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Abstract

The efficient specialization of a general language model trained on unsupervised
tasks to specific downstream tasks is of interest in many applications. Fine-tuning
allows models to effectively utilize learning that occurred during pre-training
to perform effectively on downstream tasks. In this project we are specifically
interested in the fine-tuning of a miniBert implementation on the tasks of sentiment
analysis, semantic similarity evaluation, and paraphrase detection. While fine-
tuning can be carried out on the entire model architecture, adjusting each model
parameter starting from the pre-trained parameters, this is needlessly expensive.
We present a more efficient method for specializing to these three tasks by utilizing
data augmentation, LoRA, and smoothness-inducing adversarial regularization.
In addition to these methods, bootstrap aggregating was also tested as a means
of increasing performance on downstream tasks. Implementing these methods
allowed us to realize an increase in performance on the down stream tasks as
compared to the pre-trained model at a reasonable computational cost.

1 Key Information to include

• Mentor: Jingwen Wu
• External Collaborators (if you have any): No
• Sharing project: No
• Team contributions: Andri took the lead on coding the LoRA and data augmentation

components, and was instrumental in conducting the majority of the experiments. Jacob
implemented bagging and provided substantial support with the experiments. Raphaëlle
focused on integrating SIAR, and explored cosine similarity and gradient surgery.

2 Introduction

LLMs that use a masked language model learn the distribution of words based on context and as a
consequence implicitly obtain a fairly deep understanding of the language. This results in a model
with the capacity to generalize to specific tasks. Clearly, this is appealing as it allows for many
different tasks such as sentiment analysis, paraphrase detection, and semantic textual similarity
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evaluation to be carried out with a reasonable degree of accuracy on a pre-trained model. These
models however, sacrifice a degree of accuracy on particular tasks that one may be interested in as a
result of their generality. Through the application of fine-tuning methods, the performance of the
general model on specific downstream tasks of interest can be improved. However, fine-tuning a
model with a large number of parameters in totality is computationally expensive, often prohibitively
so. Thus, methods for fine-tuning and improving performance of a general model such as BERT that
are computationally inexpensive are of significant value.

In this project we are interested in combating the shortcomings of a general model by improving
its performance on the downstream tasks of sentiment analysis, paraphrase detection, and semantic
textual similarity evaluation while avoiding fine-tuning all of the model parameters. The goal of this
project, as such, is to efficiently improve upon the performance of a miniBERT implementation on the
aforementioned tasks measured by appropriate evaluation metrics for each task. We explore the effects
of data augmentation applied to the task specific training data, implementation of regularization
methods, and the use of LoRA for fine-tuning, as methods of efficiently increasing the performance
of the pre-trained model on down stream tasks.

3 Related Work

We primarily build on the influential paper "LoRA: Low-Rank Adaptation of Large Language" Hu
et al. (2021). Fine-tuning a large language model by post training all of the model’s parameters
to adapt to task specific data is computationally expensive due to the sheer size and complexity
of the model. This paper addresses this challenge by proposing a method that utilizes low-rank
adaptation (LoRA) matrices that are injected "on top" of the original weight matrices at selected layers.
During training, the original pre-trained weight matrices remain frozen, while the LoRA matrices
are trainable, this approach reduces the number of trainable parameters significantly, enhancing
computational complexity. To assess the effectiveness of their contribution, the authors evaluated
LoRA’s performance against various baseline models using standard benchmarks. LoRA performed
on-par or better than regular fine-tuning applied to the same baseline models. LoRA, or some variant
of it is the current state of the art fine-tuning framework.

4 Approach

The approach utilized consisted of applying bootstrap aggregating, data augmentation, LoRA, projec-
tion layers, and SIAR.

4.1 LoRA

In the general framework, fine-tuning model weights is the process of learning new weight matrices
W = W0 + ∆W , where W0 ∈ Rd×k is a pre-trained weight matrix and ∆W is a learned update
matrix. This method can be applied either on a select subset of weights, or on all layers of the model.
The paper leverages previous work that concluded that pre-trained models have a very low intrinsic
dimension Aghajanyan et al. (2020), and proposes a low-rank decomposition of the update matrix
∆W = BA. The matrices B ∈ Rd×r, A ∈ Rr×k are called the adapters and their rank, r, is usually
chosen so that r << min(d, k). The matrix B is initialized with zero and the matrix A is initialized
with Gaussian noise, N(0, σ2). During task-specific training, only the matrices A and B receive
gradient updates and the pre-trained matrix W0 is frozen. Since the matrices A and B have low
rank r, the number of trainable parameters corresponding to each hidden state is reduced from dk to
2dr which is much smaller given the choice of r. Figure 1 compares naive fine-tuning to the LoRA
method.
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Figure 1. Regular fine-tuning vs. LoRA (Raschka, 2024) Raschka

With a vanilla implementation of LoRA, the two matrices comprising the low-rank update are
initialized to Gaussian noise and zeros, the "noise and zero" adapters. However this initialization
scheme is unlikely to be anywhere close to the actual optimal (in terms of loss minimization) values
of the adapters, which can result in slow convergence. Principal Singular values and Singular
vectors Adaptation (PiSSA), provides means for overcoming this short coming of a typical LoRA
implementation Meng et al. (2024).

Using PiSSA rather than initializing the noise and zero adapters, PiSSA initializes two adapters A and
B by using the principal components of the pre-trained weight matrix, W , while the non principal
components are are stored in a residual matrix, W res, and frozen. Aside from the clever initialization
of the adapter and residual matrices PiSSA functions identically to regular LoRA facilitating faster
convergence and therefore more efficient and effective fine-tuning Meng et al. (2024).

4.2 Smoothness-Inducing Adversarial Regularization

To improve the robustness of our multitask classifier and enforce consistent predictions when the
embeddings are noisy, we experimented with Smoothness-Inducing Adversarial Regularization
(SIAR) as introduced by Jiang et al. (2019). SIAR essentially incorporates regularization and solves
the following optimization problem for fine-tuning

min
θ

L(θ) + λsRs(θ)

where the loss function is L(θ) = 1
n

∑n
i=1 l (f(xi; θ), yi) and ls is the sum of the losses from our

three downstream tasks, λs > 0 is the tuning parameter, Rs(θ) is the smoothness-inducing reguralizer
that we defined as

Rs(θ) =
1

n

n∑
i=1

l (f(xi; θ), f(xi + ϵ; θ))

and ϵ > 0 is a tuning parameter. To optimize computational efficiency, this choice of regularizer
differs from the one introduced in the original paper.

4.3 Bootstrap Aggregating

Bootstrap aggregating, or bagging, allows for the generation of different predictions which can
then be aggregated to make a final prediction, which improves performance and reduces variance.
This process of generating multiple predictions is carried out using bootstrapping. For the dataset
L consisting of the input and output pairs (yn, xn), n = 1, ..., N where the output yn is either a
label, in the SST dataset for example, or a number, in the SemEval STS Benchmark dataset for
example. Using L we can construct k different Ljs for j = 1, ..., k by sampling L with replacement
N times. Carrying this entire process out k times results in k datasets of N data pairs drawn from the
distribution of L Breiman (1996).

We can then leverage these different datasets by training a model on each of the k datasets and
aggregating the model predictions. By aggregating the predictions we mean that for some input x if
the output is a label then we select the label that received the most votes from the k predictions for
classification tasks, and the mean across models for regression tasks Breiman (1996).
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4.4 Data Augmentation

Data Augmentation (DA) was motivated by the paper Easy Data Augmentation (EDA) Wei and Zou
(2019). The EDA paper shows that the smaller the size of a training dataset, the more it stands to gain
from DA methods that effectively artificially increase the size of the data set. However, depending on
the resources available, the methods used in EDA such as synonym replacement, random insertion,
random swap, and random deletion can be unnecessarily simplistic. Rather than perform these basic
operations, we opted to use a fine-tuned LLM to generate paraphrased examples from our dataset(s).
For this, we used FLAN-T5 Chung et al. (2022). While this method is general and could be applied
to any of the data sets in principle, in practice the most significant improvement was associated with
the SST dataset, when trained with a parameter efficient setup.

4.5 Projections and Cosine Similarity

To encourage a more robust model architecture with the capacity to generalize to many different
example types, projections from the Bert embedding space down to a smaller dimension were used.
Depending on the downstream task the usage of the embeddings were different.

Sentiment Analysis The sentiment analysis task was the only task for which no projection was
used. For this task the Bert embedding was fed directly to the linear classification which outputted
five logits associated with the possible annotations.

Paraphrase Detection Two input questions were associated with each paraphrase dataset input.
Each of these inputs were independently fed through the Bert model then the paraphrase projection
layer(s). After the embeddings were obtained they were concatenated then fed to the classification
layer to obtain the prediction.

Semantic Similarity Analysis Semantic similarity analysis task inputs also had two sentences
associated with them. Both inputs were fed through the similarity projection layer(s) just as in the
paraphrase detection. However for semantic similarity analysis, following the projection, the cosine
similarity between the two embeddings was calculated then scaled to take on values zero to two by
adding one, then finally it was scaled to take on values zero to five by multiplying the resulting logit
of this calculation by 2.5.

5 Experiments

5.1 Data

The datasets used in the experiments were the Stanford Sentiment Treebank (SST), CFIMDB, Quora
question pair, and SemEval STS Benchmark datasets.

The SST and CDIMDB datasets were used for sentiment analysis. Each example in the SST dataset
consisted of a sentence assigned a tag of negative, somewhat negative, neutral, somewhat positive, or
positive by a human judge. Examples in the CFIMDB dataset consisted of polar movie reviews each
assigned a sentiment of either positive or negative.

For paraphrase detection the Quora question pair dataset were used. In this dataset examples were
made up of a pair of questions assigned a label based on whether or not they were paraphrases of
each other—as evaluated by a human judge.

Semantic similarity evaluation performance was carried out on the SemEval STS Benchmark data set.
Each example in this dataset contained a pair of sentences assigned a score from zero to five based on
their similarity where a score of five indicates the sentences are paraphrases of each other and a score
of zero indicates they are unrelated. Datasets have been split into train, dev, and test sets according to
Table 1.
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Dataset Train Size Dev Size Test Size Total
SST 8, 544 1, 101 2, 210 11, 855
CFIMDB 1, 701 245 488 2, 434
Quora 283, 010 40, 429 80, 859 404, 298
SemEval 6, 040 863 1, 725 8, 628

Table 1. Dataset Splits

5.2 Evaluation method

Performance on each of the down stream tasks was evaluated based on accuracy of the predictions
on the out sample dev set based on the correct provided labels. Accuracy was computed straight
forwardly—as the percentage of predictions correct—on the data sets that used integer labels; those
being the SST, CFIMDB, and Quora datasets. For the STS SemEval dataset the Pearson score was
calculated and used as the metric of accuracy.

5.3 Experimental details

While some of the implemented methods were shown to improve performance and did not use any
tunable parameters, LoRA, Bagging, and SIAR all had multiple parameters that could be adjusted.
Results of specific experiments involving the isolation of single parameter or component of the model
are displayed in this section; however, numerous other experiments were carried out as well. To see a
list of the majority of the experiments that were carried out refer to Table A.1 in the Appendix.

The Benchmark Model In each of the experiments we evaluated against a benchmark model
to demonstrate the score improvement due to the method or architecture change of interest. The
benchmark model for all of the experiments aside from the projection experiments consisted of a full
multitask model trained using eight epochs, a Bert learning rate of 1e−5, a classifier learning rate
of 1e−4, and an MLP projection for the semantic similarity analysis and paraphrase detection tasks.
Any reference to the Benchmark Model refers to this model architecture unless otherwise specified.
Additionally, any model parameters that are not specified used the Benchmark Model parameters
when applicable. This is the case for the fine-tuned models as well; however, fine-tuning training was
carried out using only two epochs.

Data Augmentation Data augmentation was examined quantitatively along side the implementation
of LoRA. LoRA models were evaluated with and without data augmentation to see if any performance
improvement was realized. Further, the data augmentation implementation was evaluated qualitatively
by examining the quality of the outputted paraphrases and an example of a generated paraphrase is
given.

Bootstrap Aggregating Bagging was tested as a way for improving the task specific fine-tuning
after the multitask training had already been carried out. To do this the train dataset was sampled
as described in the approach section to generate different numbers of bagging models. However for
the paraphrase dataset it was very expensive to train on the entire data set, so to produce models that
collectively understood the underlying distribution, for one bagging model, the paraphrase dataset
was first chunked into a random third of the data then bootstrap sampling was carried out on this third
of the data to produce the dataset for the corresponding bagging model.

To evaluate the efficacy of bagging on the fine-tuning process, the Benchmark Model was trained
as described in the benchmark section, this model was then fine-tuned on each of the tasks using
different numbers of bagging models to investigate the effect on performance and justify the use of
bagging in the fine-tuning process.

LoRA The LoRA model architecture has the following tunable parameters: rank, initialization
scheme (standard or SVD), Bert learning rate, classifier learning rate, and weight decay. In this
experiment the rank, SVD initialization, and weight decay parameters were adjusted to sample a
subset of the space of possible parameters. The models were evaluated on sentiment analysis using
both the SST and CFIMDB datasets.
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SIAR To demonstrate the efficacy of SIAR on the tasks, a parameter search was carried out on the
ϵ and λ parameters of the SIAR implementation. For this experiment the Benchmark Model was
used as a starting point and was then fine-tuned on the task of semantic similarity analysis using
parameters in the range of 0.1 to 1 for both ϵ and λ.

Projection Layer(s) Different projection layer architectures were explored in an attempt to identify
the architecture that generalized best from the training set to the dev and test sets. For all projection
architectures the final output embedding was dimension eight. The three architectures investigated
were a single linear projection, three stacked linear projections, as well as a multilayer perceptron
(MPL) projection, which contained three layers in the paraphrase implementation and two in the
similarity. The MLP projection utilized the Gaussian linear error unit (GELU) activation function. As
previously mentioned, these projections were used only on the tasks of semantic similarity analysis
and paraphrase detection.

5.4 Results

The Benchmark Model The performance of the benchmark model on each data set and following
fine-tuning on each of the tasks is shown in Table 2.

Model SST Para STS
Benchmark 0.515 0.751 0.709
Benchmark Fine-tuned 0.521 0.754 0.731

Table 2. Benchmark Model Performance

Any reference to the Benchmark Model performance refers to this model which consisted of the
architecture described in the Experiments section.

Data Augmentation Evaluating the quality of paraphrases generated through a method such as the
one earlier described can be difficult. However, we believe the quality was quite good based on the
benefit provided in fine-tuning which is shown in the LoRA section. Further, qualitatively, based on
random samples drawn from the generation, the paraphrases appear to be of high quality. Table 3
shows five samples from an input sentence that are all coherent and similar to the input sentence.

Input i don’t think this movie loves women at all.

Paraphrases

a sexist, cynical satire
the sex scenes are so vile and the story so demeaning I couldn’t even watch it.
a movie that’s so sexist it makes you want to punch the screen
it’s a movie that makes women look like fools
this is a movie that’s sexist and, worse : it tries to be.

Table 3. Paraphrase Examples

Quantitatively we can also analyze the performance of the model with and without DA. In Table 5 we
can see that at least for the SST dataset, the implementation of DA always improves performance.
In general the implementation of DA was most beneficial on the SST dataset likely due to the one
sentence length of SST inputs as well as the nature of the data, that is, sentences expressing a
sentiment.

Bootstrap Aggregating Bagging was tested in the fine-tuning of the model on each of the down-
stream tasks after the initial training phase. The Benchmark Model was fine-tuned on each each of
the tasks to serve as the benchmark. Bagging was then tested using 4 and 6 models. The results of
these experiments are shown in Table 4.
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n Bagging Models SST Para STS
0 0.521 0.754 0.731
4 0.529 0.768 0.756
6 0.513 0.755 0.769

Table 4. Bagging Fine-tuning Performance

From the results of the bagging experiments it is mostly clear that bagging increases performance.
While there was a drop going from four to six models in both the paraphrase detection and sentiment
analysis tasks the drop was only marginal and likely due to an amount of randomness that can be
mitigated through the use of a larger number of models. For these reasons we expect a higher number
of bagging models to be in general more effective as well as more consistent in their performance.

LoRA We then have the results of the various LoRA configurations shown in Table 5. The learning
rates for the Bert model and classifier were 1e−4 and 1e−3 respectively. As shown in Table 5 the
best accuracy achieved on the CFIMDB dataset was 0.959 with two different configurations, rank
16 SVD initialized LoRA and rank 32 LoRA both without a weight decay. For the SST dataset
the best accuracy was 0.497 using the rank 32 SVD initialized LoRA with DA and no weight
decay. These results support the usage of SVD initialized LoRA as it out performed the vanilla
LoRA implementation, achieving the same accuracy with a lower rank on the CFIMDB dataset and
achieving a better accuracy on the SST data set.

Dataset SVD LoRA Rank Weight Decay Dev Accuracy
SST

Yes
16

0

0.471
SST with DA 0.494
CFIMDB 0.959
SST No 0.462
CFIMDB 0.959
SST

Yes

32
0.473

SST with DA 0.497
CFIMDB 0.951
SST

16 0.01
0.477

CFIMDB 0.955

Table 5. LoRA Fine-tuned Model Performance

SIAR As mentioned the SIAR implementation was tested for fine-tuning on the STS data set after
multitask training. We refer to the Benchmark Model performance on the same task after fine-tuning
as the benchmark. The Benchmark Model had a score of 0.731. In Table 6 we see that the use of
SIAR resulted in the moderate improvement of scores on the task.

ϵ\λ 0.1 0.25 0.5 0.75 1
0.1 0.729 0.733 0.733 0.732 0.738
0.25 0.731 0.726 0.732 0.733 0.735
0.5 0.732 0.732 0.727 0.727 0.735
0.75 0.735 0.732 0.733 0.740 0.738
1 0.723 0.733 0.729 0.729 0.737

Table 6. SIAR STS Grid Search

As can be seen in Table 6 the SIAR implementation performed best with λ of 1. Performance also
appeared to be largely indifferent to the value of ϵ and was on average improved by the incorporation
of SIAR.
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Projection Layer(s) As previously mentioned we considered three different projection architectures
for the tasks of paraphrase detection and semantic textural similarity analysis. The results of the
different model architectures are shown for all of the downstream tasks in Table 7.

Architecture SST Para STS
Single Linear 0.505 0.770 0.767
Triple Stacked Linear 0.500 0.767 0.768
MLP 0.515 0.751 0.709

Table 7. Projection Performance

In terms of projection architecture, the single and triple linear layers performed mostly the same with
the single linear having a slightly higher score on the paraphrase detection and sentiment analysis
tasks. The MLP projection showed the best performance on the SST task with worse performance
on the other two tasks. Despite this worse performance on the paraphrase detection and sentiment
similarity analysis tasks, we suspected that the MLP projection may perform better as the non-linearity
may allow for more robustness after LoRA and other methods are incorporated.

Final Performance The final model architecture used on the dev set will now be explained and
justified in terms of our previously presented experimental results. The final model was multitask
trained using SVD initialized rank 16 LoRA. These LoRA parameters were chosen based on our
experiments which showed that SVD initialized LoRA performs strictly better than LoRA using a
standard initialization. A rank of 16 was chosen as a compromise between performance and number
of trainable parameters as rank 16 performed better than rank 8 but slightly worse than rank 32. After
LoRA multitask training was carried out, the model was then fine-tuned on each of the down stream
tasks using bagging with 10, 10, and 8 models for SST, STS, and paraphrase tasks respectively. As
mentioned in the bagging results section, we suspected that a relatively large number of bagging
models would result in the best performance. We chose 10, 10, and 8 mostly due to training time
constraints. For the paraphrase detection task 8 bagging models was chosen since that task was the
most expensive to train with (or without) bagging. SIAR was also used in each of the fine-tuning
instances with parameters of λ = 0.1 and ϵ = 0.1. For the projection layer the MLP projections
described in the Benchmark Model and projection experiment sections were used with the intuition
that the non-linearity may generalize better with LoRA, SIAR, and bagging. The final performance
of the model after the implementation of all previously described methods is shown in Table 8.

SST Paraphrase STS Overall
Dev 0.549 0.793 0.822 0.751
Test 0.511 0.749 0.696 0.703

Table 8. Final Model Performance

As shown in Table 8 our chosen model architecture resulted in a respectable dev accuracy on all of
the tasks as well as the second highest Dev Leaderboard accuracy for the SST task. However, we
recognize the potential for much better performance after further hyperparameter tuning.

6 Analysis

In terms of our performance on the Dev Leaderboard, the final model’s strongest task was sentiment
analysis. We suspect that our impressive performance on this task can be attributed to our implemen-
tation of data augmentation on the SST dataset as well as our use of bagging. In all likelihood, these
methods provided predictions that were based on a much deeper understanding of the underlying
distribution than if one of these methods were not used. It also seems likely that these methods
worked especially well together. Data augmentation provided novel examples to be drawn from
in bagging, resulting in each bagging model training on a random amount of the augmented data,
providing a rich parent training set and diverse bagging learning sets.
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The moderate performance on paraphrase prediction suggests that while the model is robust, there
is a need for further tuning it to more nuanced language. Our relative under performance on the
paraphrase detection task suggests potential for optimizing our training strategy. Though the the
use of SIAR proved helpful in ensuring consistency across inputs, there is scope for hyperparameter
tuning to leverage the robustness offered by SIAR.

One element of the implementation that proved very effective was the SVD initialization of LoRA. In
our experiments and less formal testing, it was clear that this strategy provided a real performance
boost. This is logical as the SVD initialization provides a much better starting point for learning than
the random noise and zero adapters used in a standard LoRA implementation. Additionally, we found
the coupling of LoRA and bagging to be natural as LoRA reduces the cost associated with training
the bagging models.

7 Conclusion

A pre-trained miniBert implementation was efficiently specialized to the tasks of sentiment analysis,
semantic similarity analysis, and paraphrase detection. This was done using a novel set of methods
empirical shown to improve performance, both in past research as well as in our own ablation studies.
These methods included bagging, data augmentation, LoRA, and smoothness-inducing adversarial
regularization. We achieved reasonable performance on the dev set for each task and achieved the
second highest score for sentiment analysis task, likely due to the incorporation of bagging in our
fine-tuning architecture. While a performance increase was certainly realized, further ablation studies
and parameter searches could be carried out. We suspect that if this was done performance would
be greatly improved using the optimal parameters compared to our current set up. However, our
parameter choices were motivated, where possible, by the empirical results presented in the results
section as well as in the Table A.1 included in the Appendix.

8 Ethics Statement

There are two major ethical concerns with our miniBERT implementation. The first has to do with
bias, specifically the under representation of certain groups in the Quora dataset used during model
training for the paraphrase detection task. In their release statement of said dataset, Quora stated
that "the distribution of questions in the dataset should not be taken to be representative of the
distribution of questions asked on Quora." If deployed in production, our miniBERT model adapted to
the paraphrase detection task may thus favor more common formulations and not account for cultural
variations in language. To mitigate this bias, strategies include ensuring the dataset is representative
before training (albeit not possible here), fine-tuning the LLM on more culturally diverse datasets by
post, and leveraging bias reduction techniques such as counterfactual data augmentation.

The second ethical concern of our project has to do with user data privacy, particularly in the SST
dataset used during model training for the sentiment analysis task. Though the users may have
implicitly agreed to the publication of their movie reviews, they may not have explicitly given their
consent for their opinions, thoughts, and use of language to be processed and analyzed. In the
sentiment analysis task, the miniBERT model learns to "determine individual feelings" effectively
revealing the users’ thoughts and opinions. A strategy to ensure user privacy is to use Differential
Privacy (DP) in the sentiment analysis task as was done by Vogel and Lange (2023). DP consists in
adding noise to the output of the model to ensure users’ individual information cannot be retrieved.
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A Appendix

A.1 Master Table

Presenting all experimental results in a clear and concise format proved difficult due to the number of experiments and possible model architectures. For this reason
we present all of the experiments in Table A.1. SIAR, LoRA, and bagging experiments have been grouped vertically.

Model Projection Multitask Task Tuned Task Epochs Bert LR Class LR Bagging N-Models SIAR λ ϵ Rank SVD Score
Lora MLP No No sst 8 1E-5 1E-4 No N/A No N/A N/A 8 No 0.471
Lora MLP No No sst 8 1E-4 1E-3 No N/A No N/A N/A 16 No 0.462
Lora MLP No No sst 8 1E-4 1E-3 No N/A No N/A N/A 16 Yes 0.477
Lora MLP No No sst 8 1E-4 5E-4 Yes 10 No N/A N/A 32 Yes 0.452
Lora MLP No No sst 8 1E-4 1E-3 No N/A No N/A N/A 32 Yes 0.473
Lora MLP No No sst 8 1E-3 1E-3 No N/A No N/A N/A 8 Yes 0.353
Lora MLP No Yes sts 5 5E-5 1E-4 Yes 10 Yes 0.1 0.1 8 No 0.822
Lora MLP Yes No sst 10 1E-5 1E-4 No N/A Yes 0.1 0.1 32 Yes 0.491
Full MLP Yes No sst 8 1E-5 1E-4 No N/A Yes 0.1 0.1 N/A N/A 0.504
Full MLP Yes No sst 5 2E-5 8E-5 No N/A Yes 0.25 0.25 N/A N/A 0.507
Full MLP No Yes sst 5 5E-5 1E-4 Yes 10 Yes 0.1 0.1 N/A N/A 0.549
Full MLP No Yes para 2 1E-5 1E-4 Yes 2 No N/A N/A N/A N/A 0.755
Full MLP No No sst 8 1E-5 1E-4 Yes 10 No N/A N/A N/A N/A 0.528
Full MLP No No sst 8 1E-5 1E-4 Yes 2 No N/A N/A N/A N/A 0.291
Full MLP No Yes sts 2 1E-5 1E-4 Yes 2 No N/A N/A N/A N/A 0.369
Full MLP No No sst 8 1E-5 1E-4 Yes 10 No N/A N/A N/A N/A 0.540
Full Single Linear Yes Yes sst 4 1E-5 1E-4 Yes 10 No N/A N/A N/A N/A 0.526
Full MLP Yes Yes para 2 1E-5 1E-4 Yes 2 No N/A N/A N/A N/A 0.763
Full MLP Yes Yes para 2 1E-5 1E-4 Yes 6 No N/A N/A N/A N/A 0.769
Full MLP Yes Yes sst 2 1E-5 1E-4 Yes 2 No N/A N/A N/A N/A 0.500
Full MLP Yes No sst 2 1E-5 1E-4 Yes 6 No N/A N/A N/A N/A 0.513
Full MLP Yes Yes sts 2 1E-5 1E-4 Yes 2 No N/A N/A N/A N/A 0.758
Full MLP Yes Yes sts 2 1E-5 1E-4 Yes 6 No N/A N/A N/A N/A 0.755
Full MLP Yes Yes sst 2 1E-5 1E-4 Yes 4 No N/A N/A N/A N/A 0.529
Full MLP Yes Yes para 2 1E-5 1E-4 Yes 4 No N/A N/A N/A N/A 0.768
Full MLP No Yes sst 4 1E-5 1E-4 Yes 10 No N/A N/A N/A N/A 0.511
Full MLP No Yes sst 8 1E-5 1E-4 Yes 10 No N/A N/A N/A N/A 0.526
Full MLP No Yes para 3 1E-5 1E-4 Yes 8 No N/A N/A N/A N/A 0.793
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Last Linear MLP No No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.389
Last Linear MLP No No sst 8 1E-3 1E-3 No N/A No N/A N/A N/A N/A 0.386

Full MLP No No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.525
Full MLP No Yes para 2 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.760
Full MLP No Yes para 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.778
Full MLP No No para 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.632
Full MLP Yes No para 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.750
Full MLP Yes No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.490
Full MLP Yes No sts 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.724
Full MLP No Yes sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.515
Full MLP No Yes sst 2 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.480
Full MLP No Yes sst 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.477
Full MLP No Yes sst 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.526
Full MLP Yes No sst 10 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.513
Full MLP Yes No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.505
Full MLP Yes No sst 8 3E-5 4E-5 No N/A No N/A N/A N/A N/A 0.496
Full MLP No No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.390
Full MLP No Yes sts 2 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.368
Full MLP No Yes sts 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.801
Full MLP No No sts 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.168
Full Single Linear Yes No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.505
Full Single Linear Yes No para 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.770
Full Single Linear Yes No sts 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.767
Full Triple Linear Yes No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.500
Full Triple Linear Yes No para 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.767
Full Triple Linear Yes No sts 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.768
Full Single Linear Yes Yes sst 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.526
Full Single Linear Yes Yes para 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.805
Full Single Linear Yes Yes sts 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.785
Full Single Linear Yes Yes para 4 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.778
Full Single Linear Yes No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.490
Full Single Linear Yes No para 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.750
Full Single Linear Yes No sts 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.724
Full MLP Yes No sst 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.515
Full MLP Yes No para 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.751
Full MLP Yes No sts 8 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.709

12



Full MLP Yes Yes para 2 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.754
Full MLP Yes Yes sst 2 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.521
Full MLP Yes Yes sts 2 1E-5 1E-4 No N/A No N/A N/A N/A N/A 0.731

Table A.1. Master Table
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