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Abstract

Models that rely on subword tokenization have significant drawbacks, such as
sensitivity to character-level noise and inconsistent compression rates across dif-
ferent languages and scripts. Although character or byte-level models like ByT5
aim to address these concerns, they have not achieved widespread adoption due
to inefficiencies in training and inference times, along with extremely short se-
quence lengths that make them impractical for real use-cases. In this project, we
introduce DelT5, an efficient variant of ByT5 that uses a novel token deletion
mechanism in its encoder to dynamically reduce its input sequence length. Ad-
ditionally, DelT5 utilizes an auxiliary loss function to adjust token deletion rates,
balancing computational efficiency with model performance. We find that DelT5
can achieve significant gains in inference runtime with minimal effect on loss.
This approach presents a potential solution to the practical limitations of existing
byte-level models.
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2 Introduction

Subword tokenization, using algorithms such as byte-pair encoding (Sennrich et al., 2016) or Sen-
tencePiece (Kudo and Richardson, 2018), is a fundamental text preprocessing step that has become
ubiquitious in modern language models. Subword tokenizers divide text into meaningful units known
as tokens, which closely resemble words or parts of words. Tokenization can be seen as a form
of compression, since it reduces the sequence length of the input passed to the compute-intensive
Transformer (Vaswani et al., 2017). However, subword tokenizers have several drawbacks. For
example, they are not very robust to character-level noise and manipulations, such as spelling errors
(Kaushal and Mahowald, 2022; Huang et al., 2023); tokenization directly impacts how models process
digits and perform arithmetic (Singh and Strouse, 2024); and tokenizers can have disproportionate
compression rates for different languages and scripts (Ahia et al., 2023; Petrov et al., 2023). Today,
language model APIs charge users per-token, and such discrepancies can cause users of certain
languages to be overcharged for poorer results.1

As an alternative to subword models, tokenization-free models skip the tokenization preprocessing
step entirely by passing the raw character or byte stream directly as input. However, character-
or byte-level sequences tend to be significantly longer than tokenized text sequences, which is a

1See also Andrej Karpathy’s tweets on tokenization: https://twitter.com/karpathy/status/
1759996551378940395; https://twitter.com/karpathy/status/1657949234535211009
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(a) ByT5. (b) DelT5 with soft deletion. (c) DelT5 with hard deletion.

Figure 1: A comparison of the encoder architecture for (a) ByT5, (b) DelT5 with attention masking
as a form of soft deletion, and (c) DelT5 with hard deletion. In these diagrams, the DelT5 deletion
gate is applied at layer 2. The gating mechanism g determines whether a token is deleted or not. Soft
or hard deletion may be used during training; hard deletion is always applied at inference.

problem for Transformer models, which have quadratic time and space complexity with respect
to the input sequence length. For example, ByT5 (Xue et al., 2022), a byte-level counterpart of
mT5 (Xue et al., 2021), is competitive with mT5 on a number of tasks, but it has a much slower
pre-training and inference runtime, making it impractical for real use-cases. Most other attempts to
create character-level or byte-level models perform explicit downsampling or pooling to reduce the
sequence length (Clark et al., 2022; Tay et al., 2022). However, relevant units of meaning usually
span a variable number of bytes/characters. These methods also introduce significant alterations to
the standard Transformer architecture.

In this project, we propose DelT5, a variant of the ByT5 architecture that has the potential to address
its inefficiencies while allowing more flexibility than fixed-span downsampling methods. DelT5
dynamically deletes tokens in its encoder in order to reduce the sequence length using a gating
mechanism at a fixed, early encoder layer. By allowing the first few encoder layers to process the
entire sequence, the encoder creates contextualized representations of the tokens. Then, when a subset
of the tokens are deleted by the gating mechanism, those that remain already contain contextual
information about those that were removed, allowing an implicit merging of information into a shorter
sequence. During training, we use an auxiliary loss with a tunable weight that can adjust the amount
of deletion DelT5 performs.

We fine-tune the DelT5 gating mechanism on top of a pre-trained ByT5 small, using English data for
training. Our results indicate that DelT5 outperforms both random and fixed deletion baselines in
terms of span corruption loss while removing an equivalent percentage of tokens. We also conduct
zero-shot tests across 15 diverse languages, showing that DelT5 can generalize to new languages and
scripts. Through individual sample analysis, we show that DelT5 selectively deletes more tokens in
cases where it does not lead to a significant loss increase. Our approach overcomes the limitations of
ByT5, presenting a significant step toward the adoption of byte-level models and the elimination of
subword tokenization from modern language models.

3 Related Work

There have been several attempts to design character-level or byte-level models in an effort to
overcome the pitfalls of subword tokenization. Several architectures have employed explicit down-
sampling steps to reduce their input sequence lengths. For example, CANINE (Clark et al., 2022)
is a character-level model trained on the same languages as mBERT (Devlin et al., 2019), and it
uses convolutional downsampling to reduce the sequence before feeding it to a 12-layer Transformer
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encoder stack. Charformer (Tay et al., 2022) is another byte-level encoder-decoder model that learns
a gradient-based “soft tokenization” for more efficient training and inference.

This paper focuses on ByT5 (Xue et al., 2022), a byte-level sequence-to-sequence Transformer
architecture that serves as a counterpart to mT5 (Xue et al., 2021), the multilingual version of T5
(Raffel et al., 2023). ByT5 requires significantly fewer parameters for its vocabulary matrix (which is
comprised of only 256 embeddings), but to compensate for the loss of these parameters, ByT5 has
a “heavy” encoder with a larger number of layers than the decoder. While ByT5 shows impressive
performance on a variety of downstream tasks, its heavy encoder and short input sequence length
(1024 bytes) make it quite inefficient. In terms of FLOPs, ByT5 requires about 1.2 times more
operations than mT5, resulting in a 33% increase in pre-training wall time. With regard to inference
time on downstream tasks, ByT5 is up to 10 times slower than mT5, depending on the length of the
input sequence.

More recently, MegaByte (Yu et al., 2023) has shown promise in scaling byte-level decoders to long
context problems, but it also includes a step that segments sequences into fixed-length “patches.”
SpaceByte (Slagle, 2024) employs a similar solution, but adds larger, global Transformer blocks
to certain types of bytes, such as space characters, to improve performance. In a similar vein to
these papers, other work has attempted to address issues with long sequences in Transformer models
more generally. For example, Hierarchical Transformers (Nawrot et al., 2022) add several layers of
downsampling and upsampling to handle long sequences in decoder models. Follow-up work has
implemented dynamic pooling using boundary predictors, but these usually involve a supervised
training step (Nawrot et al., 2023). Other solutions include Nugget (Qin and Van Durme, 2023; Qin
et al., 2023), which encodes representations for dynamic subsets of the input text.

Unlike previous work, the deletion gating mechanism that we add to DelT5 does not require an
overhaul of the existing Transformer architecture, so it can be added to a pre-trained model with
fine-tuning using a small number of additional parameters. The deletion gating can also be applied
to models trained from scratch, which allows for faster pre-training runtimes. While we are par-
ticularly interested in byte-level modeling, our approach can also be applied to subword models,
complementing the existing line of work on long-context modeling.

4 Approach

4.1 DelT5 Model Architecture

DelT5 is a variant of the ByT5 architecture that has the potential to address its inefficiencies while
allowing more flexibility than previous character/byte-level models. After a certain number of layers,
DelT5’s encoder dynamically deletes tokens that it no longer needs to attend to (in the context of
byte-level models, “tokens” refer to bytes). More concretely, after a fixed encoder layer, we add a
gating mechanism that determines which tokens in the sequence should be kept to be processed by
later layers, and which tokens should be deleted from the sequence.2

Deletion Gating Mechanism. The DelT5 gating mechanism is inspired by existing architectures
with gating mechanisms such as Long-Short Term Memory (LSTMs, Hochreiter and Schmidhuber,
1997), Gated Recurrent Units (GRUs, Cho et al., 2014), and Mixture-of-Experts (MoEs, Shazeer
et al., 2017). DelT5’s gating mechanism is placed after the output of a fixed encoder layer l and is
defined by the following function:

gi = kσ(−Whli + b)

where hli ∈ Rd is the hidden state vector output by layer l for token i in the sequence; W ∈ R1×d;
b ∈ R; k is a large negative constant; and d is ByT5’s hidden state dimensionality. The gating
activation function is a rescaled and translated version of the sigmoid function; instead of being
bounded between 0 and 1, it is bounded between k and 0. The gating values for the entire sequence
can be expressed as G = [g1;g2; . . . ;gN ] ∈ R1×N . In the experiments we show in the next section,
we use k = −50 and l = 3.

The new parameters for the deletion gate are randomly initialized, other than the bias term, which is
initialized to -1. All other parameters are loaded from a pre-trained ByT5 small from HuggingFace.

2For details on exact code contributions for this project, see Appendix A.
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Hard and Soft Deletion. There are two types of deletion involved in the DelT5 encoder’s archi-
tecture, shown in Figure 1. The first is soft deletion, where the outputs of the gating mechanism are
added directly to the standard key-query-value self-attention mechanism of the subsequent layer:

Hl+1 = softmax
(
QK⊤
√
d

+G

)
V

where Q,K,V,Hl+1 ∈ RN×d.

Soft deletion does not truly reduce the sequence length, but it may be used during training to emulate
deletion (see Figure 1b). In order to see efficiency gains, we must apply hard deletion, where the
hidden states are removed from the sequence using a hard threshold; we set this threshold to be k

2 ,
half of the range of the delete gate’s output. If hard deletion is applied during training, in order to
allow gradient flow through the gating mechanism, soft deletion is first applied at layer l, and the
sequence length reduction is applied after layer l + 1, as shown in Figure 1c.

For different samples in a given batch, different amounts of tokens can be deleted; when applying
hard deletion, the new sequence length is determined by the example in the batch with the largest
number of remaining tokens, and the other examples are padded to the new sequence length. In
addition to resizing the hidden states, since T5 architectures use relative positional embeddings at
each layer, the hard deletion is also applied to the positional embeddings. In the main results we
present, hard deletion is applied during both training and evaluation. For results on models trained
with soft deletion, see Appendix B.

Auxiliary Loss. DelT5 allows deletion rates to be adjusted using a tunable auxiliary loss:

lossg =
1

N

N∑
i=1

gi

This loss is the average of the delete gate output values, which encourages them to be more negative
(i.e. closer to k, the minimum gate value). The total loss is defined as the sum loss = lossCE +αlossg,
where lossCE is the cross entropy loss of the standard ByT5 pre-training objective, described in the
next section. Varying the hyperparameter α allows the DelT5 model to delete more or fewer tokens.
In our experiments, we train models with α values of 0, 5e−5, 1e−4, 2e−4, 4e−4, and 1e−3.

4.2 Baselines

For comparison with DelT5, we use the following baselines:

1. ByT5 baseline: An unaltered ByT5 small architecture.
2. Decoder-only baseline: We implement and train a decoder-only version of ByT5 by ignoring

the input to the encoder and instead providing a single pad token as input.
3. Random deletion baseline: We implement and train a set of models with a random

deletion gating mechanism, where the choice of how the tokens are deleted is random; some
percentage of gating values are set to k, and the rest are set to 0. In our experiments, we try
different deletion probabilities: 20%, 50%, 80%, and 90%.

4. Fixed deletion baseline: We implement and train a set of models that delete specific tokens,
mainly whitespace, punctuation, and the ends of words. We train several models that delete
different percentages of the ends of words: 20%, 50%, and 90%.

For the random and fixed deletion baselines, the deletion gate is placed at layer l = 3, like the DelT5
models. The ByT5 baseline serves as a lower bound on the best possible span corruption loss, since it
does not delete any tokens; the decoder-only baseline is an upper bound on the span corruption loss,
since it uses no information from the encoder.

5 Experiments

5.1 Data

We use a subset of the multilingual C4 (mC4) corpus (Xue et al., 2021) for model training and
evaluation. For training, we download 1.3B bytes of the English mC4, so that all models and

4



baselines are trained on the same data. For evaluations, we also compute per-language metrics on
a set of 15 typologically diverse languages: English, French, Spanish, German, Greek, Bulgarian,
Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili and Urdu. These evaluations
are zero-shot for all languages other than English. We precompute and load 16M bytes from each
language’s validation dataset in mC4.3 The number of bytes we download for the training and
validation samples is calculated to fit the batch size and number of steps described in the experiment
configuration in Section 5.3.

5.2 Training and Evaluation

Training Task. The main task we use to train the DelT5 model is the span corruption pre-training
task, as it is defined in the ByT5 paper. In this pre-training objective, spans of tokens in unlabeled
text data are replaced with a single sentinel token ID, and the model must fill in the missing spans.
For ByT5, these are spans of bytes, and the masks can potentially interfere with word boundaries.
Below is an example, where <X>, <Y>, and <Z> represent sentinel tokens:

• Text: CS224n is the best class taught at Stanford.
• Masked input: CS224n is t<X>ght a<Y>ord.
• Target: <X>he best class tau<Y>t Stanf<Z>

Evaluation Methods. The main evaluation metrics we use are the span corruption cross entropy
loss defined above, the percentage of deleted tokens from the sequence, and the inference runtime.
All of these are measured on the span corruption task and averaged over the validation set. The goal
is to achieve the lowest possible loss on the span corruption objective while maintaining a substantial
amount of deletion in the DelT5 encoder using the gating mechanism.

5.3 Experimental Details

We train each DelT5 and baseline model on the span-corruption task for 1,000 steps over batches of
220 tokens (i.e. an encoder sequence length of 1024 with an effective batch size of 1024). For the
span corruption loss, we calculate the corrupted spans such that the average mask span length is 20
tokens with a noise density of 15% (i.e. 15% of tokens in the sequence are masked out), following
the specification in the ByT5 paper. We use a per-device training batch size of 16 with 64 gradient
accumulation steps to emulate the effective batch size of 1024 examples. We do not repeat epochs
over the sample of mC4 data. We use the AdamW optimizer with an initial learning rate of 1e-3
with linear decay and no warmup. All other hyperparameters are the same as the default training
arguments of the HuggingFace Trainer class.4 Each per-language evaluation is 1,000 steps with a
batch size of 214 tokens (i.e. an encoder sequence length of 1024 with a batch size of 16). We use the
last model checkpoint at step 1,000 for all evaluations.

On average, training takes about 7 hours for each model (training time varies depending on the
amount of deletion). We train 14 models on NVIDIA RTX A6000 (48 GB) GPUs, for a total of about
100 GPU hours.

5.4 Results

Loss vs. Deletion Rate. Figure 2a shows the span corruption cross entropy loss over the percentage
of deleted tokens for each DelT5 and baseline model. As expected, ByT5 has the best loss, but it does
not delete any tokens; the decoder-only baseline deletes all tokens, but has the worst loss. The DelT5
models as well as the fixed and random deletion baselines fall in-between, but notably, the DelT5
models have better losses than the other baseline models with the same deletion rate. For instance,
DelT5 with α = 5e−5 deletes about 55% of tokens, which is about the same deletion rate as the
50% fixed and 50% random deletion baselines, but the DelT5 model has the lowest loss. We see
similar trends for the other DelT5 models and baselines. These results indicate that the DelT5 gating
mechanism effectively deletes tokens in a way that minimizes the loss, compared to the random and
fixed deletion baselines.

3Certain languages (namely, Swahili and Urdu) lack enough validation data in the mC4 dataset. For these
languages, we instead sample from the their training sets.

4Trainer class: https://huggingface.co/docs/transformers/en/main_classes/trainer
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Figure 2: Evaluation results on a sample of the English mC4 validation dataset.

Table 1: Average span corruption loss on the validation set across languages and models.
Language ByT5 Decoder-only Random Fixed DelT5

20% 50% 80% 90% 20% 50% 90% α = 0 α = 5e−5 α = 1e−4 α = 2e−4 α = 4e−4 α = 1e−3

English 0.7630 1.5500 0.7986 0.8718 1.0428 1.1506 0.7932 0.8675 0.9964 0.7646 0.7698 0.8070 0.8867 1.0124 1.2392
French 0.8802 2.3792 0.9706 1.1082 1.3657 1.5142 0.9842 1.1803 1.4048 0.8905 0.9029 0.9775 1.1023 1.2643 1.7206
Spanish 0.9076 2.4307 0.9930 1.1414 1.3685 1.4973 1.0130 1.2021 1.4137 0.9177 0.9400 1.0130 1.1429 1.2982 1.6738
German 0.9181 2.6071 1.0068 1.1758 1.4396 1.5940 1.0389 1.2507 1.4949 0.9310 0.9445 1.0348 1.1566 1.3247 1.8211
Greek 0.6278 1.7775 0.7447 0.9745 1.2463 1.3797 0.8150 1.1055 1.3676 0.6449 0.6739 0.7547 0.8730 1.0251 1.4235
Bulgarian 0.6155 1.7313 0.7259 0.9282 1.2058 1.3411 0.7864 1.0629 1.4126 0.6357 0.6424 0.7135 0.8463 1.0790 1.4380
Russian 0.5620 1.6309 0.6737 0.8857 1.1590 1.2762 0.7500 1.0196 1.2821 0.5730 0.5855 0.6526 0.7802 0.9226 1.2819
Turkish 1.0129 2.8941 1.1192 1.3017 1.6101 1.8153 1.1151 1.3923 1.8030 1.0209 1.0876 1.1299 1.3052 1.4530 2.2062
Arabic 0.7506 1.7771 0.8662 1.0570 1.3017 1.4130 0.9227 1.2019 1.4201 0.7694 0.7743 0.8434 0.9717 1.1137 1.4420
Vietnamese 0.9191 2.8380 1.0404 1.2400 1.4986 1.6529 1.0993 1.3362 1.6196 0.9418 0.9637 1.0741 1.1875 1.3477 1.8817
Thai 0.5326 1.6621 0.6656 0.8610 1.1246 1.2545 0.7361 0.9468 1.2265 0.5618 0.5746 0.6353 0.7700 0.8868 1.3451
Chinese 1.0920 2.6098 1.2419 1.5089 1.8771 2.0763 1.3394 1.6206 2.0951 1.1137 1.1261 1.1903 1.3535 1.5411 2.3053
Hindi 0.6564 1.7341 0.7860 0.9865 1.2408 1.3663 0.8430 1.0810 1.3758 0.6705 0.6832 0.7508 0.8868 0.9990 1.4451
Swahili 1.1835 2.7789 1.2948 1.4968 1.7920 1.9820 1.3099 1.5479 1.9259 1.2065 1.2288 1.3303 1.4815 1.7220 2.3490
Urdu 0.7952 2.0185 0.9214 1.1227 1.3816 1.4846 0.9579 1.2458 1.5334 0.8100 0.8271 0.9193 1.0565 1.2131 1.5058

Table 2: Average percentage of deleted tokens on the validation set across languages and models.
Language ByT5 Decoder-only Random Fixed DelT5

20% 50% 80% 90% 20% 50% 90% α = 0 α = 5e−5 α = 1e−4 α = 2e−4 α = 4e−4 α = 1e−3

English 0.0000 0.9990 0.2000 0.5002 0.7998 0.9000 0.2770 0.5546 0.8245 0.0020 0.1545 0.5533 0.7899 0.9125 0.9912
French 0.0000 0.9990 0.2002 0.5001 0.7999 0.9000 0.2845 0.5593 0.8297 0.0042 0.1401 0.4679 0.7126 0.8382 0.9890
Spanish 0.0000 0.9990 0.1999 0.5003 0.8000 0.9000 0.2821 0.5546 0.8291 0.0055 0.1542 0.4933 0.7456 0.8717 0.9903
German 0.0000 0.9990 0.1999 0.5000 0.8000 0.9000 0.2736 0.5475 0.8406 0.0036 0.1252 0.4780 0.7002 0.8276 0.9893
Greek 0.0000 0.9990 0.2001 0.4999 0.8000 0.9000 0.2482 0.5464 0.8701 0.0201 0.1030 0.4473 0.7629 0.8548 0.9842
Bulgarian 0.0000 0.9990 0.2000 0.4999 0.7999 0.9001 0.2463 0.5507 0.8645 0.0137 0.0935 0.4697 0.7651 0.8618 0.9796
Russian 0.0000 0.9990 0.2000 0.5002 0.8001 0.9001 0.2466 0.5450 0.8703 0.0061 0.0744 0.4364 0.7718 0.8584 0.9808
Turkish 0.0000 0.9990 0.2000 0.5001 0.8001 0.9001 0.2686 0.5439 0.8546 0.0129 0.1213 0.4150 0.6973 0.7819 0.9865
Arabic 0.0000 0.9990 0.2000 0.5001 0.8001 0.9000 0.2486 0.5506 0.8694 0.0031 0.0850 0.3345 0.6996 0.8161 0.9847
Vietnamese 0.0000 0.9990 0.2000 0.5002 0.7999 0.9001 0.2836 0.5491 0.8350 0.0060 0.1470 0.4520 0.6909 0.7973 0.9738
Thai 0.0000 0.9990 0.2000 0.5002 0.8000 0.9001 0.2211 0.5138 0.8847 0.0121 0.0497 0.4204 0.7598 0.8168 0.9809
Chinese 0.0000 0.9990 0.2000 0.5000 0.7998 0.8999 0.2170 0.5120 0.8891 0.0068 0.0288 0.2342 0.5636 0.7022 0.9855
Hindi 0.0000 0.9990 0.2000 0.5001 0.8001 0.9000 0.2365 0.5254 0.8741 0.0064 0.0717 0.3866 0.7041 0.8083 0.9797
Swahili 0.0000 0.9990 0.1999 0.5001 0.8000 0.9000 0.2780 0.5582 0.8372 0.0102 0.1563 0.4185 0.6627 0.8127 0.9876
Urdu 0.0000 0.9990 0.2000 0.5001 0.8000 0.8998 0.2449 0.5574 0.8640 0.0054 0.1215 0.3964 0.7223 0.8438 0.9630

We also evaluate loss and deletion rates across 15 typologically diverse languages, as detailed in
Table 1 and Table 2. (To view these results as graphs, see Figure 8 in Appendix C.) Generally, the
trend observed in English, where higher values of α lead to increased deletion, holds across these
languages. However, the DelT5 models consistently demonstrate lower losses compared to both
random and fixed baselines at comparable deletion rates. Notably, some languages exhibit lower
deletion rates than others. For example, Chinese consistently shows the lowest deletion rates at most
values of α. This might be due to the language’s use of single characters to represent words in its
script.

Loss vs. Inference Runtime. The models that delete more tokens also have a faster runtime, as
shown by the results in Figure 2b. In particular, DelT5 with α = 1e−4 has about a 30% decrease in
inference runtime when compared to ByT5, with only a small increase in cross entropy loss. These
results show that we can tune DelT5 to be more efficient with minimal effects on performance. These
results also hold on our zero-shot evaluations across languages, showing that DelT5 can improve
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(a) DelT5 models. (b) Random deletion models.

Figure 3: Delta of the span corruption loss vs. the percentage of deleted tokens for each (a) DelT5
model and (b) random deletion baseline model. Delta is calculated by subtracting ByT5’s loss from
the model’s loss for a particular sample. Each point represents a single sample.

efficiency in multilingual settings as well. See Appendix C for the loss, deletion, and runtime results
across languages.

6 Analysis

Per-sample Analysis In this section, we present a per-sample analysis of the cross entropy loss and
deletion rates for each DelT5 model and random deletion baseline. Figure 3a plots the increase in
cross entropy loss for individual samples for each DelT5 model, using the ByT5 loss as the baseline
(i.e. the delta between the DelT5 model’s loss and ByT5’s loss for individual samples). For each
DelT5 model, we see a weak negative correlation between the delta of the loss and the percentage of
tokens deleted. This reflects what we would expect from the DelT5 models; for an individual sample,
DelT5 learns when it can delete more tokens without incurring a large increase in the loss.

Figure 3b shows the same analysis for the random deletion models. We can see that there is a weak
positive correlation between the delta of the loss and the percentage of tokens deleted; when the
random deletion model removes more tokens, it is more likely to cause an increase in loss. These
results further support the observation that the DelT5 models more strategically remove tokens
compared to the baselines. Appendix D includes additional per-sample analyses with loss and
deletion histograms for each model.

Qualitative Evaluation of Deletion Patterns During training, we notice that the DelT5 models for
most values of α gradually learn to delete more tokens over time, as shown in Figure 4. By loading a
DelT5 model at different checkpoints and analyzing the attention maps after the gating mechanism,
we can see the types of bytes the model keeps and deletes. We show the heatmaps from different
model checkpoints for two example sentences in Figure 5, using the DelT5 model with α = 1e−4.
This DelT5 model appears to delete spaces in between words initially, at around 100 and 200 training
steps. It then deletes subparts of words at around 500 training steps. After 1,000 steps, it deletes
entire words or clauses altogether. In models with greater than 60% deletion, most of the bytes that
are deleted are near the end of the sequence. These deletion trends, especially in early training steps,
where word boundaries and subparts of words are deleted, have interesting parallels in cognitive
science and psycholinguistics; humans are able to process text with only partial word information
remarkably well (Rayner et al., 2006; Grainger and Whitney, 2004; Johnson and Eisler, 2012).

7 Conclusion

In this work, we introduce DelT5, a modified version of ByT5 that includes a novel token deletion
mechanism in its encoder to reduce the input sequence length, allowing for significant inference
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Figure 4: Percentage of deleted tokens over training steps for several DelT5 models that use different
α hyperparameter values for the auxiliary loss. Larger α values result in more deletion.

Figure 5: Visualization of DelT5 (α = 1e−4) attention maps over different training steps. White
bands represent bytes that were deleted.

speedups while maintaining model performance. We show that DelT5 achieves a lower span cor-
ruption loss compared to random and fixed deletion baselines while deleting the same percentage
of tokens. We train DelT5 models on English data, but also perform zero-shot evaluations on 15
typologically diverse languages, showing that DelT5 can generalize to new languages and scripts.
We perform per-sample analyses, finding that DelT5 meaningfully deletes more tokens for individual
samples when it will not incur a large increase in loss. We finally visualize attention maps showing
deletion patterns for a few examples, demonstrating avenues for interpretability work involving
the DelT5 architecture. Overall, our contribution addresses the practical limitations of traditional
byte-level models, and we see this as a step toward the removal of subword tokenization from modern
language models.

Future Work. In this paper, we trained the deletion gating mechanism by fine-tuning a pre-trained
ByT5 model. In the future, we plan to pre-train DelT5 models from scratch; we anticipate that this
will close the performance gap between DelT5 and ByT5 while allowing for more token deletion and
inference gains. We also plan to further fine-tune and evaluate our DelT5 models on downstream
long-context modeling tasks, to show that DelT5 can feasibly handle much larger input sequence
lengths. We also plan to try alternative gating mechanisms that include explicit merging or pooling of
variable-length spans of tokens.
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8 Ethics Statement

The current project only trains the DelT5 model on English data. While our evaluations on 15
languages show promise that the model can generalize to multilingual settings, performance on
different sets of languages might differ from our evaluation results. This can be concerning if our
models are applied to languages that we have not evaluated. In future work, we plan to include
multilingual data during training and evaluate on a larger set of languages, but in general, we
encourage users to run their own thorough tests before applying our models to tasks that involve new
languages and scripts. We do not intend to make claims about performance on all languages based on
our results.

Another potential ethical concern is the usage of GPUs. Training large language models can have
negative environmental impacts due to energy consumption. While this work involves training a
large language model, our hope is to contribute a much more efficient and performant variant of
ByT5. We also perform small experiments using fine-tuning rather than training models from scratch,
which would be a next step for this project. By starting with small experiments, we minimize the
environmental impact of our research.
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Table 3: Inference runtime on the validation set, measured as a percentage of ByT5’s inference time,
across languages and models.

Language ByT5 Decoder-only DelT5
α = 0 α = 5e−5 α = 1e−4 α = 2e−4 α = 4e−4 α = 1e−3

English 1.0000 0.0736 1.0488 0.9532 0.6981 0.5152 0.4423 0.3738
French 1.0000 0.0732 1.0364 0.9753 0.7774 0.5731 0.4994 0.3785
Spanish 1.0000 0.0734 1.0352 0.9626 0.7572 0.5510 0.4808 0.3765
German 1.0000 0.0735 1.0345 0.9831 0.7707 0.5795 0.5035 0.3776
Greek 1.0000 0.0738 1.0384 0.9964 0.7811 0.5401 0.4885 0.3834
Bulgarian 1.0000 0.0738 1.0404 1.0016 0.7616 0.5356 0.4831 0.3879
Russian 1.0000 0.0738 1.0352 1.0120 0.7841 0.5341 0.4842 0.3867
Turkish 1.0000 0.0740 1.0420 0.9851 0.8089 0.5811 0.5348 0.3814
Arabic 1.0000 0.0743 1.0408 1.0066 0.8452 0.5810 0.5129 0.3841
Vietnamese 1.0000 0.0742 1.0399 0.9644 0.7873 0.5929 0.5328 0.3929
Thai 1.0000 0.0741 1.0416 1.0341 0.7895 0.5375 0.5086 0.3858
Chinese 1.0000 0.0740 1.0377 1.0476 0.9438 0.6905 0.6095 0.3824
Hindi 1.0000 0.0740 1.0402 1.0225 0.8209 0.5829 0.5183 0.3868
Swahili 1.0000 0.0739 1.0418 0.9579 0.7899 0.5957 0.5195 0.3801
Urdu 1.0000 0.0738 1.0341 0.9775 0.7922 0.5555 0.4871 0.3955

A Code Contributions

To build the DelT5 architecture, we implement PyTorch modules that extend the T5 modules provided
by HuggingFace, altering the necessary components while allowing unaltered T5 functionality to
remain via inheritance.5 We also adapt HuggingFace’s span corruption training script, which was only
compatible with JAX and the original T5 objective. We made the script compatible with Pytorch and
adapted how the sentinel tokens are assigned, since ByT5 reuses the last 100 bytes in its vocabulary
as sentinels.6 All code contributions for this project were written by Julie Kallini.

B Soft Deletion Models

In the main paper, we present results for DelT5 models in which hard deletion is applied during
both training and inference. We also train as set of models where soft deletion is applied during
training, and hard deletion is applied at inference. We call this set of models the MaskedDelT5
models. Figure 6 shows the span corruption loss vs. inference runtime results for these models.

C Additional Per-language Evaluations

Figure 7 shows the span corruption cross entropy loss vs. the percentage of deleted tokens for each
DelT5 and baseline model, for each of the 15 languages. Figure 8 shows similar plots for the loss vs.
inference runtime across languages.

D Additional Per-sample Analysis Results

Here, we provide histograms of the cross entropy loss deltas and deletion percentages for the DelT5
models and random deletion baseline models. Figure 9 displays the results for the DelT5 models, and
Figure 10 displays the results for the random baseline models.

5For HuggingFace’s T5 implementation, see https://github.com/huggingface/transformers/
blob/v4.39.0/src/transformers/models/t5/modeling_t5.py.

6We adapt the following FlaxT5 language modeling script: https://github.com/huggingface/
transformers/blob/main/src/transformers/models/t5/modeling_flax_t5.py.
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(a) Arabic.
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(b) Bulgarian.
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(c) Chinese.
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(d) English.
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(e) French.
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(f) German.

100 200 300 400 500 600 700
Runtime (in seconds)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Cr
os

s E
nt

ro
py

 L
os

s

 ByT5

 Decoder-only

 MaskedDelT5,
=5e-3

 MaskedDelT5,
=1e-2

 MaskedDelT5,
=2.5e-2

(g) Greek.
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(h) Hindi.
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(i) Russian.
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(j) Spanish.
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(k) Swahili.

100 200 300 400 500 600 700
Runtime (in seconds)

0.6

0.8

1.0

1.2

1.4

1.6

Cr
os

s E
nt

ro
py

 L
os

s

 ByT5

 Decoder-only

 MaskedDelT5,
=5e-3

 MaskedDelT5,
=1e-2

 MaskedDelT5,
=2.5e-2

(l) Thai.
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(m) Turkish.

100 200 300 400 500 600 700
Runtime (in seconds)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Cr
os

s E
nt

ro
py

 L
os

s

 ByT5

 Decoder-only

 MaskedDelT5,
=5e-3

 MaskedDelT5,
=1e-2

 MaskedDelT5,
=2.5e-2

(n) Urdu.
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(o) Vietnamese.

Figure 6: Per-language evaluations of span corruption cross entropy loss vs. inference runtime for
each MaskedDelT5 and baseline model. MaskedDelT5 models are trained with soft deletion.
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(a) Arabic.
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(b) Bulgarian.
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(c) Chinese.
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(d) English.
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(e) French.
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(f) German.
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(g) Greek.
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(h) Hindi.

0 20 40 60 80 100
Deleted Tokens (%)

0.6

0.8

1.0

1.2

1.4

1.6

Cr
os

s E
nt

ro
py

 L
os

s

ByT5

Decoder-only

Random, 20%

Random, 50%

Random, 80%

Random, 90%

Fixed, 20%

Fixed, 50%

Fixed, 90%

DelT5, =5e-5
DelT5, =1e-4

DelT5, =2e-4

DelT5, =4e-4

DelT5, =1e-3

(i) Russian.

0 20 40 60 80 100
Deleted Tokens (%)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Cr
os

s E
nt

ro
py

 L
os

s

ByT5

Decoder-only

Random, 20%

Random, 50%

Random, 80%

Random, 90%

Fixed, 20%

Fixed, 50%

Fixed, 90%

DelT5, =5e-5
DelT5, =1e-4

DelT5, =2e-4

DelT5, =4e-4

DelT5, =1e-3

(j) Spanish.

0 20 40 60 80 100
Deleted Tokens (%)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Cr
os

s E
nt

ro
py

 L
os

s

ByT5

Decoder-only

Random, 20%

Random, 50%

Random, 80%

Random, 90%

Fixed, 20%

Fixed, 50%

Fixed, 90%

DelT5, =5e-5
DelT5, =1e-4

DelT5, =2e-4

DelT5, =4e-4

DelT5, =1e-3

(k) Swahili.
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(o) Vietnamese.

Figure 7: Per-language evaluations of span corruption cross entropy loss vs. the percentage of deleted
tokens for each DelT5 and baseline model.
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(a) Arabic.
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(b) Bulgarian.
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(c) Chinese.
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(d) English.
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(e) French.
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(f) German.
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(h) Hindi.
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(k) Swahili.
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(l) Thai.
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(m) Turkish.
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Figure 8: Per-language evaluations of span corruption cross entropy loss vs. inference runtime for
each DelT5 and baseline model.
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Figure 9: Histograms of individual sample cross entropy loss deltas and deletion percentages for each
DelT5 model.
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Figure 10: Histograms of individual sample cross entropy loss deltas and deletion percentages for
each random baseline model.
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