, we

4

sample kc = 200 candidate sequences using only the prompt from the HumanEval dataset, with
temperature = 0.7 and top-p = 0.95. We choose a temperature of 0.7 to encourage solution diversity
in the canonical phase and use top-p = 0.95 following previous work Liu et al. (2023).

1 """
2 Complete the rest of the below function such that it is self -contained

and passes the corresponding tests. Write your code in a markdown
code block , ending your response with ```. The function does not

execute any tests of its logic. Don't include any testcases or
evaluate your response .\n\n

3 "```python\n"
4 f"{stem.strip ()}\n"
5 "```"
6 """

Listing 1: Canonical Solution Estimation Prompt

We then score each candidate based on its correctness using the ground truth test cases from the
EvalPlus dataset and execute the provided code in a security sandbox, similar to the approach used by
OpenAI Liu et al. (2023). To improve processing speed, we run each solution on a separate CPU
core via multiprocessing. The solutions are then cached to avoid recalculation in future runs. We
filter down the correct solutions and find the solution with the maximum cumulative log probability,
calculated using the following formula:

logP (s) =

n∑
i=1

logP (ti|t1, . . . , ti−1) (3)

where s is the generated sequence, n is the number of tokens in the sequence, and ti is the i-th token.
We eliminate seeds that generate less than 10 out of 200 correct samples, as we are not confident
in the model’s ability to generate that code. The canonical solution is then postprocessed using
Python’s AST module to convert it into a syntax tree and back to code, ensuring consistent formatting
with the outputs of the mutation transformers. This process adds parentheses around implicit tuples,
normalizes strings to single quotes, and eliminates double line breaks.

4.4 Mutations

We apply each of our mutations to the canonical solution. The implemented mutations are categorized
into code-based and comment/documentation-based transformations.

4.4.1 Code-based Mutations

A full list of all code-based mutations is in Appendix A. Most code-based transformations are
implemented using the visitor design pattern. They are configured to look for certain types of nodes
in the abstract syntax tree and replace them deterministically with new nodes.

1 class ArrayToDictVisitor(OneByOneVisitor):
2

3 def is_transformable(self, node):
4 return (
5 isinstance(node, ast.Assign)
6 and isinstance(node.value, ast.List)
7 and len(node.value.elts) == 0
8)
9

10 def transform_node(self, node) -> list[ast.AST] | ast.AST:
11 return ast.Assign(
12 targets=node.targets, value=ast.Dict(keys=[], values=[],

ctx=ast.Load())↪→

5

13)
14

15

16 class ArrayToDictTransformer(OneByOneTransformer, category=CRT.dicts):
17 @property
18 def visitor(self) -> Type[OneByOneVisitor]:
19 return ArrayToDictVisitor
20

4.4.2 Comment/Documentation-based Mutations

Some mutations are string-based transformations, such as adding comments:

1 class BlockCommentsTransformer(RegisteredTransformation,
category=CRT.code_style):↪→

2

3 @property
4 def comment(self):
5 return "# I am a block comment\n# I am a block comment"
6

7 @property
8 def deterministic(self):
9 return True # Set to False to generate different variations

10

11 def transform(self, code: str):
12 new_lines = code.split("\n")
13 results = []
14 tree = asttokens.ASTTokens(code, parse=True).tree
15 docstring_lines = get_docstring_ranges(tree)
16

17 for i, line in enumerate(new_lines, start=1):
18 if is_line_within_docstring(i, docstring_lines):
19 continue
20 if len(line.strip()) == 0:
21 continue # Skip empty lines
22 indentation_level = len(line) - len(line.lstrip())
23 if indentation_level > 0:
24 copied = new_lines.copy()
25 indented_comment = [
26 " " * indentation_level + cmt for cmt in

self.comment.split("\n")↪→

27]
28 copied.insert(i - 1, "\n".join(indented_comment))
29 results.append("\n".join(copied))
30

31 return results
32

33 @property

6

34 def attack_func(self) -> callable:
35 return self.transform

4.5 Docstring Mutations

While most of the mutations are trivial, it is worth to explain our process in determining docstring
replacement candidates. To find semantically equivalent expressions of a given function’s docstring
d, we utilize WordNet, a lexical database for the English language that groups words into sets of
synonyms called synsets. Given a function f with a docstring d, the process involves the following
steps:

1. Tokenization and Part-of-Speech Tagging: Split d into individual words and identify their
respective parts of speech using a POS tagger, such as the one provided by the NLTK library.

2. Synonym Extraction: For each word in d, query WordNet to obtain a list of synonyms that
share the same part of speech.

3. Replacement and Generation: Replace each word in d with its synonyms iteratively to
generate multiple semantically equivalent expressions. Ensure that replacements maintain
grammatical consistency and meaning.

4. Semantic Similarity Verification: Compute the semantic similarity between the original
and generated docstrings using metrics like cosine similarity on their word embeddings,
obtained from models such as Word2Vec or BERT. This step ensures that the newly generated
docstrings retain the original meaning.

Mathematically, if d = (w1, w2, . . . , wn) where wi are words in the docstring, and S(wi) denotes
the set of synonyms for wi, the set of semantically equivalent docstrings D′ can be defined as:

D′ = {(w′
1, w

′
2, . . . , w

′
n) | w′

i ∈ S(wi) ∪ {wi},∀i ∈ [1, n]}

Applying this to each candidate yields a list of mutations.

4.6 Choosing Mutatations

These mutations were chosen because each tests a specific aspect of code generation and understand-
ing. Although not exhaustive, they provide granular detail as a starting point.

All implemented mutations are available in our GitHub repository. After applying a mu-
tation, the solution is postprocessed to ensure stylistic parity, such as removing excessive
newlines.

4.7 Stem Parsing

We attempt to find the first differing line between the original and mutated source code, with some
caveats:

• Differing newlines are ignored.

• Mutations that generate multiple lines extend the mutated prefix to the end of their mutation.
For example, if a for loop declaration is replaced with a counter initialization and a while
statement, even though the first differing line is technically the counter, we extend the
mutated prefix to the while statement.

To mimic the style a human would write in, we apply the popular Python "black" formatter to the
source code, making it standardized.

7

4.8 Sampling

For the mutated and original prefixes, we use nucleus sampling to sample ks = 100 candidate sample
solutions to complete the code after the prefix. We use the following prompt:

1 """
2 Complete the body of the below Python function such that it is self -

contained and passes the corresponding tests. Write your code in a
markdown code block , ending your response with ```. Don't include
any testcases in your response.

3 ```python
4 f"{ definition.strip ()}
5 ```
6 """

Listing 2: Pass@ Completion Prompt

We sample at temperature 0.5 following previous work, and use top-p = 0.95, as we did before. We
use the VLLM library to perform batched inference using FlashAttention, which is more efficient.

4.9 Scoring

For both original and mutated sequences, we evaluate them against the EvalPlus ground truth, similar
to the canonical solution analysis. We use the pass@k metric introduced in the OpenAI paper ?:

pass@k := EProblems

[
1−

(
n−c
k

)(
n
k

)]

where n is the number of problems, c is the number of correct solutions, and k is the argument.

We calculate the scores of the original sequence at pass@1, pass@5, and pass@10, as well as the
mutated, and then calculate the ratios between the mutated and original scores, as well as their
difference.

5 Experiments

This section contains the following.

Model Selection

For our experiments, we chose to compare the performance of CodeLlama2-7B-Instruct and Meta’s
Llama3 8B model. These models were selected for several reasons:

1. They represent different generations of the same base model, making for an interesting
comparison.

2. CodeLlama2 has been specifically fine-tuned on code, allowing us to investigate whether this
provides greater robustness against specific mutation styles compared to the general-purpose
Llama3 model.

Dataset

We used the HumanEval dataset as our primary data source for the experiments. While we considered
using the MBPP dataset, we found that it has less robust tests based on our own experiments. We also
explored using EvalPlus’s dataset, which offers more comprehensive tests. However, especially with
MBPP, we observed that EvalPlus imposed tests on requirements that were not explicitly defined in
the prompt, but may have been implied.

We used k=5 seeds because of computational constraints

8

Computational Resources

For our experiments, we utilized the following computational resources:

• 2x NVIDIA H100 GPUs for our VLLM server

• A machine with 64 Intel Xeon Platinum 8470 vCPUs and 128GB of RAM

Evaluation Metrics

We evaluated our models at temperature settings of 0.5 and calculated pass@1, pass@5, and pass@10
metrics. We hypothesized that higher pass@k scores should correspond with higher ratios across the
board as pass@k only measures if one solution passes the test after k samples.

5.1 Results

The pass@1 ratio scores were as follows, when averaged by mutation across candidates. We found
that the same trends we saw in pass@1 were present in pass@5 and pass@10, as you can see in the
Appendix. In this section, because of this, we will only discuss pass@1 scores.

5.2 Arrays

Figure 1: Array Mutations Pass@1 Ratio

9

5.3 Booleans

Figure 2: Boolean Mutations Pass@1 Ratio

10

5.4 Code Style

Figure 3: Code Style Pass@1 Mutation Ratios

5.5 Docstrings

Figure 4: Docstring Pass@1 Mutation Ratios

11

5.6 Conditionals

Figure 5: Conditional Pass@1 Mutation Ratios

12

5.7 Dictionaries

Figure 6: Dicts Pass@1 Mutation Ratios

13

5.8 Loops

Figure 7: Loops Pass@1 Mutation Ratios

14

5.9 Math

Figure 8: Math Pass@1 Mutation Ratios

15

5.10 Numbers

Figure 9: Numbers Pass@1 Mutation Ratios

16

5.11 Strings

Figure 10: Strings Pass@1 Mutation Ratios

5.12 Summary

6 Analysis

Arrays Category

CodeLlama 2 7B Instruct has lower pass@1 ratios compared to Meta LlaMa 3 8B in all mutations.
For example: LenToGeneratorTransformer (0.463 vs. 0.816).

Booleans Category

CodeLlama 2 7B Instruct has consistently lower pass@1 ratios. For example: FirstInversionTrans-
former (0.358 vs. 0.750).

Code Style Category

CodeLlama 2 7B Instruct shows higher pass@1 ratios in several mutations, particularly those involv-
ing stylistic changes and variable handling. - Higher scores for IdentifierRenameTransformer (0.850
vs. 0.811), IdentityAssignmentTransformer (0.800 vs. 0.741), and IdentifierObfuscateTransformer
(0.850 vs. 0.721). For example: InlineCommentsTransformer (0.793 vs. 0.738).

Conditionals Category

Meta LlaMa 3 8B outperforms CodeLlama 2 7B Instruct. For example: IfToConditionalTransformer
(0.425 vs. 0.744).

17

Dicts Category

Meta LlaMa 3 8B generally has higher pass@1 ratios. For example: DictInitializerUnpackTrans-
former (0.325 vs. 0.611).

Loops Category

Meta LlaMa 3 8B consistently outperforms CodeLlama 2 7B Instruct. For example: ForToWhile-
Transformer (0.321 vs. 0.709).

Math Category

Meta LlaMa 3 8B shows higher pass@1 ratios across all mutations. For example: AdditionInversion-
Transformer (0.454 vs. 0.754).

Numbers Category

Meta LlaMa 3 8B outperforms in most mutations, with notable differences. For example: IntegerRe-
placementTransformer (0.315 vs. 0.816).

Strings Category

Meta LlaMa 3 8B generally has higher pass@1 ratios. For example: StringConcatToFStringTrans-
former (0.347 vs. 0.770). Notable exception: StringToByteStringTransformer (both 0.000).

Docstring Category

CodeLlama 2 7B Instruct shows a slight edge with a pass@1 ratio of 0.56 compared to Meta LlaMa 3
8B’s 0.53.

Suggested Model Competency

Meta LlaMa 3 8B Superiority

Meta LlaMa 3 8B generally outperforms CodeLlama 2 7B Instruct across most categories, particularly
in Arrays, Booleans, Conditionals, Dicts, Loops, Math, and Numbers. This suggests that Meta LlaMa
3 8B has a higher competency in handling a variety of transformations, especially those involving
complex data structures and logical operations.

Code Style Strengths for CodeLlama

In the Code Style category, CodeLlama 2 7B Instruct shows competitive or superior performance
in specific mutations like BlockCommentsTransformer and InlineCommentsTransformer. It also
has significantly higher scores in handling variable renaming and obfuscation, as shown by Identi-
fierRenameTransformer (0.850 vs. 0.811), IdentityAssignmentTransformer (0.800 vs. 0.741), and
IdentifierObfuscateTransformer (0.850 vs. 0.721).

Overall Competency

The overall trend suggests that Meta LlaMa 3 8B is more robust and reliable across a wider range of
transformations, highlighting its superior model competency. CodeLlama 2 7B Instruct, while having
specific strengths in code style and variable handling, generally lags behind in terms of versatility
and performance.

These findings suggest that while both models have their strengths, Meta LlaMa 3 8B is generally more
competent and versatile, making it better suited for handling varied and obfuscated code. Its consistent
performance across diverse categories indicates a higher robustness and reliability, highlighting its
superiority in managing complex programming transformations compared to CodeLlama 2 7B
Instruct.

18

Possible Reasons for Increased Performance in Code Style

The increased performance of CodeLlama 2 7B Instruct in the Code Style category might be attributed
to its exposure to more diverse code samples, as it is specifically fine-tuned for code completion.
According to Yang (2024), it is also possible that obfuscated or renamed code was present in the
training data, which would suggest a higher probability of including those tokens in the output. Yang
et al. (2024) Further analysis is needed to understand this more in-depth, but this provides a good
starting point for understanding the strengths of CodeLlama 2 7B Instruct in handling stylistic and
obfuscated code transformations.

7 Conclusion

In this paper, we introduced Forticode, a novel benchmarking framework that evaluates the robustness
and generalization capabilities of code generation models against adversarial syntax-preserving
mutations. By implementing nearly 50 AST transformations and instruction mutations, Forticode
enables a granular assessment of model performance across various programming concepts and
features. This approach addresses the limitations of existing benchmarks, such as HumanEval
and MBPP, which may be susceptible to data contamination and lack comprehensive coverage of
programming concepts. Our experiments, comparing the performance of CodeLlama2 Instruct and
Meta Llama3, revealed interesting insights into the strengths and weaknesses of these models. While
Meta Llama3 generally outperformed CodeLlama2 in completing code with semantic mutations,
CodeLlama2 exhibited surprising resistance to instruction token replacement, variable obfuscation,
and renaming. This suggests that CodeLlama2 may be better equipped to handle less readable code,
possibly due to its exposure to more diverse code samples during fine-tuning. The main achievements
of our work include:

1. Developing a comprehensive set of rigorously tested AST mutations that preserve semantic
equivalence, enabling the generation of diverse and challenging test cases.

2. Providing a granular evaluation approach that offers valuable insights beyond traditional
metrics like pass@k scores.

3. Demonstrating the effectiveness of Forticode in identifying specific strengths and weaknesses
of code generation models, as exemplified by the comparison between CodeLlama2 and
Meta Llama3.

However, our work also has some limitations:

1. The current set of mutations, while diverse, may not cover all possible programming concepts
and features exhaustively.

2. The computational resources required to apply Forticode to large datasets can be substantial,
limiting the number of seeds that can be practically evaluated.

3. The insights gained from Forticode are based on a comparison of two specific models, and
further research is needed to generalize these findings to other code generation models.

Future work should focus on:

1. Expanding the set of mutations to cover a wider range of programming concepts and features,
further enhancing the comprehensiveness of the evaluation.

2. Optimizing the computational efficiency of Forticode to enable its application to larger
datasets and more diverse code generation models.

3. Investigating the relationship between model architecture, training data, and performance on
specific mutation categories to gain a deeper understanding of the factors that contribute to
model robustness and generalization.

4. Exploring the potential of using insights from Forticode to guide the development of more
robust and generalizable code generation models.

In conclusion, Forticode represents a significant step forward in the evaluation of code generation
models, providing a novel approach to assess their robustness and generalization capabilities. By

19

offering granular insights into model performance across various programming concepts and features,
Forticode complements existing benchmarks and contributes to a more comprehensive understanding
of the strengths and limitations of code generation models. As the field continues to evolve, we
believe that Forticode will play an important role in guiding the development of more advanced and
reliable code generation models.

8 Ethics Statement

8.0.1 Misuse and Unintended Consequences

• Forticode’s ability to generate a wide range of mutations and test cases could potentially be
misused by bad actors to find vulnerabilities in code and exploit them for malicious purposes.
For example, attackers could use Forticode to automatically generate adversarial examples
that bypass security checks or exploit weaknesses in software systems. Moreover, the
granular insights gained on model capabilities could be used to develop more sophisticated
attacks or to target specific systems more effectively.

• The increased model robustness resulting from Forticode’s testing could also be used to
generate more convincing code that perpetuates misinformation, disinformation, scams, and
spam. If the language models become better at generating coherent and persuasive text, they
may be employed to create fake news articles, phishing emails, or other forms of deceptive
content that are more difficult to detect and combat.

• Mitigation: To mitigate these risks, it is crucial to put appropriate access controls and
usage restrictions in place for Forticode. This may involve implementing authentication and
authorization mechanisms to ensure only authorized users can access the tool and its results.
Additionally, usage monitoring and logging should be employed to detect and prevent
misuse. It is also important to maintain accountability and transparency on how Forticode is
being used and shared, with clear guidelines and policies governing its appropriate use.

8.0.2 Privacy and Security

• The code repositories used to train and test the models in Forticode may contain sensitive
data or private information that could be inadvertently leaked or exposed. For example,
if the code contains hard-coded API keys, passwords, or other credentials, they may be
included in the generated mutations and test cases, potentially compromising the security of
the associated systems or services. Similarly, if the code contains personal information such
as names, addresses, or social security numbers, this data could be unintentionally disclosed
through the generated outputs.

• Forticode’s automated mutation and testing capabilities could also be used to find and exploit
security vulnerabilities in the code itself. By systematically generating a wide range of test
cases and probing the code for weaknesses, attackers could use Forticode to discover and
exploit vulnerabilities such as buffer overflows, injection attacks, or memory corruption
issues. This could compromise the integrity and confidentiality of the systems running the
code, as well as any associated data or resources.

• Mitigation: To address these privacy and security risks, it is essential to ensure that all code
and data used in Forticode is properly sanitized and anonymized. This involves removing
any sensitive information such as credentials, keys, or personal data from the code before
using it for training or testing. Additionally, strict data governance policies should be put in
place to ensure that all data is handled securely and in compliance with relevant regulations
such as GDPR or HIPAA. Access to the code and data should be restricted to authorized
personnel only, and all outputs generated by Forticode should be carefully reviewed for any
potential leaks or disclosures before being shared or published.

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,

Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng

20

Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou,
Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Marco Barenkamp, Jonas Rebstadt, and Oliver Thomas. 2020. Applications of ai in classical software
engineering. AI Perspectives, 2.

Dhaya Sindhu Battina. 2019. Artificial intelligence in software test automation: A systematic
literature review.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021.
Evaluating large language models trained on code. arXiv:2107.03374 [cs].

DeepSeek-AI, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Li Y K, Wenfeng Liang, Fangyun Lin, Liu A X,
Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong
Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong
Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun,
Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu,
Y Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, Xu R X, Yanhong Xu, Dejian
Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B Zhang, Haowei Zhang, Lecong Zhang, Liyue
Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao
Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. 2024. Deepseek llm: Scaling
open-source language models with longtermism. arXiv (Cornell University).

Norman E. Fenton and Shari L. Pfleeger. 2014. An analysis of the design and definitions of halstead’s
metrics. ResearchGate.

Yiyang Li, Hongqiu Wu, and Hai Zhao. 2022. Semantic-preserving adversarial code comprehension.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.

Thomas J. McCabe. 1976. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320.

Ankit Yadav and Mayank Singh. 2024. Pythonsaga: Redefining the benchmark to evaluate code
generating llm.

Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, DongGyun Han, and David Lo.
2024. Unveiling memorization in code models.

A Appendix

A.1 Transformation Functions

Table 1: Mutation Pass Ratios

21

http://arxiv.org/abs/2309.16609
https://doi.org/10.1186/s42467-020-00005-4
https://doi.org/10.1186/s42467-020-00005-4
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4004324
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4004324
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arxiv.2401.02954
https://doi.org/10.48550/arxiv.2401.02954
https://www.researchgate.net/publication/260843757_An_Analysis_of_the_Design_and_Definitions_of_Halstead's_Metrics
https://www.researchgate.net/publication/260843757_An_Analysis_of_the_Design_and_Definitions_of_Halstead's_Metrics
https://aclanthology.org/2022.coling-1.267.pdf
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2401.03855
https://doi.org/10.48550/arXiv.2401.03855
https://doi.org/10.1145/3597503.3639074

Mutation Name Category Functionality
LenToGeneratorTransformer arrays Converts len() calls to sum([1 for _ in arr]) expressions
ListInitializerUnpackTransformer arrays Replaces list initialization with list(*[...])
NestedArrayInitializerTransformer arrays Converts single list initialization to nested list initialization
ReverseIterationTransformer arrays Reverse iteration order in for loops
SingleElementInitializerTransformer arrays Convert an empty array initializer to [None]
StringToCharArrayTransformer arrays Converts strings to character arrays
FirstInversionTransformer booleans Inverts boolean expression, applying DeMorgan’s law
SecondInversionTransformer booleans Double inverts a boolean expression
ExpandBooleansTransformer booleans Expand a boolean to a compound expr a → (a and True)
AddParensTransformer code style Adds parentheses around expressions
ExpandAugmentedAssignTransformer code style Expands augmented assignments into full assignments
IdentifierRenameTransformer code style Renames identifiers to single letter names
IdentifierObfuscateTransformer code style Obfuscates identifiers with random 8 character strings
IdentityAssignmentTransformer code style Introduces identity assignments (e.g., x = x)
MergeStatementsTransformer code style Merges multiple statements into a single line
PrintInjectionTransformer code style Injects print statements into the code
StringQuoteDoubleTransformer code style Converts single-quoted strings to double-quoted strings
UnusedVariableTransformer code style Introduces unused variable declarations
IfToConditionalTransformer conditionals Converts compatible if statements to conditional expressions
IfToWhileLoopTransformer conditionals Converts if statements to while loops
ArrayToDictTransformer dicts Converts arrays to dictionaries
DictInitializerUnpackTransformer dicts a = {} becomes a = dict(**{})
DictToArrayTransformer dicts Converts dictionaries to arrays
EnumerateForTransformer loops Introduces enumerate() calls in for loops
ForToWhileTransformer loops Converts for loops to while loops
WhileToIfTransformer loops Converts while loops to if statements
MultiplyBy2ToBitshiftTransformer math Converts multiplications by 2 to bitshift operations
DivideBy2ToBitshiftTransformer math Converts divisions by 2 to bitshift operations
NegationToComplementTransformer math Converts negation to bitwise complement
AdditionInversionTransformer math Inverts addition operations
SubtractionInversionTransformer math Inverts subtraction operations
MultiplicationInversionTransformer math Inverts multiplication operations
DivisionInversionTransformer math Inverts division operations
ModuloInversionTransformer math Inverts modulo operations
IntegerReplacementTransformer numbers Replaces integers with equivalent expressions
IntegerBinTransformer numbers Converts integers to binary notation
IntegerOctTransformer numbers Converts integers to octal notation
IntegerHexTransformer numbers Converts integers to hexadecimal notation
EmptyArrayToStringTransformer strings Converts empty arrays to empty strings
ConstantSplittingTransformer strings Splits string constants into substrings
StringConcatToFStringTransformer strings Converts string concatenation to f-string interpolation
StringConcatToJoinTransformer strings Converts string concatenation to join() calls
StringToByteStringTransformer strings Converts strings to byte strings

A.2 All Results

Table 2: Mutation Pass Ratios

Mutation Metric CodeLlama 2 7B Instruct Meta LlaMa 3 8B

LenToGeneratorTransformer
pass@1 0.463002 0.815750
pass@5 0.696139 0.950000
pass@10 0.776494 0.980000

ListInitializerUnpackTransformer
pass@1 0.318823 0.896864

Continued on next page

22

Table 2 – continued from previous page
Mutation Metric CodeLlama 2 7B Instruct Meta LlaMa 3 8B

pass@5 0.557604 0.950000
pass@10 0.645718 0.980000

NestedArrayInitializerTransformer
pass@1 0.579679 0.765559
pass@5 0.826145 0.883834
pass@10 0.911791 0.916687

ReverseIterationTransformer
pass@1 0.597610 0.861406
pass@5 0.805207 0.950000
pass@10 0.919035 0.980000

SingleElementInitializerTransformer
pass@1 0.398883 0.706408
pass@5 0.580795 0.900000
pass@10 0.674297 0.980000

StringToCharArrayTransformer
pass@1 0.537843 0.889764
pass@5 0.787122 0.950000

pass@10 0.874049 0.980000

FirstInversionTransformer
pass@1 0.358297 0.749834
pass@5 0.580877 0.900000

pass@10 0.673613 0.980000

SecondInversionTransformer
pass@1 0.398049 0.817537
pass@5 0.582712 0.900000

pass@10 0.672912 0.980000

ExpandBooleansTransformer
pass@1 0.417219 0.802870
pass@5 0.627506 0.950000

pass@10 0.722620 0.980000

AddParensTransformer
pass@1 0.573407 0.769476
pass@5 0.793396 0.950000

pass@10 0.894053 0.980000

BlockCommentsTransformer
pass@1 0.720839 0.636216
pass@5 0.848325 0.847243

pass@10 0.940059 0.947212

InlineCommentsTransformer
pass@1 0.793305 0.737544
pass@5 0.863554 0.837897

pass@10 0.937669 0.931265

ExpandAugmentedAssignTransformer
pass@1 0.418925 0.802205
pass@5 0.620328 0.900000

pass@10 0.725022 0.980000

IdentifierRenameTransformer
pass@1 0.475012 0.811261
pass@5 0.698282 0.950000

pass@10 0.791579 0.980000

IdentifierObfuscateTransformer
pass@1 0.510324 0.720940
pass@5 0.725154 0.877631

pass@10 0.802005 0.943737

IdentityAssignmentTransformer
pass@1 0.368114 0.740871
pass@5 0.613485 0.900000

pass@10 0.708582 0.980000

MergeStatementsTransformer
pass@1 0.448034 0.791452
pass@5 0.682343 0.900000

pass@10 0.774261 0.980000

PrintInjectionTransformer
pass@1 0.719938 0.569037
pass@5 0.831939 0.778628

pass@10 0.926537 0.887008

StringQuoteDoubleTransformer
pass@1 0.758346 0.624812
pass@5 0.839112 0.835128

pass@10 0.919042 0.938992

UnusedVariableTransformer
pass@1 0.762387 0.668642
pass@5 0.837553 0.812921

Continued on next page

23

Table 2 – continued from previous page
Mutation Metric CodeLlama 2 7B Instruct Meta LlaMa 3 8B

pass@10 0.923693 0.928754

IfToConditionalTransformer
pass@1 0.425346 0.744170
pass@5 0.660239 0.900000
pass@10 0.758174 0.980000

IfToWhileLoopTransformer
pass@1 0.380125 0.819217
pass@5 0.608761 0.900000
pass@10 0.700978 0.980000

ArrayToDictTransformer
pass@1 0.448492 0.824365
pass@5 0.689496 0.900000

pass@10 0.789434 0.980000

DictInitializerUnpackTransformer
pass@1 0.324872 0.610578
pass@5 0.570019 0.900000

pass@10 0.693095 0.980000

DictToArrayTransformer
pass@1 0.473253 0.746404
pass@5 0.691870 0.900000

pass@10 0.793423 0.980000

EnumerateForTransformer
pass@1 0.329294 0.749376
pass@5 0.563670 0.900000

pass@10 0.675308 0.980000

ForToWhileTransformer
pass@1 0.321197 0.708690
pass@5 0.568611 0.900000

pass@10 0.674702 0.980000

WhileToIfTransformer
pass@1 0.398474 0.732273
pass@5 0.597639 0.900000

pass@10 0.713994 0.980000

MultiplyBy2ToBitshiftTransformer
pass@1 0.474007 0.718046
pass@5 0.683410 0.900000

pass@10 0.771696 0.980000

DivideBy2ToBitshiftTransformer
pass@1 0.358986 0.782953
pass@5 0.569318 0.900000

pass@10 0.675036 0.980000

NegationToComplementTransformer
pass@1 0.435365 0.770768
pass@5 0.649989 0.900000

pass@10 0.743598 0.980000

AdditionInversionTransformer
pass@1 0.453682 0.753644
pass@5 0.686244 0.900000

pass@10 0.772542 0.980000

SubtractionInversionTransformer
pass@1 0.439364 0.773442
pass@5 0.666324 0.900000

pass@10 0.766285 0.980000

MultiplicationInversionTransformer
pass@1 0.312128 0.786820
pass@5 0.552355 0.900000

pass@10 0.654658 0.980000

DivisionInversionTransformer
pass@1 0.326456 0.764808
pass@5 0.551496 0.900000

pass@10 0.667197 0.980000

ModuloInversionTransformer
pass@1 0.397847 0.750230
pass@5 0.629506 0.900000

pass@10 0.727091 0.980000

IntegerReplacementTransformer
pass@1 0.315303 0.816378
pass@5 0.552924 0.900000

pass@10 0.654885 0.980000

IntegerBinTransformer
pass@1 0.393742 0.782623
pass@5 0.597757 0.900000

pass@10 0.703256 0.980000

Continued on next page

24

Table 2 – continued from previous page
Mutation Metric CodeLlama 2 7B Instruct Meta LlaMa 3 8B

IntegerOctTransformer
pass@1 0.315425 0.804204
pass@5 0.548350 0.900000
pass@10 0.645568 0.980000

IntegerHexTransformer
pass@1 0.604885 0.718066
pass@5 0.824935 0.900000
pass@10 0.919144 0.980000

EmptyArrayToStringTransformer
pass@1 0.398353 0.794083
pass@5 0.594417 0.900000
pass@10 0.708748 0.980000

ConstantSplittingTransformer
pass@1 0.453009 0.788524
pass@5 0.680504 0.900000

pass@10 0.765569 0.980000

StringConcatToFStringTransformer
pass@1 0.347119 0.770496
pass@5 0.588773 0.900000

pass@10 0.688074 0.980000

StringConcatToJoinTransformer
pass@1 0.368002 0.797971
pass@5 0.581564 0.900000

pass@10 0.699295 0.980000

StringToByteStringTransformer
pass@1 0.000000 0.000000
pass@5 0.000000 0.000000

pass@10 0.000000 0.000000

25

	Key Information to include
	Introduction
	Related Work
	Approach
	High-Level Overview
	Seed Selection
	Cyclomatic Complexity
	Halstead Volume
	Logical Lines of Code

	Canonical Solution Estimator
	Mutations
	Code-based Mutations
	Comment/Documentation-based Mutations

	Docstring Mutations
	Choosing Mutatations
	Stem Parsing
	Sampling
	Scoring

	Experiments
	Results
	Arrays
	Booleans
	Code Style
	Docstrings
	Conditionals
	Dictionaries
	Loops
	Math
	Numbers
	Strings
	Summary

	Analysis
	Conclusion
	Ethics Statement
	Misuse and Unintended Consequences
	Privacy and Security

	Appendix
	Transformation Functions
	All Results

