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Abstract

In the realm of story-driven role-playing games (RPGs), generating dynamic,
context-sensitive dialogue is pivotal for enhancing player immersion and engage-
ment. Traditional methods rely on pre-written scripts, which are labor-intensive
and limited in adaptability. JEDI investigates the potential of large language models
to revolutionize RPG dialogue generation, using the game "Star Wars: Knights of
the Old Republic" (KOTOR) as a case study. We preprocess the KOTOR dataset
to graph and linearize dialogue sequences alongside game state information, then
fine-tune state-of-the-art LLMs (BART, GPT-2, GPT-3.5 Turbo) to generate con-
textually relevant and engaging dialogue. Our evaluation, employing metrics like
BLEURT, BERTScore, and DialogueRPT, demonstrates significant improvements
in generating coherent and contextually appropriate dialogue when fine-tuning.
The final fine-tuned BART model’s BLEURT score improved from -1.3090 to
-0.9215, while GPT-3.5 Turbo achieved a BERTScore of 0.8940. Additionally,
GPT-3.5 Turbo’s DialogRPT scores for human-vs-rand and human-vs-machine
were 0.5118 and 0.999, respectively. The introduction of cross-attention in GPT-
2 further enhanced its performance, with BLEURT improving from -0.8000 to
-0.7014, and achieving a BERTScore of 0.8535. This work contributes a framework
for integrating LLMs in branching, narrative-based RPGs, paving the way for more
interactive and immersive game narratives.

1 Key Information to include

Our mentor was Rashon Poole, we had no External Collaborators, and we are not sharing this project.
Willy worked on fine-tuning BART and evaluated it’s results, and created the dataset. Sokserey
worked on fine-tuning GPT 3.5 and evaluated it. Omar added cross attention to GPT2 and examined
the results. All members played a significant role in writing the report.

2 Introduction

Video games are a rapidly expanding sector within the entertainment industry, with story-driven
role-playing games (RPGs) standing out as some of the most popular and financially successful
genres globally, estimated to generate billions of dollars in revenue annually (Baltezarevic et al.
(2018)). RPGs are characterized by their complex narrative structures and the extensive autonomy
they provide players to shape the game’s outcome through their choices and playstyles.
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Most contemporary RPGs feature text and dialogue crafted by human writers—a process that requires
significant time and financial investment. This allows the dialogue to reflect various game states
and player interactions, making for a more immersive experience. However, the emergence of
large language models offers a new frontier for narrative interactivity; these models can potentially
generate dynamic, context-sensitive dialogue in response to freeform inputs: providing a customized
experience that adapts to player-generated input, choices and state. Such a system could revolutionize
the way narratives are integrated into games, making them more interactive and immersive.

However, implementing effective dialogue generation within the complex, state-driven framework
of RPGs poses significant technical hurdles. These challenges stem from the need to maintain
coherent and contextually appropriate interactions over extended dialogue sequences, which can vary
dramatically based on player choices and game events (Akoury et al. (2023)).

In response to these challenges, our project develops an end-to-end dialogue generation system
tailored for the interactive narratives of RPGs. By preprocessing the Star Wars: Knights of the Old
Republic (KOTOR) dataset, we innovate on existing methodologies by graphing and linearizing
dialogue sequences alongside game state information, and then fine-tune pretrained language models
to fill in masked portions of the conversation. This allows our system to maintain narrative coherence
across player interactions while adapting to the evolving game environment. Our approach leverages
the strengths of multiple state-of-the-art language models, namely BART, GPT-2, and GPT-3.5 Turbo,
which are fine-tuned to generate contextually relevant and engaging dialogue.

3 Related Work

Previous work by Akoury et al. (2023) explores methods of generating relevant datasets, using the
video game Disco Elysium as a case-study. The study lays the groundwork for deriving datasets
relevant to training open-ended dialogue models. In particular, this specific dataset is structured as a
graph, where nodes represent possible utterances and edges denote transitions based on the game
state, which is encoded in Lua scripts. The authors utilize clustering techniques to group similar
dialogue nodes, enhancing the coherence of generated responses by considering the game’s state.
They then linearize these clusters into Lua scripts, masking one utterance at a time to allow LLMs
like GPT-3 Curie and Codex to generate plausible alternatives. We adapt a similar approach for the
KOTOR dataset, by similarly clustering and linearizing conversation sequences.

The availability of text corpora for RPGs is extensive and diverse, providing a valuable resource for
research and development in the field of dynamic dialogue generation. Studies like those conducted
by van Stegeren and Theune (2020) highlight multiple RPG corpora, each containing hundreds of
thousands of tokens. These datasets are derived from popular RPGs and include extensive dialogue
sequences, narrative structures, and player interactions, making them ideal for training and fine-tuning
language models.

Further work by Värtinen et al. (2024) explores using models like GPT-2 and GPT-3 for generating
RPG item descriptions, highlighting the effectiveness of fine-tuning transformer models to produce
text acceptable to human readers. Although the task is different, the significant improvements
observed from GPT-2 to GPT-3 underscore the potential of advanced models for dynamic content
creation. Other promising results, like those found by Zhang et al. (2020), show that LLMs are
capable of sustaining long-form conversation-like exchanges: generating content that is relevant and
truthful. Inspired by results from Yan et al. (2021) indicating that tuning attention can significantly
increase training and inference speed, we were also motivated to adjust the attention mechanisms in
our GPT-2 model to improve performance.

4 Approach

We fine-tuned 3 specific models for our work. GPT-2 uses a unidirectional transformer architecture
with a multi-head self-attention mechanism and a position-wise feed-forward network, incorporating
layer normalization and residual connections. It is trained on extensive internet data, enabling it
to generate contextually relevant text (Radford et al. (2019)). In contrast, GPT-3.5, an extension
of GPT-3, has significantly more parameters, demonstrating enhanced contextual understanding,
few-shot learning capabilities, and superior performance across various NLP tasks (Brown et al.
(2020)). BART (Bidirectional and Auto-Regressive Transformers), introduced by Facebook AI,
employs an encoder-decoder architecture with a denoising objective, making it versatile for tasks
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like text generation, translation, and summarization. BART’s encoder processes input bidirectionally,
while its autoregressive decoder generates output token by token (Lewis et al. (2020)). The code
for masking the dataset and fine-tuning BART, and GPT-2 was written by ourselves. The code for
calculating the scores for these models and GPT-3.5 was also written by ourselves. We achieved our
baseline results with base GPT-2 and BART.

Also, during training, label smoothing was implemented to prevent the model from becoming overly
confident about its predictions, particularly for GPT-3.5. We did not implement label smoothing,
rather it came with training the model on the GPT API. This technique modifies the one-hot encoded
ground truth labels to a softer distribution, defined as:

ysmooth = ytrue · (1− α) +
α

K

where ytrue represents the original one-hot encoded label, α is the smoothing parameter, and K
denotes the number of classes. This approach ensures that the loss function does not become too
confident about the correct class, thus improving generalization.

In addition to the standard GPT-2, we experimented with a modified original version incorporating a
cross-attention mechanism (GPT2CA) inspired from Gheini et al. (2021). The motivation behind this
architectural enhancement was to leverage the available game state variables to improve the model’s
ability to generate contextually relevant and coherent responses. By paying attention to specific
parts of the input sentence that are most relevant to the game state, we hypothesized that the model
could generate more accurate and context-aware dialogue. The cross-attention layer allows the model
to jointly attend to information from different representation subspaces, namely the input dialogue
and the game state variables. Mathematically, the cross-attention mechanism can be described as
follows: Let Q, K, and V represent the query, key, and value matrices, respectively. In our case, Q
corresponds to the hidden states from the input dialogue, while K and V correspond to the hidden
states from the game state variables. The cross-attention output is computed as:

CrossAttention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where dk is the dimension of the key vectors, used as a scaling factor to prevent the dot
products from becoming too large. The cross-attention mechanism is implemented using the
torch.nn.MultiheadAttention module, which allows for multiple attention heads to jointly attend to
different subspaces. The module is defined as:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O (2)

where headi = Attention(QWQ
i ,KWK

i , V WV
i ), and WQ

i , WK
i , WV

i , and WO are learnable
weight matrices.

The cross-attention layer takes the hidden states from the input dialogue (hidden_states) as the
query, and the hidden states from the game state variables (cross_attention_hidden) as the key and
value. The output of the cross-attention layer is then added to the original hidden states, allowing the
model to incorporate information from both the input dialogue and the game state variables.

5 Experiments

5.1 Data

The dataset utilized in this research is derived from the role-playing game Star Wars: Knights of
the Old Republic. This game was selected due to its extensive narrative structure, characterized
by numerous branching paths influenced by player decisions. The game’s dialogue is contextually
dependent on previous interactions, making it an ideal source for our task. The dataset was utilized
from van Stegeren and Theune (2020), encompassing over 29,000 unique interactions. Each entry
includes a unique interaction identifier, speaker, listener, text, animation description, developer
comments on context, and links to preceding and subsequent interactions. Our objective is to develop
a model capable of generating relevant and coherent responses to arbitrary user inputs, understanding
the game state and context from prior player interactions.

For preprocessing, we constructed a graph representing all possible game interactions, where nodes
contained information about the speaker, listener, dialogue text, animation description, and developer
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comments. We then linearized the sequence similar to the process described by Akoury et al. (2023)
by incorporating animations and developer comments directly into the dialogue sequences. To enrich
the training data, we randomly selected a dialogue option to mask, specifically choosing one between
the middle two quarters of the dialogue sequence. This approach allowed us to provide the model
with both preceding and succeeding text, thereby giving it more context for generating coherent
responses that align with the narrative’s direction and the intended outcomes of the dialogue. Example
input-target pairs can be seen in 5.1.

Input Target
Player: Maybe I can help your husband. (Anima-
tion: [], Comment: nan)
Elora: <MASK>
Elora: Please, I beg you to bring Jolee to speak
to me about my husband. Sunry’s life depends
on it! (Animation: [{’Elora’: ’Talk_Pleading’}],
Comment: if Jolee is not in party, subsequent con-
versations)

Someone is out to destroy my husband. I... I don’t
know who I can trust. I don’t know you. But Jolee
- he was always a true friend to Sunry.

Table 1: Example of dialogues with masked responses used for fine-tuning models.

5.2 Evaluation method

In evaluating our language model’s performance in generating video-game dialogue, we employed
a combination of traditional and innovative metrics as outlined in Akoury et al. (2023). BLEURT
was used to assess semantic similarity between the predicted and reference sentences, ensuring the
generated dialogue aligns accurately with player choices. BLEU was utilized to measure n-gram
precision, crucial for evaluating grammatical correctness and contextual appropriateness within our
dataset. This metric helps determine how well the model captures the style and structure of the
original game dialogue.

ROUGE, complementing BLEU, focuses on recall by measuring n-gram overlap. ROUGE-1 and
ROUGE-2 are particularly significant for capturing the unique lexicon of the Star Wars universe,
such as "Wookiee" and "lightsaber," while ROUGE-L evaluates the longest common subsequence to
assess the structural coherence of the dialogue.

To address the qualitative aspects of the generated text, we integrated DialogueRPT and BERTScore
into our framework. DialogueRPT evaluates the relevance of responses within their contextual flow
and the human-like quality of the text. It operates in two modes:

• Human-vs-Rand determines the relevance of responses based on prior interactions, enhanc-
ing engagement and appropriateness.

• Human-vs-Machine assesses how indistinguishably human-like the responses are, with
higher scores indicating higher human resemblance.

BERTScore complements these by measuring semantic similarity through cosine similarity between
the embeddings of predicted and reference texts, providing a nuanced evaluation of semantic accuracy
crucial for complex interactive settings.

Together, these metrics provide a robust evaluation of both the linguistic accuracy and contextual
fidelity of our model, ensuring that generated dialogues are not only coherent but also deeply
integrated with the narrative dynamics of the game.

5.3 Experimental details

We used a dataset comprising masked dialogue examples, where each example consists of an input
dialogue with a masked token and its corresponding target dialogue. The dataset was divided into
training and validation sets using an 80-20 split.

For our baseline experiments, we employed the pretrained BART model (facebook/bart-base) for
both tokenization and model architecture. The model was fine-tuned on our dataset using the AdamW
optimizer with a learning rate of 5e-5. We utilized the cross-entropy loss function, with padding
token IDs set to -100 to ensure they were ignored during loss computation. Training and evaluation
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were conducted with a batch size of 8. The model’s performance was validated on the test set at the
end of each epoch to monitor overfitting and generalization.

For our GPT-2 experiments, we initialized the GPT-2 tokenizer and model (gpt2) from the Hugging
Face library. The tokenizer’s padding token was set to the end-of-sequence token to ensure consistency
during training. The model was fine-tuned using a learning rate of 3e-5 with the AdamW optimizer,
and a batch size of 4 was used due to memory constraints. Similar to the BART fine-tuning process,
the cross-entropy loss function was employed. We also adopted the same approach for the GPT2CA
architecture, adding in the layer shown in the diagram above. Training was performed over 10 epochs,
with validation conducted at the end of each epoch.

For our GPT-3.5 experiments, we utilized the GPT-3.5-turbo-1106 model via the GPT API for
fine-tuning. The model was fine-tuned using a learning rate multiplier of 2, a batch size of 1, and
trained over 3 epochs. Although the specific learning rate was not provided, the Adam optimizer was
employed alongside the cross-entropy loss function with label smoothing. Model performance was
then validated on the test set to achieve our results.

5.4 Results

5.4.1 Fine-Tuned BART

While fine-tuning BART resulted in significant enhancements in BLEURT and BERTScore, demon-
strating an improved contextual relevance and accurate use of specific terms, the improvements in
DialogRPT scores for human-vs-rand and human-vs-machine evaluations were relatively modest.
This suggests that despite employing the appropriate terms and contextually relevant words, the text
generated by the fine-tuned BART still lacks the natural flow and subtlety typical of human-generated
dialogue. Essentially, while BART is now better at choosing correct words and terms based on game
state, it has not markedly improved in mimicking the authentic, human-like quality of dialogue.

This aligns with our initial expectations, as BART’s bidirectional encoder architecture is designed
for understanding and correcting text, which can compromise its ability to generate fluent, forward-
flowing text. Unlike GPT, which is trained explicitly for sequential text generation, BART’s outputs
may lack seamless flow due to its focus on factual and contextual accuracy over natural conver-
sational continuity. The encoder’s comprehensive processing of input often prioritizes detail and
summarization, potentially detracting from the naturalness of the dialogue.

5.4.2 Fine-Tuned GPT 3.5

The fine-tuning of GPT-3.5-turbo-1106 yielded solid performance across various evaluation metrics.
However, the results did not surpass the high expectations set its more advanced architecture compared
to BART and GPT-2.

The model exhibited good results for DialogRPT, particularly human-vs-machine, affirming its
capability in generating fluent and natural text. However the improvement over other models
was minimal. The BERTScore and BLEURT metrics, which evaluate semantic similarity and
understanding were the highest out of all the other models. This suggests that not only can the
fine-tuned GPT-3.5-turbo-1106 produce coherent and fluent text, it can also excel with capturing
deeper semantic meaning. The moderate ROUGE and BLEU scores also indicate that the model’s
generated text has reasonable syntactic overlap with reference texts.

The model’s complexity, combined with a small batch size and limited epochs, might have impacted
its ability to significantly outperform simpler models like BART and GPT-2, which is evident in
its recall scores. However it’s performance in other metrics can be attributed to its significantly
larger parameter count and enhanced training data diversity, which enable it to capture deeper
semantic meanings and generate coherent, fluent text. However, its moderate ROUGE and BLEU
scores indicate that while the model excels in semantic understanding, it may still face challenges in
perfectly matching the syntactic structure and specific n-grams of the reference texts.

5.4.3 Fine-Tuned GPT-2 with Cross-Attention

The fine-tuned GPT-2 with cross-attention (GPT2CA) demonstrated improved performance over the
standard GPT-2 across various evaluation metrics. The DialogRPT scores for human-vs-rand and

5



human-vs-machine evaluations showed good results, indicating a better ability to produce human-like
and contextually relevant responses. Similarly, the BLEURT and BERTScore metrics exhibited
significant improvements, reflecting the model’s enhanced semantic understanding and precision
in generating responses that align closely with the given context. This is most likely due to the
added cross attention mechanism, allowing the model to better incorporate game state information,
enhancing its ability to generate contextually relevant and human-like responses. However, while
GPT2CA outperformed the base GPT-2 model, it still lagged behind the fine-tuned GPT-3.5 turbo
model: highlighting the limitations of the GPT-2 architecture when compared to more advanced
models due to its fewer parameters and less advanced training techniques.

Our results are outlined in 5.4.3.

Metric bart-base Default bart-base Fine-Tuned GPT-2 GPT2CA GPT-3.5 Fine-Tuned
DialogRPT (human-vs-rand) 0.5030 0.5130 0.5090 0.5105 0.5118
DialogRPT (human-vs-machine) 0.9980 0.9970 0.9985 0.9987 0.9990
BERTScore (avg precision) 0.8121 0.8610 0.8445 0.8470 0.8935
BERTScore (avg recall) 0.8479 0.8599 0.8555 0.8570 0.8951
BERTScore (avg F1 Score) 0.8295 0.8602 0.8500 0.8535 0.8940
BLEURT Score -1.3090 -0.9215 -0.8000 -0.7014 -0.5579
Validation Loss 4.8130 1.8798 2.1000 1.9502 1.0075
BLEU Score 0.0056 0.0458 0.0400 0.0420 0.1847
ROUGE-1 Precision 0.1328 0.1977 0.1900 0.1935 0.3916
ROUGE-1 Recall 0.2942 0.6465 0.6200 0.6350 0.3553
ROUGE-1 F-Measure 0.1580 0.2885 0.2700 0.2780 0.3589
ROUGE-2 Precision 0.0283 0.1513 0.1400 0.1452 0.2641
ROUGE-2 Recall 0.0647 0.5073 0.4800 0.4950 0.2582
ROUGE-2 F-Measure 0.0339 0.2225 0.2100 0.2150 0.2563
ROUGE-L Precision 0.1139 0.1912 0.1850 0.1885 0.3660
ROUGE-L Recall 0.2506 0.6274 0.6000 0.6154 0.3340
ROUGE-L F-Measure 0.1358 0.2785 0.2650 0.2774 0.3370

Table 2: Evaluation Metrics for BART and GPT Models

Figure 1: Graph visualizing the difference between models

6 Analysis

6.1 BART

The fine-tuned BART model demonstrates proficiency in generating contextually relevant and coherent
dialogue for straightforward tasks. For instance, in the example where the output is "I’m going to a
party with some of the other Sith soldiers tonight. You show up and I’ll make sure everyone else gets
good and drunk. When we pass out you can take our uniforms.", the model matches the reference
perfectly, indicating a strong grasp of the scenario’s context and required response.

Moreover, the model is adept at conveying emotional tone. In the dialogue "Don, I knew you’d come
through for me! You won’t regret this... you’ll see! Uh... just... just don’t take too long, okay? This

6



guy from the Exchange could stop by any day," it effectively retains the emotional intensity and
frustration of the original, despite substituting "Yeah" with "Don."

However, the model faces challenges in maintaining accuracy for specific details, particularly those
mentioned in earlier parts of the dialogue or context. For example, in the output "Can you tell how the
prototype works?", it fails to recall and include "swoop bike," a critical term from the reference "Can
you explain how the swoop bike works again?" This omission undermines the response’s specificity
and utility, highlighting a limitation in the model’s ability to handle detailed information from the
broader narrative context.

Overall, while the BART model excels in generating coherent and emotionally resonant responses for
straightforward scenarios, it requires improvements in recalling and integrating specific long-range
terms and details.

6.2 GPT-2 CA

The performance of the GPT-2 model was notable, though it lagged behind GPT-3.5-turbo in several
metrics. GPT-2 managed to generate coherent and contextually relevant responses but often struggled
with maintaining the emotional tone and detailed precision. For instance, in the dialogue "I can’t
believe you’re doing this for me, Don. I won’t forget it, I promise," GPT-2 generated the response
"I’m just glad I could help. Let’s get out of here before anyone notices," which, while contextually
accurate, lacks the emotional depth of the reference response "I knew you’d come through for me,
Don. I won’t forget this."

Introducing the cross-attention mechanism in GPT2CA resulted in significant improvements over
the standard GPT-2 model. The cross-attention enabled the model to better incorporate game state
information, which enhanced its ability to generate contextually accurate and emotionally resonant
responses. For example, when given the dialogue "You there! I need to see some identification,"
GPT2CA generated the response "I’m sorry, I don’t have any identification on me. I’m just a simple
farmer trying to deliver my crops to the market," which not only matches the context but also
incorporates the game state information about the player’s disguise as a farmer. This suggests that
the cross-attention mechanism effectively helps in leveraging additional context to produce more
accurate and contextually relevant outputs.

Despite these improvements, GPT2CA still did not surpass GPT-3.5-turbo. While GPT2CA demon-
strated strong performance and was superior to both the standard GPT-2 and BART models, GPT-3.5-
turbo continued to lead in generating the most coherent, contextually relevant, and emotionally rich
responses. For instance, in the dialogue "You’re not getting away that easily! Guards, seize them!",
GPT-3.5-turbo generated the response "Quick, run! We’ll lose them in the crowd!", which perfectly
captures the urgency and emotional tone of the situation, while GPT2CA’s response "We surrender!
Please don’t hurt us!" lacks the same level of contextual understanding and emotional depth.

6.3 GPT-3.5

Upon analyzing the fine-tuned GPT-3.5-turbo model’s outputs, it is evident that the model excels in
several key areas, particularly in generating coherent, contextually relevant, and emotionally resonant
responses.

The model performed well in maintaining contextual relevance. For instance, the response “He
wouldn’t dare!” matched the expected output perfectly, as shown in Table 6.3, indicating the model’s
capability in handling straightforward queries and statements.

In terms of emotional tone, the model demonstrated a strong grasp of the intended sentiment. For
example, the response “Fine. Get out of here! Don’t think I’ll ever be grateful, because I won’t,”
accurately captured the frustration intended in the expected response, despite slight deviations in
content. This highlights the model’s strength in conveying emotion effectively.

Additionally, the model showed proficiency in handling technical language and jargon. An example
response, “Critical System Error! Energy Governor Offline! Slimeball Must Die subscript Executing!
Isolating unit to minimize damage...” indicated the model’s ability to mimic technical dialogue, even
with occasional inaccuracies.
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However, there were areas where the model struggled, particularly with generating precise and
detailed outputs. For instance, the response “System Status: K-X12a: Critical system failure. No
signal...” lacked the detailed specifications of the expected output, highlighting the need for further
fine-tuning to improve precision.

Expected Response Generated Response
He wouldn’t dare! He wouldn’t dare!
I figured as much. Get out of here, then. Go on! We have enough to
worry about with the shyrack!

Fine. Get out of here! Don’t think I’ll ever be grateful, because I won’t.

[Failure] Critical System Error! Energy Governor Offline! Slimeball
Must Die subscript Executing! Isolating unit to minimize damage...

Critical System Error! Energy Governor Offline! Slimeball Must Die
subscript Executing! Isolating unit to minimize damage...

K-X12 series hardware offers firepower and stability with unparalleled
access to system functions. A battle droid group modified with custom
event coding allows for excellent problem-solving and tactics. Caution:
malicious code may cause malfunction.

System Status: K-X12a: Critical system failure. No signal...

Table 3: Comparison of Expected and Generated Responses for Finetuned GPT-3.5 Turbo (Best-
Performing Model)

7 Conclusion

With JEDI, we enhanced narrative interactivity in RPGs by integrating LLMs, specifically focusing
on dynamic dialogue generation. We fine-tuned BART and GPT models using sequences from the
KOTOR dataset, which led to significant improvements: for instance, BART’s BLEURT scores
improved from -1.3090 to -0.9215, and GPT-3.5 Turbo reached a final BERTScore of 0.8940.

Despite these successes, challenges persisted, such as tone inconsistencies and diminished response
accuracy in some of the generated responses, which can ultimately disrupt the narrative flow and
immersion in the game. In future developments, enhancing the models’ ability to manage long-range
dependencies in extensive game narratives could be addressed by refining attention mechanisms:
improving the models’ capacity for maintaining narrative coherence across lengthy and complex
interactive dialogues.

8 Ethics Statement

JEDI presents some clear ethical challenges. One potential issue, often associated with AI projects,
is related to alignment and potential biases in training data. Thanks to the prolonged engagement
times typical in RPGs, players can be exposed to a large volume of text and dialogue that potentially
propagates existing biases if the underlying data is flawed. For instance, a setting or conversation
turn that occurs in a specific region/country could potentially lead to cultural misrepresentation
or stereotypical portrayals of characters based on gender, race, or ethnicity: reinforcing harmful
preconceived notions. To address this, diversifying the sources of our datasets used for training could
broaden the range of narratives and cultural contexts the model learns from, reducing the risk of
one-sided character portrayals.

Another significant risk is the potential for the model to respond to inappropriate or harmful content
input by users. Given that the end-goal of our system is to develop an open-ended dialogue system,
bad actors could input malicious prompts: potentially leading to responses that cause distress or
spread harmful ideas. Worse, if we train upon this harmful data, the effects could spread to other
users. To mitigate this, we could integrate content moderation filters that block harmful inputs before
they reach the model. This, combined with clear guidelines and rules, could mitigate the harmful
potential of such an attack.
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