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Abstract

Language model performance improves predictably as model size, training data,
and compute resources are increased (Kaplan et al., 2020). Performance has also
been shown to be affected by the quality (Gunasekar et al., 2023), breadth and
diversity (Eldan and Li, 2023) of the training corpora. In this work, we explore
whether the order in which training examples are utilised affect performance.
Our focus is on the emergence of language abilities such as grammar, creativity,
and consistency. We implement a curriculum learning strategy that ranks inputs
using a perplexity based measure. Our learning schedule proceeds according to
performance on a separate validation dataset. Experimental results shows that
under some circumstances such a strategy is beneficial. However, we also find
evidence that our strategy can be harmful compared to conventional random data
shuffling.

1 Introduction

Language model (LM) performance improve as we increase model size, training data, and compute
resources. Kaplan et al. (2020) found that cross-entropy loss scales as a power-law with these
factors. Performance has also been shown to be affected by the characteristics of the training corpora.
Gunasekar et al. (2023) showed that the usage of textbook quality training data can result in models
that outperform counterparts which have orders of magnitude more parameters and that have been
trained on much larger datasets. Similarly, Eldan and Li (2023) found that the breadth and diversity
of the corpora affect the scale at which language abilities start to emerge. In particular, it was found
that models with as few as 10 million parameters can produce coherent English text with near perfect
grammar when trained on an appropriately narrow dataset. This is in contrast to models such as
GPT-2 (117M) (Radford et al., 2019) which have been trained on internet datasets. Said model has
in excess of 100 million parameters and has been trained on more than 8 million documents, yet
struggles to produce coherent text beyond a few words. Understanding the factors which govern
model performance is crucial for the development of improvements.

LMs have achieved impressive results on various natural language processing (NLP) tasks. However,
most notable models are very large. The enormous computational cost of modern LMs prohibit
their adoption and therefore limits their utility. The efforts of Gunasekar et al. (2023) and Eldan
and Li (2023) are interesting since they indicate that LMs can be useful at a much smaller scale
than previously thought. In this paper, we investigate another such avenue. We explore whether the
order in which training examples are utilised affect performance. That is, we apply the technique
of curriculum learning to language modelling. To this end, we make use of the TinyStories dataset
(Eldan and Li, 2023). Our focus is on the emergence of language abilities such as grammar, creativity,
and consistency. We compare our results to that of a baseline LM trained according to conventional
random data shuffling. Overall, we find mixed evidence regarding the benefit of CL.

Stanford CS224N Natural Language Processing with Deep Learning



2 Related Work

2.1 Curriculum Learning

CL involves training machine learning models in a meaningful order. It requires sorting training
examples from “easy” to “hard”, and presenting them to a given model in a way that is more
“educational” than conventional random data shuffling. Arguably, this approach to learning is closer
to that of humans which is highly structured and organised. CL was first introduced by Bengio et al.
(2009) who presented the technique as a continuation method for non-convex optimisation. Said
authors applied CL to both a computer vision problem (involving the classification of geometric
shapes) and to language modelling. An increase in the speed of convergence of the training process
as well as better generalisation performance was found. Another notable example is due to Zaremba
and Sutskever (2015) who employ CL when training an LSTM model tasked with evaluating short
Python programs. The authors are able to improve accuracy by around 10% using the technique.

2.2 TinyStories

Internet datasets like WebText (Radford et al., 2019) cover a very large amount of information from
numerous domains. When training models on such datasets, we are not only learning about language,
but also about the various topics and information contained in the data. As such, Eldan and Li (2023)
observe that the necessary scale for the emergence of abilities that LMs have become known for, such
as the generation of coherent text, reasoning, and instruction following, is large. In response said
authors developed the TinyStories dataset. TinyStories is a high quality synthetic dataset generated
via GPT-4. TinyStories is purposefully simple and narrow, while still reflecting the basics of natural
language: grammar, vocabulary, facts, and reasoning. The dataset consists of more than 2.7 million
short stories (see Figure 1a) at the level of comprehension of a typical 3 or 4 year-old child. The idea
of the dataset is to allow studying the minimal requirements of a language model to generate coherent
text. Its size and simplicity means that small models can fit it well.

One day, Tom and Sue were playing outside. They loved to run and play
in the sun. They saw big, dark clouds in the sky. They knew rain was
coming. Sue said, “Let’s run home before the rain comes!” Tom said,
“No, let’s keep playing!”

The rain came down fast and fierce. Tom and Sue got very
wet. They were not happy. They tried to run home, but the rain was too
strong. They saw a big tree and ran under it to stay dry. They waited for
the rain to stop.

While they were under the tree, they heard a loud noise. It
was a big, scary bear! The bear was also hiding from the rain. Tom and
Sue were very scared. They did not know what to do. The bear saw
them and roared, “Go away! This is my tree!” Tom and Sue ran away in
the rain, but they could not find their way home.

(a) Example entry from the TinyStories dataset

(b) Distribution of story difficulty

Figure 1: TinyStories dataset example and story difficulty distribution

2.3 GPT-Eval and BLiMP

Evaluating the quality of open-ended language generation is challenging. This follows since there are
typically multiple correct completions associated with a given prompt. A well-known (but perhaps
less extreme) example of this problem in NLP is with the evaluation of machine translation (MT)
systems. For a given input sequence, there are often many equally valid alternative translations.
BLEU, the most common evaluation metric for MT, is flawed since it is dependent on such alternatives
being available as reference translations. Consequently, a good translation can get a poor score.
GPT-Eval (Eldan and Li, 2023) is a general framework that can be used evaluate any arbitrary
language generation. Said framework leverages an existing large LM, such as GPT-4 (OpenAI et al.,
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2024), to evaluate the quality of completions generated by a given LM. We uilise GPT-Eval to grade
the grammar, creativity, and content self-consistency of completions due to our LMs.

The Benchmark of Linguistic Minimal Pairs for English (BLiMP) (Warstadt et al., 2023) is a
framework used to evaluate the grammatic ability of LMs. BLiMP consists of a suite of 67000 pairs
of minimally different sentences. Each pair consists of a “correct” sentence and a slightly perturbed
“incorrect” sentence, and represents a particular aspect of English grammar. The BLiMP score
assigned to a given LM is the proportion of pairs for which the model assigns a higher probability to
the “correct” sentence than the “incorrect” counterpart.

3 Approach

A particular CL approach is characterised by (a) the choice of difficulty measure used to rank input
examples and (b) the schedule according to which examples of various levels are introduced during
training. In our approach, the difficulty of training examples is measured via perplexity. That is,
supposing that a given text example consists of t+ 1 tokens, x = {x0, x1, . . . , xt}, the perplexity
according to some LM, say pθ, is given as:

PPL(x|pθ) = e
− 1

t

t∑
j=1

ln pθ(xj |x0,x1,...,xj−1)

. (1)

Here, pθ(xj |x0, x1, . . . , xj−1) indicates the probability of xj conditional on all previous tokens.
Perplexity is a measure of a LM’s ability to predict the next token in a sequence of text. Clearly,
lower values indicate improved prediction performance, and the smallest possible perplexity is 1.
Noting that we have access to existing LMs trained on TinyStories, we assign a difficulty score to
each input as the perplexity delta between a large model, say pγ , and a small model, say pα:

∆(x) = PPL(x|pα)− PPL(x|pγ). (2)

The intuition for measuring difficulty in this way is that for “easy” input examples, the perplexity
of pγ and pα should be approximately equal, whereas for “difficult” examples, the perplexity of pγ
should be lower than that of pα. This is informed by the assumption that larger models better fit the
dataset. Using 2 as the choice of difficulty measure was suggested by an author of TinyStories. The
models we use for this calculation are available on Huggingface as roneneldan/TinyStories-3M
(pα) and roneneldan/TinyStories-33M (pγ). After a manual inspection of the scores due to 2,
we noticed that stories with large absolute perplexity were sometimes left with a much smaller score
(due to little difference between PPL(x|pα) and PPL(x|pγ)) than stories with much smaller absolute
perplexities. Similarly, stories with relatively small absolute perplexity sometimes had very large
scores. Given that perplexity itself can be seen as a measure of story “difficulty”, we adjusted 2 to
reflect both the perplexity delta as well as the absolute perplexity (we chose the smaller model, pα,
for this). Supposing we have n stories in our dataset, the final difficulty score assigned to a given
story is the normalised sum of 2 and 1:

score(xi) =
∆(xi)

1
n

∑n
z=1 ∆(xz)

+
PPL(xi|pα)

1
n

∑n
z=1 PPL(xz|pα)

(3)

for i = 1, 2, . . . , n.

Our approach to CL is inspired by Zaremba and Sutskever (2015). After ranking training examples
according to 3, we start with the easiest 10%. We initiate training with this subset, and periodically
monitor performance on a validation set. Once the validation loss is no longer decreasing (the criteria
for which is three consecutive values being larger than the smallest loss up to that point), we add
the next 10% of examples to the training data. This is continued until the training set matches the
full dataset. With this approach, the training distribution gradually starts to approximate that of the
baseline model, which is trained according to random data shuffling using the full dataset.

4 Experiments

4.1 Data

We utilise the TinyStories dataset described in section 2.2. Upon a quality inspection, we found
examples of stories that contain non-English characters, and stories that consisted of long sequences
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of repetitive text. We also found stories composed of only a single word (e.g. Once), and stories
that were otherwise inappropriate (e.g. They put water and salt and sugar and flour and carrots
and apples and cheese and cookies and milk and eggs and bananas and pasta and bread and jam
and butter ...). It was found that perplexity correlates well with such cases. Around 300k stories
were removed by dropping those for which the perplexity due to pα was larger than 10 or for which
perplexity due to pγ was larger than 5. The distribution of difficulty for the remaining 2.4 million
stories using 3 is given in Figure 1b. We found a weak positive correlation (ρ = 0.2742) between
the number of words in given story and 3. For the purpose of CL, we constructed a held out set
consisting of 10k stories. These inputs were taken from the cleaned dataset, and contained stories of
all difficulties.

4.2 Evaluation method

Our goal is to investigate the effect of CL on the emergence of the ability to generate coherent English
text. To this end, the main evaluation method is that of GPT-Eval described in section 2.3. We
evaluate the completions of our models on two sets of prompts. The first consists of the single short
prompt, “Once upon a time”. The second is a hand-selected subset of evaluation prompts from the
TinyStories paper, composing of the following much longer prompts:

• “Once upon a time there was a curious boy who lived in a house with a big garden. Every
day he explored the garden he found new surprises. But one day, it was raining so hard that
his mother told him”

• “One day a girl walked into the living room and noticed something very strange. There was
a huge cabinet standing in the corner. It looked very old and heavy. She walked over and
tried to open it, when suddenly”

• “Alice wanted to play with her doll, but she couldn’t remember where she had put it. She
looked all around the house but couldn’t find it, so she decided”.

After generating a completion from a given model, GPT-Eval grades the grammar, creativity, and
self-consistency with a score between 1 and 10. We compare the evolution of these values between
our CL effort and a corresponding baseline. We also evaluate models using the BLiMP score and
look at how the average validation loss compares on a disparate set of approximately 20k stories.

Figure 2: Average cross-entropy loss on TinyStories validation set.

4.3 Experimental details

We train a custom byte-pair encoding tokenizer on the TinyStories dataset with a vocabulary size of
10k. This is done with the help of the transformers library. We make use of the GPT-2 (Radford
et al., 2019) architecture, with a context window and embedding dimension of 512, 8 transformer
blocks, and 8 attention heads. This gives a model with 30.5 million total parameters. Most of the
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GPT-2 implementation is borrowed from nanoGPT. We use cross-entropy as choice of loss function,
and train with a constant learning rate of 0.0001. We rely on the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1 = 0.9, β2 = 0.95, ϵ = 10−6, and weight decay of 0.1, and use gradient norm
clipping of 1. A batch size of 64 is used. All training is done using a single NVIDIA A100 GPU.

4.4 Results

We train two models: one with conventional random data shuffling (Baseline), and one according
to our CL methodology (CL). Both models are trained for 80k steps. After every 500 updates we
checkpoint weights. Figure 2 shows the evolution of the validation loss over the training updates.
Looking at CL, we notice clear step changes: these are the points at which the curriculum was
expanded. The validation set contains examples of all levels of difficulty. The two models appear to
converge to the same value, with the Baseline reaching convergence much sooner than CL. This
makes sense given that Baseline was trained on a dataset with the same distribution as the validation
set.

Figures 3 and 4 contain the results due to GPT-Eval. For each of the prompts described in section 4.2,
we generate 10 completions at each checkpoint. Sampling is done with temperature 0.75. For each
set of prompts the scores are averaged at a given checkpoint. The provided figures are the rolling
averages (of said averages) using a window of size 10. The results due to the simple prompt “Once
upon a time” indicate that language ability emerges sooner when using CL. Both Baseline and CL
converge to scores of approximately 8.3/10, 6.0/10, and 7.35/10 for each of grammar, creativity,
and content self-consistency, respectively. CL requires roughly 15k fewer updates (25k versus 10k
steps) than Baseline to converge. Looking at Figure 4, however, we appear to find the opposite
result. Here, CL outperforms Baseline over the first 10k updates. After this point, the scores for CL
are much lower. Baseline clearly outperforms the CL counterpart, reaching final scores of 6.39/10,
5.66/10, and 4.87/10 versus 5.94/10, 5.75/10, and 4.5/10 for each of the three categories. Thus,
for the longer prompts, CL is only slightly better in one category (1.59%) and much worse in the two
other (7.58% and 8.22%). Additionally, in Figure 4, it is clear that Baseline acquires a given level
of grammar, creativity, and consistency much sooner than CL (after the initial 10k steps).

Finally, we obtain BLiMP scores on the last checkpoints of 0.5646 and 0.5721 for CL and Baseline,
respectively. We note that these scores are only slightly better than random guessing (GPT-2 achieves
0.83 (Warstadt et al., 2023)). Additionally, the score due to Baseline is higher than that of CL.

(a) Grammar: first 25k updates (b) Creativity: first 25k updates (c) Consistency: first 25k updates

(d) Grammar: all 80k updates (e) Creativity: all 80k updates (f) Consistency: all 80k updates

Figure 3: GPT-Eval scores when using the prompt, “Once upon a time”
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(a) Grammar: all 80k updates (b) Creativity: all 80k updates (c) Consistency: all 80k updates

Figure 4: GPT-Eval scores for three hand-selected prompts

5 Analysis

The evidence presented in section 4.4 suggests that the order in which training examples are utilised
does affect LM performance. However, the results are clearly mixed. Some of the evidence indicate
that CL has a strong positive impact on the emergence of language abilities (Figure 3). Yet, other
evidence (Figure 4 and the BLiMP scores) indicate the opposite. We observe that the overall scores
for grammar, creativity, and consistency are lower for the longer prompts compared to the short
prompt, “Once upon a time”. It is also interesting to note that the scores due to the longer prompts
continue to improve until the final training step. Those due to the short prompt converge to their final
values early on in the training process. Generating completions for the longer prompts is thus a more
challenging task, perhaps due to the long-term dependencies present in the sequences. We suspect
the difference in performance on the two sets of prompts can be explained, in part, by the positive
correlation between the number of words in a story and its difficulty score. However, as noted before,
said correlation is not very strong, and can only explain part of the result.

Looking at the evolution of scores due to the set of longer prompts, our LM may well have benefited
from a CL strategy close to what Bengio et al. (2009) used when training a model for shape
classification. Noticing that CL is superior over the first 10k steps, a schedule whereby we start
training with a set of easy stories, and then abruptly shift to the full dataset, could have delivered
results consistent with those due to “Once upon a time”. This is in contrast to our approach of
gradually increasing the difficulty of stories. Additionally, we might also have benefited from using a
different measure of difficulty than 3. Possibilities include using the length of stories or the density
of infrequent words as measures.

6 Conclusion

Our approach to CL with TinyStories was a partial success. We demonstrated that under some
circumstances the ability to produce coherent English emerges after significantly fewer parameter
updates, and requires fewer unique training examples, when utilising inputs in a meaningful order.
However, we also found evidence that CL can be harmful. In our case, this occurred when evaluating
completions due to longer prompts. Despite mixed results, we maintain that CL is a promising avenue
for reducing the necessary scale for LMs to be useful. In future work, we would like to study CL
strategies that utilise alternative difficulty measures and learning schedules.

7 Ethics Statement

An obvious ethical dilemma with any machine learning research is selective reporting of results in
favour of some claim. For example, we could have given a skew impression of the success of our
CL methodology by only reporting on the results related to the single short prompt, and withholding
those related to the set of longer prompts. Although the strength of such evidence can be criticised as
weak, we can still create a false impression when only reporting on the successes (and not the failures)
of our experiments. A mitigation strategy to this problem is a commitment to full transparency of all
results.
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Another possible ethical consideration relates to the environmental impact of machine learning. In this
context, both the electricity and hardware required for training are relevant. In our case, each model
required around 5 hours of training and 2 hours of evaluation on a large GPU. We also conducted
multiple smaller scale experiments the in a build-up to our final training. Arguably, however, research
such as ours, which is presented as an effort into reducing the necessary scale for LMs to be useful, is
a step in the right direction.
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