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Abstract

The motivation of this paper is to explore effective ways to fine-tune BERT-based
(Devlin et al. (2019)) multitask model to handle various tasks simultaneously with
optimal performance. Multitask is challenging because tasks interfere each other
due to various reasons, either transferring knowledge or causing conflicts. The
aim is to construct a multitask LM based on the pretrained minBERT model, that
perform tasks of Sentiment Classification, Paraphrase Detection, and Semantic
Textual Similarity(STS) each on their respective datasets. The contribution (beyond
project basic requirements) and findings include: enhancing the model framework
by incorporating task-specific Projected Attention layers (PALs) with LoRA (Asa
Cooper Stickland (2019)) that is cost-efficient and produces appealing results
nearly as training the full model; explored different output layers and loss function
combinations for tasks, with small innovations for the Paraphrase task; tried further
pretraining Sun et al. (2019) with Masked LM, though not finding this significantly
improves the final accuracy, only helps faster convergence; investigated the impact
of learning rates (lr), showing that large lr (1e-3) for the BERT-layer can degrade
the performance by diminishing general language information from the pretrained
version, and small lr(1e-5) for the output and the Projected Attention Layers, results
in slow convergence; probed into the best LoRA rank size and PAL dropout rate,
revealing that large rank size could cause severe overfitting and task trained with
larger dataset (Para) performs better with lower dropout rate.

1 Key Information to include

• Mentor: Chaofei Fan
• External Collaborators (if you have any): No
• Sharing project: No

2 Introduction

BERT (Devlin et al. (2019)), as the state-of-the-art pretrained language model, has proven effective-
ness in learning useful universal language representations, thus can be adapted to handle various NLP
tasks. Multitask model Zhang and Yang (2017) is compelling for resources efficiency and leveraging
knowledge across tasks, while challenging for below reasons: tasks may have conflicted objectives;
tasks uses datasets whose distribution conflicts at the embedding layer, hard to weigh the importance
(loss) Kendall et al. (2018) for different tasks, hard to optimize with gradient conflicts Yu et al. (2020).

This paper explores how to build and fine-tune multitasks model with pretrained minBERT that
can perform tasks of Sentiment Classification, Paraphrase Detection, and Semantic Textual Simi-
larity(STS) each on their respective datasets. The major approach to highlight is the task-specific
Projected Attention Layer with LoRA (Asa Cooper Stickland (2019)) introduced across BERT
layers, which allows divergence of attentions emphasis for each task to minimizes the conflicts, and
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turned out to be highly effective meanwhile, cheap and fast to train. For every single task, training
only the PALs and output layer can fast converge to the same level of accuracy on dev dataset,
compared to training the full model (BERT layer and output layer).

Besides, a few output layer and loss function options are experimented and compared, it turns out
that Cosine Similarity (Reimers and Gurevych (2019)) is great factor to incorporate to benchmark
tasks like STS and Paraphrase that compares a pair of sentences. Further more, since our task data
has different distribution than the BERT pretrained base model, to give the target domain information
more weight as Sun et al. (2019) suggested, I also performed further pretraining with Mask LM
Devlin et al. (2019) approach. However this isn’t much helpful for me for the final accuracy but
only helps faster convergence at the few initial epochs of training, for which I had 2 hypothesis:
PAL is already able to handle data distribution nuances for tasks across BERT layers, that further
pretraining BERT itself is less significant; model is further pretrained with all data from 3 tasks, then
data distribution conflicts actually diminish the benefit of further pretraining.

Last, thorough study on learning rate, dropout, LoRA size is presented, revealing that large lr (1e-3)
for the BERT-layer can degrade the performance by dropping universal language information from
the pretrained version, and small lr(1e-5) for the less sensitive layers, the output and the Projected
Attention Layers, results in slow convergence.

3 Related Work

Pretrained language model has significantly transformed the NLP world as it provides universal
language representations, which can be leveraged to tackle various NLP tasks effectively at lower
cost. Beside BERT, other popular choices are: GPT Radford et al. (2018) which is a left-to-right
autoregressive model; BART Lewis et al. (2019), a sequence-to-sequence autoencoder model that is a
generalization of BERT (bidirectional encoder) and GPT (decoder).

Fine-tuning - To harness pretrained language model for NLP problems, we have the feature-based
(such as ELMo Peters et al. (2018)) strategy and fine-tuning strategy. This paper explores the latter
with BERT model, which produces the most state-of-the-art results in these days. The Sun et al.
(2019) paper proved the effectiveness of further pretraining the BERT model with target domain
data, and then fine-tuning on task specific layers, together with the learning-rate decaying technique
introduced. Another compelling area is the parameter-efficient fine-tuning methods, such as Adapter-
BERT Houlsby et al. (2019), and LoRA Hu et al. (2021). The reason is that fine-tuning the full large
model can be inefficient in cost, and these methods by adding small number of parameters to the
original model, can attain near state-of-the-art performance, while being cheap to train. In this paper,
we also uses PAL+LoRA Asa Cooper Stickland (2019) method as our major approach.

Multitask learning Zhang and Yang (2017) has garnered significant attention in recent years, which
is capable of leveraging BERT’s language representations for multitasks simultaneously, thus making
the model more general and less over-fitting to specific tasks. It also has the strength of being
resources and data efficient, transferring domain knowledge cross tasks. But it also introduces great
complexity. One problem is the negative transfer of representation among tasks, for which gradient
normalization Chen et al. (2017) or gradient surgery Yu et al. (2020) techniques may help. Another
problem is about dataset size imbalance issue (occurs for this paper too), and the different level of
complexities of tasks, that we may need good task prioritization strategies.Guo et al. (2018) proposed
the solution as dynamically prioritizing the difficult tasks by adjusting loss function weights. Kendall
et al. (2018) weighs loss functions by homoscedastic uncertainty of tasks.

4 Approach

Figure 1 below shows the model architecture: BERT combined with task-specific PALs and output
layers. Tasks have their own PALs pictured with the same color.

Baseline - The minBERT skeleton (git) is provided by CS224N class (handout), with Self-Attention
layers and Adam Optimizer implemented by myself. The PAL idea is originated from Asa
Cooper Stickland (2019) and implemented by myself. All the task-specific layers are design and
implemented by myself as well. Training is on top of the given pretrained "bert-base-uncased" model.
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Figure 1: Model Architecture

Figure 2: Projected Attention Layer

4.1 Projected Attention Layer + LoRA

PAL means adding the task-specific layer TS(.) across bert layers, the input is the hidden states
output from previous BERT layer, and the output will be applied to "Add & Norm" with FFN(.),
same as SA(.), result:

BL(h) = LN(h′ + SA(h) + TS(h))

There are many choices of TS(.) while I chose LoRA:

TS(h) = (h ·Whr + b1) ·Wrh + b2

The r in Whr means size of rank, r << hidden state size, so that we can have small number of
task specific parameters to train.

4.2 Output Layer and Loss function

4.2.1 Sentiment Classification

Let’s use hCLS (size 768) to represent the "pooler output" of BERT, as it is in fact the corresponding
hidden state for [CLS] token, and contains sentence-level information. The sentiment classification
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output layer is simply designed as:

output = Linear(hCLS)

which means un-sigmoid probabilities for classes. CrossEntropyLoss is chosen.

4.2.2 Semantics Textual Similarity

The output layer is simply computing the Cosine Similarity of the 2 sentences:

output = ReLU(CosineSimilarity(hCLS1, hCLS2)) ∗ 5.0

which means the "angle" between the 2 sentences, note that sentences with negative correlation
should be scored as 0, thus ReLU is applied, and then I scale it up to 5.0. The loss function
used is simply MSE. Note that there is no "last layer" parameters to train, but in my practice it
simply trains the PAL parameters if the BERT layer is frozen. The inferior option discarded is
output = Linear([hCLS1, hCLS1]), for which we show results in experiment section too.

4.2.3 Paraphrase Detection

The output layer is defined as:

output = Linear([hCLS1, hCLS2, hCLS1 · hCLS2]) + CosineSimilarity(hCLS1, hCLS2)

which takes into account the magnitude of both hCLS1 and hCLS2 and the angles between them with
hCLS1 · hCLS2 item in the Linear layer. The small innovation here is that since we eventually feed
this output into sigmoid function, I added the Cosine-Similarity param again, to penalty more on
direction differences when the score is near 0.5 (round to 0 or 1), which gets slightly better result.

4.3 Further Pretraining with Masked LM

Sun et al. (2019) suggested a general method of multitask training, by first further pretrain the BERT
layer with target domain data, and then freeze the BERT layer to optimize on task specific parameters.
I tried the Masked LM pretraining, but not seeing significant improvements with PAL + LoRA.

4.4 Multitask Training

The strategy is to apply both training methods below, and iterating until we get a good result:

• Task-specific layers - Train only task-specific layers (including the PAL-LoRA layer for
my case) sequentially with BERT frozen.

• Full-model - Train full model for all tasks in parallel.

Joining Datasets - In the full model training, dataset for Paraphrase task is way larger than the others,
if training each task sequentially every epoch, intuitively Paraphrase will take a lot more precedence
over the other 2 tasks with more steps optimized. Thus I jointed 3 datasets as below graph shows.
This joint dataset is also used in the Masked LM pretraining mentioned above.

Joint Loss - In the full model training option, I simply summed up 3 losses each with weight 1.0,
which means their gradients are weighed equally. Here are ways of determining loss weight Kendall
et al. (2018) or doing gradient surgery Yu et al. (2020), but I didn’t further explore these as I found
the PAL-LoRA layer already helps reaching the same level of performance as the full model training,
thus eventually the sequential way with BERT frozen is chosen.
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5 Experiments

5.1 Data

Tasks Dataset Train Dev Test
Sentiment Analysis Stanford Sentiment Treebank 8,544 1,101 2,210
Sentiment Analysis CFIMDB 1,701 245 488

Paraphrase Detection Quora (Para) 283,010 40,429 80,859
Semantic Textual Similarity SemEval (STS) 6,040 863 1,725

5.2 Evaluation method

For Sentiment Analysis and Paraphrase Detection, the accuracy on Dev dataset is taken as the major
benchmark. Semantic Textual Similarity uses Pearson correlation coefficient: ρxy = cov(X,Y )

σxσy
.

Besides, a few secondary metrics are also taken into account, such as how fast to train, and how train
loss change with dev accuracy changes, which may indicating over-fitting problems.

5.3 Experimental details

This paper presents the a few experiments, indicating the efficiency of the PAL-LoRA approach.

5.3.1 Sentiment Analysis (SST) single task training

This experiment compares training of only the output layer vs. PAL-LoRA vs. full model, with both
SST and CFIMDB datasets. CFIMDB full-model uses 32 batch otherwise it crashes for GPU limit

Dataset Mode Batch Epoch lr Batch / Epoch GPU Time to train
SST full model 64 10 1e-5 134 A100 4.2 min
SST PAL-LoRA 64 10 1e-3 134 A100 2.5 min

CFIMDB full model 32 10 1e-5 54 A100 6.3 min
CFIMDB PAL-LoRA 64 10 1e-3 27 A100 4.8 min

5.3.2 STS single task training

This experiment trains Semantics Textual Similarity on STS dataset, to comparing these techniques:
Cosine Similarity vs. Linear output layer; "bert-base-uncased" vs. "MLM further pretrained" version;
Full model vs. PAL-LoRA training (rank size 2).

Mode Batch Epoch lr Batch / Epoch GPU Time to train
Full model 64 20 1e-5 95 A100 8.5 min (22 sec/epoch)
PAL-LoRA 64 20 1e-3 95 A100 5.2 min (15 sec/epoch)

5.3.3 Paraphrase Detection single task training

This experiment again compares PAL-LoRA training (rank size 2) vs. full model for the Paraphrase
Detection task. A few output layer options are also examined.

Mode Batch Epoch lr Batch / Epoch GPU Time to train
full model 64 1 1e-5 4422 A100 42 min
PAL-LoRA 64 1 1e-3 4422 A100 36 min

5.3.4 Training Parameters Study

LoRA Rank Size - I applied 2, 10, 100 rank sizes to all three tasks. Other configs stay the same.

Learning Rate - I chose the STS task to study the impact of learning rate for simplicity, applied 1e-3,
1e-5 to PAL-LoRA training, and its full model training.

PAL Dropout - Applied 0.1 0.2, 0.3 dropout to all tasks. The dropout is for PAL Dropout(TS(.)),
not BERT(0.1) nor the output layer(0.3).
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Figure 3: training full model, with BERT layer updates

5.4 Results

5.4.1 Sentiment Analysis (SST) single task training

Mode lr SST Dev Acc CFIMDB Dev Acc
Full model 1e-5 0.521 0.96

Output Only 1e-3 0.391 0.767
PAL-LoRA 1e-3 0.516 (ranksize 1) 0.959 (ranksize 1)

which shows that PAL-LoRA ≈ full model training ≫ output layer only.

5.4.2 STS single task training

Full Model Mode Base Model Version Output Layer PAL trained Dev Corr
blue line bert-base-uncased Cosine Similarity False 0.695
black line MLM further-pretrained Cosine Similarity False 0.706
pink line MLM further-pretrained Linear False 0.395

yellow line MLM further-pretrained Cosine Similarity True 0.688

Mode Base Model Version lr Dev Corr
PAL-LoRA bert-base-uncased 1e-3 0.73

MLM further-pretrained 1e-3 0.70

Figure 3 plots the accuracy on Dev every epoch, and the train loss change. The result shows that
Cosine Similarity works way better than Linear output layer; MLM further-pretraining only helps
faster convergence but not significantly improves the upper limit. Results of only training the PAL-
LoRA proves that, within 20 poch, it is highly equivalent to training the full-model (both reaching 0.7
accuracy)! Also Masked LM further-pretraining doesn’t show extra benefits with PAL.

5.4.3 Paraphrase Detection single task training

Base Model Version Mode Output Layer Dev Acc
bert-base-uncased Full model With Cosine Penalty 0.78

PAL-LoRA With Cosine Penalty 0.77
PAL-LoRA Without Cosine Penalty 0.70

which proves PAL-LoRA is highly effective, only similarly as full-model training (-0.01 accuracy),
and also the Cosine penalty item is slightly helpful (with 0.07 more accuracy).

5.4.4 Training Parameters Study

Rank size - Figure 4 shows that rank size 2 works the best for all tasks. It turns out selecting good
rank size is tricky and data-dependent: Larger rank size helps faster fitting at early training, but more
overfitting in the end; Larger dataset (Para) may work well with small rank size, as it may not have as
much general textual representation to add to the system.

Learning rate - Figure 5.4.4 shows full-model cannot use learning rate > 1e-3, gradient could
be NaN, as BERT drops general text representation and overfit. For task-specific layer, 1e-3 well
compromises fast convergence and precision for steps while 1e-5 is too slow.
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Figure 4: Rank Size: blue 2, pink 10, black 100; tasks: SST, Para, STS

Dropout - Figure 5.4.4 shows that PAL dropout of 0.2 works best for STS. Without figure here, but
0.1 works the best for SST, 0.05 works the best for Paraphrase task, which makes sense as the larger
the dataset, the less likely to overfit thus smaller dropout needed.

PAL: 1e-3(red), 1e-5(orange) Dropout 0.0(orange) 0.1(pink)
Full: 1e-3(blue), 1e-5(green) 0.2(blue) 0.3(black)

Figure 5: STS learning rate (left) and PAL dropout (right)

Below is the Leaderboard Result by training PAL-LoRA only for all tasks sequentially, using 1e-3
learning rate, PAL rank size 2, and PAL dropout 0.1 for SST, 0.2 for STS and 0.05 for Paraphrase.

Leaderboard Dev Test
Sentiment (SST) 0.519 0.527
Paraphrase (Para) 0.793 0.795

Textual Similarity (STS) 0.750 0.738

6 Analysis

Overall the model doesn’t produce absurd errors, some of the error it made, I could also make as a
human. For Sentiment task, the model prediction, when being different with truth, is mostly just ±1
difference. Also the model got wrong usually by rating it lower. Here is an example that the truth
is 3 (neutral), but the model says 1 (negative): "This surreal Gilliam-esque film is also a troubling
interpretation of Ecclesiastes .", which is likely due to the keyword "troubling". But I as a human may
also rate this as negative, such error is due to lack of context in which the statement is made. In
movie reviews, people use negative words just as rhetoric, "It haunts , horrifies , startles and fascinates
; it is impossible to look away ." this is a 4, the model gave it 3 as it probably balanced the negative
words with good ones. Thus the model fails on rhetoric and creative expressions. And it works
perfectly when sentiment of words aligns with the sentences.

For Paragraph task, the model makes more mistakes on false positive, than false negative. For
example, "How do I upload photos to Quora with a pc? How do you include a photo with your post
on Quora?", the key is about "a pc", not about uploading photos. But this error is tricky as we also
have dropout, thus such important details can be lost. Also I saw cases like "What are good ways to
prepare for gate exam in 3 months so that I will secure good rank? How should GATE be cracked
within 3 months (ECE)?", this isn’t a paraphrase to me as well, because ECE is a missing context for
both me and the model. Thus I think what the model says is fair.

For Semantics Textual Similarity task, it tends to score similarity higher than the ground truth, for
which I think the "CosineSimilarity * 5.0" output choice may be affecting this, as it tends to score
high-score pairs (in small angle) higher. Also this measurement doesn’t take into account magnitude,
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thus might be over-positive, thus in this case, "A girl is eating a cupcake. A woman is eating a
cupcake.", the similarity ground truth is 2.6, but our score is 4.9! Girl and woman are similarity but
likely with different magnitude in embeddings.

7 Conclusion

PAL-LoRA is an effective way to fine-tuning a multitask model. Even without updating the BERT-
layer, it still gives the nice performance near the full-model tuning for each task, with following
benefits: Cost-efficient – Tuning PAL-LoRA with the same number of epochs only takes 60% of the
training time; Faster convergence – It requires less training epochs than full-model to get to the best
level of performance; Avoid conflicts – Tasks may inference each other, lead to worse performance
than single task training; Scalable and secure for large system – If to build a general multitask
model which keeps supporting new tasks and allows for diverged child versions, optimizing full BERT
could mean unscalable complexity. It also introduces dependencies between tasks that are insecure;
Flexibility – LoRA is one way to implement the PAL, tasks can use different implementations that
best fits the use cases.

The limitation of only training PAL is also obvious: Without learning transfer – Tasks can bring in
textual representation that benefits others; Overfitting – PAL is task-specific, which means it can
also be training-dataset specific. It converges really fast and then started to perform unstably for Dev
dataset, which exactly indicates the great overfit problem. PAL design complexity – What PAL
implementation to use requires further design and experimentations task-by-task. In LoRA case, a
good rank size is task and data dependent.

The most important lesson learned - A good design of model is the first priority, training tricks are
secondary. If the model doesn’t fit the goal, the more training attempted, the more time wasted. I at
first didn’t use CosineSimilarity output, and went for Masked LM pretraining, it still doesn’t help my
case, until the right model was selected.

Future work - In the full-model training practice, I simply summed up 3 losses with weight 1.0,
weighing all gradients equally. This doesn’t show improvements than PAL-only training. I saw there
are ways of determining loss weight Kendall et al. (2018) or doing gradient surgery Yu et al. (2020),
I want to experiment on these, to see if "Full model + PAL + Gradient and Loss Strategies" could
further lift the performance.

8 Ethics Statement

Bias Amplification – When the training dataset contains biased information about genden, race,
ethnicity etc, the PAL-LoRA layer amplifies such bias as it is 100% tuned with the training data. One
way is to conduct bias correction training, replace certain keywords from the input, compare the
outputs and penalty on the misalignment. E.g. if "man" did something that is considered sentiment
positive, then "women" did the same thing are likely to be positive too.

Wrong Judgement on Harmful Content – Dataset like movie reviews tell positive sentiment to the
movie but may contain violent information about murders or drugs at the same time, this can mislead
the PAL layer to wrongly weighing these concepts. One straightforward solution is to introduce in an
unhealthy content filter, mask out the harmful words then apply to training.
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