
BERT Goes to School: Improving BERT Embeddings
Through Curriculum-Based Contrastive Learning and

Synonym-Based Data Augmentation

Arnav Gangal
Department of Statistics

Stanford University
agangal@stanford.edu

Martin Pollack
Department of Statistics

Stanford University
pollackm@stanford.edu

Russell Tran
Department of Computer Science

Stanford University
tranrl@stanford.edu

Abstract

In this project we present an implementation of BERT to simultaneously perform sentiment
analysis, paraphrase detection, and semantic textual similarity tasks. In particular, we focus
on implementing a method to further pre-train BERT using curriculum-based contrastive
learning using labelled triplets, and integrate these embeddings into the model’s downstream
multitask training loop. This model training method was investigated in combination with
data augmentation to improve the model’s robustness to data variations. However, our
findings indicate that pre-training embeddings with curriculum-based contrastive learning as
well as data augmentation can actually hurt performance on downstream tasks. Our best
overall performing models was still highly successful and achieved accuracies of 0.540
and 0.900 on the test sets of the sentiment analysis and paraphrase detection classifications
respectively, and a Pearson’s Correlation of 0.844 on the semantic textual similarity test set.
Further work in this area includes more complex data augmentation, perhaps by introducing
new task-specific datasets.

1 Key Information
• Team contributions: Martin implemented all of minBERT, wrote the code for the triplet ranking

system and the contrastive learning loss, and performed ablation studies. Arnav implemented the
baseline multitask training framework, the contrastive learning/curriculum learning training loop,
the multitask training loop using fine-tuned embeddings, and precision/recall/F1 score evaluation.
Russell implemented data augmentation (SGD synonym replacement), conducted the Select Example
Analysis, and helped team members run ablation experiments.

• Default Final Project
• Mentor: Johnny Chang
• Late days: 2 late days were used (2x3=6) and shared by Martin (6) to Arnav, Russell, and Martin.

2 Introduction

In the field of Natural Language Processing, significant progress has been driven by advancements in
transformer-based models, such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019). Common use-cases involve taking the embeddings produced by a model’s pre-trained weights
and fine-tuning them for particular downstream tasks. The pre-training is usually done with extraordinary
amounts of data and with lots of computation, but it allows the model to gain deep understanding of the target
language semantics. Then fine-tuning can be done relatively cheaply and quickly, making the model flexible to
do lots of different interesting tasks. Research has shown that the details of the fine-tuning methods and the
datasets on which they are performed can significantly affect the performance of the model. In this project,
we present an approach to improve the performance of a pre-trained BERT model in performing the tasks of
sentiment classification (SC), paraphrase detection (PD), and semantic textual similarity (STS) simultaneously.

Our main extension is curriculum-based contrastive learning (CBCL) as a method to further pre-train and
enhance BERT embeddings. Contrastive learning uses a loss function that makes similar embeddings closer
and dissimilar ones farther apart. CBCL, suggested by Dehghan and Amasyali (2023), aims to imrpove upon
this by systematically introducing training samples of increasing difficulty, allowing the model to learn from
easier to harder examples, refining its understanding of semantic relationships. Post pre-training, we use a
multitask classification framework, rotating through SC, PD, and STS tasks, each with its own classification
head. This strategy aims to create more robust and nuanced embeddings, improving performance across all

Stanford CS224N Natural Language Processing with Deep Learning



tasks. CBCL is a new extension introduced in 2023, with limited research and hyperparameter tuning. Thus,
we experimented with pacing functions, temperature hyperparameters, and techniques for scoring sample
difficulties. Additionally, we investigated using synonym replacement for data augmentation, a suggested
improvement by CBCL’s creators over their use of only using dropout as noise.

Our final model pipeline consists of two major sections: further pre-training using CBCL and synonym
replacement as well as multitask fine-tuning. Our results indicate that the multitask fine-tuning architecture is
much more important for maximizing performance on the downstream tasks. This includes the task heads, the
losses used, and whether training is done with a sequential or round-robin approach. Contrastive learning and
CBCL actually can detract from performance, perhaps since further pre-training on an objective not related to
the tasks can take away important information. In addition to our main results, we classify common errors our
model makes, do a nuanced error analysis, and perform ablation studies.

3 Related Works

3.1 Contrastive Learning

Our project builds on the contrastive learning approach for language models proposed by Gao et al. (2021),
which optimizes a contrastive loss function to compare sentence embeddings in unsupervised or supervised
settings. Unsupervised training processes the same sentence twice with different dropout rates to maximize
embedding similarity, using dropout as data augmentation. Supervised training uses annotated pairs from
datasets like Stanford NLI (Bowman et al., 2015), with "entailment" pairs as positives and "contradiction" pairs
as hard negatives. This method aims to align positive pair embeddings more closely, potentially improving
performance on downstream NLP tasks.

3.2 Curriculum Learning

Existing contrastive learning methods for fine-tuning language models do not distinguish between easy and
hard negatives during training. Curriculum learning, formalized by Bengio et al. (2009), suggests that training
with ordered examples improves the convergence speed and quality of minima found by deep learning models,
theoretically improving their generalization to unseen data.

Dehghan and Amasyali (2023) integrate curriculum training with contrastive learning in "SelfCCL," a method
for fine-tuning BERT. This approach sequentially orders training examples from simple to complex during
training, mimicking human learning. The model’s embeddings determine the difficulty of training examples,
using triplets from Bowman et al. (2015) and Williams et al. (2018). The authors show improved performance
on STS and sentiment evaluation tasks when using BERT and SentenceBERT, but do not explore multitask
learning paradigms or tune their curriculum-related hyperparameters. Our project represents a meaningful
extension of their work — not only do we aim to replicate their results on our new downstream tasks, but also
we strive to investigate the impact of tuning difficulty labeling and data ordering in a multitask objective.

3.3 Synonym-based data augmentation

In previous work on contrastive as well as curriculum learning, the idea of data augmentation has been
mentioned frequently. The seminal paper on contrastive learning, Gao et al. (2021), uses many forms of data
augmentation including dropout, crop, and word deletion or replacement. In their future works section on
CBCL, Dehghan and Amasyali (2023) report that a priority is adding a form of curriculum data augmentation
where one "gradually [increases] the noise in the data to generate new data", and they cite synonym replacement
as a prime example of this. They speculate that this will make the model more flexible and able to distinguish
semantic connections between similar phrases and sentences more clearly. Since we are implementing CBCL
in our model, we found it appropriate to test the hypothesis of these authors.

Synonym-based data augmentation has been applied to many different problems in NLP. For example, Tashu
and Horváth (2022) found that the technique can dramatically improve a model’s ability to perform automatic
essay scoring as well as protect from and anticipate "adversarial attacks" in the form of plagiarism. Abdollahi
et al. (2021) shows that it can aid in the classification of and extraction of meaning from medical discharge notes.
These notes are usually highly unstructured and contain various jargon and phrases, but data augmentation
allowed the model to avoid these pitfalls better. Lastly, the technique was also used to improve the performance
of fake news detection in Riza Rizky and Suyanto (2021).

4 Approach

Our approach can be divided into four key stages: establishing a baseline BERT model, implementing and
iteratively improving a multitask training framework, implementing curriculum-based contrastive learning to
fine-tune embeddings, and augmenting the training data using synonym replacement.

2



4.1 Baseline BERT

Our work builds directly on top of the original BERT model, detailed in Devlin et al. (2019) and the default
handout at CS 224N Staff (2024). A full description of the model’s architecture can be found in Devlin et al.
(2019). As a high-level summary, the baseline BERT architecture consists of an embedding layer, followed by
12 multi-headed transformer blocks. We have implemented the multi-head attention mechanism, the classifier
pipeline, and the Adam optimizer as per the default project handout (CS 224N Staff (2024)). In addition, we
have implemented a multitask classification pipeline that features classification heads for all three tasks and
trains based on their combined loss. Using this as a baseline, we added first only contrastive learning and
then curriculum-based contrastive learning to evaluate how these methods improved our three task scores.
In addition, data augmentation methods were added to the baseline as well as the CBCL model to test its
effectiveness. All of these extensions were coded by us.

4.2 Multitask Framework

To establish baseline performance levels on the simultaneous tasks of SC, PD and STS, we chose to split our
BERT model into three separate task heads. The architecture of each of the heads is summarized below.

4.2.1 Sentiment Classification Head

The input to this head is the pooled BERT embedding corresponding to the <CLS> token of the training
example, a sentence taken from the Stanford Sentiment Treebank dataset. This embedding is passed through a
dropout layer, followed by a fully connected linear layer with 512 units and ReLU activation. This is followed
by a second fully connected layer with 256 units and ReLU activation. Finally, the output is passed through
a final fully connected layer that maps the 256 units to the number of sentiment classes, producing the final
classification logits. We then computed the cross-entropy loss between the predicted logits and the ground
truth sentiment labels, using the cross-entropy loss function (Appendix Equation 3).

4.2.2 Paraphrase detection head

For the PD head, the input embeddings and attention masks of each paired sentence were concatenated
and passed through the BERT model to obtain the pooled embedding output. Similarly to the sentiment
classification head, this output was then passed through a drop-out layer, a fully connected linear layer with
512 units and ReLU activation, another dropout layer, a second fully connected linear layer with 256 units
and ReLU activation, and a final fully connected layer with a single output unit. The loss for this task was
evaluated using binary cross-entropy with logits (Appendix Equation 4).

4.2.3 Semantic textual similarity head

Our STS task implementation closely mirrors the PD head. It starts by concatenating the input embeddings and
attention masks from the two sentences, which are then passed through the BERT model to obtain the pooled
output. This output goes through a dropout layer, a linear layer with 512 units and ReLU activation, another
dropout layer, and a second linear layer with 256 units and ReLU activation. A final fully connected layer
maps the 256 units to a single output unit, passed through a sigmoid to normalize the score between 0 and 1.
This output is scaled by 5.0 to match the similarity score labels, ranging from 0 to 5. Unlike the other tasks,
STS is trained as a regression task using Mean Squared Error as the loss function (Appendix Equation 5).

4.2.4 Sequential vs Round Robin Training

In our approach, the three classification heads — SC, PD, and STS — can be trained either sequentially or
using round-robin training. Sequential training involves focusing on one task at a time until completion, until
the maximum number of epochs has been reached, before moving on to the next. While this approach allows
the model to fully focus on one task at a time, it has some drawbacks. For example, it can miss synergies
between tasks and lead to information loss as earlier training is overwritten by learning from later tasks.
Additionally, training sequentially can lead to longer overall training times, as each task is handled separately.
Round-robin training, on the other hand, involves alternating between tasks in a cyclic manner, updating the
model after each batch. Training in this way ensures continuous exposure to all tasks, potentially promoting
better generalization and more robust embeddings.

We considered two approaches to round-robin training, due to differing dataset sizes between tasks. Our
initial approach was a hybrid between sequential learning and true round-robin training, where in each epoch
we would loop through one batch of each dataset until the batches for the smaller datasets ran out. This
approach, while effective to some extent, resulted in an imbalanced training process where the larger datasets
would dominate the later stages of each epoch. To address this, we adopted a method where, upon reaching
the end of a smaller dataset, we restarted and reshuffled it, continuing until iterating over every batch in the
largest dataset. This balanced training across tasks, providing diverse training examples and resulting in
improved generalization and performance. We implemented all this code ourselves and found that this refined
round-robin approach demonstrated the best results, validating its effectiveness in our multitask learning setup.

3



4.3 Curriculum-based contrastive learning (CBCL)

As an extension to BERT, we implemented curriculum-based contrastive learning (CBCL) to fine-tune the
model’s embeddings and improve its performance on downstream tasks. This method follows the self-
supervised CBCL procedure laid out in Dehghan and Amasyali (2023), in which example triplets (x, x+, x−)
(anchor, entailment, and contradiction) are labeled as:

Easy: d(x, x+) +m < d(x, x−)

Semi-hard: d(x, x+) < d(x, x−) < d(x, x+) +m

Hard: d(x, x−) < d(x, x+)

where d is the cosine distance between embeddings, and m is a tunable hyperparameter called the distance
margin. The BERT embeddings are then trained using the Normalized Temperature-Scaled Cross-Entropy
(NT-Xent) loss as proposed in Chen et al. (2020) with the addition of a hard negative:

− log
esim(xi,x

+
i )/τ∑n

j=1(e
sim(xi,x

+
j )/τ + esim(xi,x

−
j )/τ )

, (1)

where sim is the cosine similarity, and τ is a temperature hyperparameter that scales the cosine similarity.

Curriculum learning expands on this approach by using a pacing function that sets a threshold for the proportion
of difficulty-sorted examples eligible for training at epoch t. Specifically, at epoch t, the proportion of trainable
examples g(t) is given by Equation 2:

g(t) =

(
t

T

)λ

· k (2)

where T is the total number of epochs, t is the current epoch, λ is a tunable hyperparameter (set to 1 in Dehghan
and Amasyali (2023), but other common values are 1

2 and 2 for root and quadratic functions, respectively),
and k is the total number of examples in the dataset.

In theory, fine-tuning embeddings in this way allows the model to learn from progressively more challenging
examples, thereby refining its understanding of semantic relationships. As training progresses, the difficulty
of the examples that the model is trained on increases according to the pacing function, enabling the model
to gradually tackle more complex examples. This staged approach helps the model build on its previous
knowledge incrementally, potentially leading to more robust and nuanced embeddings.

To establish a baseline for how much improved performance we could expect to see when fine-tuning the BERT
embeddings directly, we initially trained without using any type of curriculum pacing, i.e. all examples were
made available to be trained on in each epoch. We then experimented with ordering the training examples using
the easy, semi-hard, hard labelling framework of Dehghan and Amasyali (2023); as well as ordering
them in descending order of cosine similarity between premise and entailment (d(x, x+)), or increasing order
of cosine similarity between premise and contradiction (d(x, x−)). Note that all of the code to further pre-train
BERT embeddings using CBCL, including the loss function, curriculum pacing methods, and training loops,
were implemented by our team in PyTorch.

4.4 Synonym Replacement

To enhance the robustness and generalization of our model, we employed synonym replacement as a data
augmentation strategy. We implemented three methods via our own code. The first method involved a naive
approach where each word in the training data was replaced with a synonym from WordNet with a probability
p. This precomputation method was simple and allowed for a diversified dataset.

The second method involved using a part-of-speech (POS) analyzer based on the Penn Treebank tags by
Marcus et al. (1993) to replace all nouns and adjectives in a sentence with their corresponding WordNet
synonyms, again with a probability p. This method ensured syntactic accuracy while introducing variability.

Our most effective method, the third one, was integrated directly into the training process. Inspired by
Algorithm 1 from Jungiewicz and Smywiński-Pohl (2019), we applied synonym replacement at the batch level
during stochastic gradient descent training. With probability p=0.25, each batch had one adjective in every
sentence replaced with a synonym from WordNet. To prevent overfitting and ensure diversity, we alternated
between replacing the first and last adjectives found in sentences. This dynamic augmentation, performed
live during training, mitigated overfitting risks and maintained fresh sentence variations, leading to better
generalization and performance.

5 Experiments

5.1 Data

For our three different downstream tasks we used three different data sources. First, for sentiment analysis we
used the Stanford Sentiment Treebank (SST) dataset, which compiles movie reviews from Rotten Tomatoes. It

4



contains 11,855 single sentences, which we split into 8,544 training sentences, 1,101 dev sentences, and 2,210
training sentences. The Stanford parser was then run over the dataset, leading to 215,154 unique phrases that
were labeled as ‘negative’, ‘somewhat negative’, ‘neutral’, ‘somewhat positive’, or ‘positive’. With our models
we aimed to predict which of these four labels a sentence would have, giving us a multiclass classification task
to train our model on. Second, for paraphrase detection we used a dataset from the online question answering
site Quora. It contains pairs of sentences that are labeled as either paraphrases of one another or not. Of the
404,298 pairs, we allocated 283,010 for train, 40,429 for dev, and 80,859 for test splits. Thus, this dataset
produced a binary classification task where we would predict if sentence pairs are paraphrases. Third, we
used the SemEval STS Benchmark Dataset for semantic textual similarity prediction which contains sentence
pairings of varying similarities from image captions, news headlines and user forums. Sentence pairings are
ranked on a scale of 0 (unrelated) to 5 (equivalent meaning). Of the 8,628 pairings, we assigned 6,040 to the
training dataset, 863 to the dev dataset, and 1,725 to the testing dataset. Thus, this dataset presented us with a
regression task, allowing our model to output values in the range of 0 to 5 which was compared to a true value
within the same range.

Lastly, for our extension of CBCL we introduce two new datasets: the Stanford Natural Language Inference
(SNLI) corpus and Multi-Genre Natural Language Inference (MultiNLI) corpus. The former was written by
humans doing a "novel grounded task based on image captioning" and contains 570,000 pairs of sentences
that are labeled as either entailment, contradiction, or neutral as specified in Bowman et al. (2015). The latter
according to Williams et al. (2018) has a similar format but contains 433,000 additional sentence pairs that
are significantly more difficult and taken from ten different genres including telephone conversations, travel
guides, and government documents. We wrote the code ourselves to combine the two datasets and create
sentence triplets (xi, x

+
i , x

−
i ) that merged entailment and contradiction pairs on the first sentence of the pair.

Specifically, we have that xi is the premise or anchor of the triplet, x+
i is the positive taken from entailment

sentences, and x−
i is the hard negative taken from contradiction sentences. In the end, this yielded a total of

275,600 triplets that we used to further pre-train our BERT model using CBCL before fine-tuning on the three
downstream tasks. Thus, for this part of the analysis the inputs were sentence triplets (xi, x

+
i , x

−
i ) and the

outputs were contrastive loss values, with the equation for these values explained found in Equation (1) above.

5.2 Evaluation method

The tasks of sentiment analysis and paraphrase detection were evaluated using prediction accuracy, or the
percentage of output values that correctly matched the true class label. For the STS task, we used Pearson
correlation between the predicted and true similarity scores as our evaluation metrics, identical to what was
used in the original SemEval paper Agirre et al. (2013).

To evaluate how the various hyperparameters pertaining to CBCL affected the model’s performance, we needed
a different evaluation metric. The seminal paper on CBCL only used a single combination of hyperparameters,
and we wanted to experiment with tuning these hyperparameters to see if we could get any improvements
in model performance. To measure this, we compared the mean NT-Xent loss, Equation (1) above, over the
entire training dataset at the last epoch of pre-training for each combinations of hyperparameters. This is the
loss we used to in order to perform the pre-training as described in the Approach section, and thus a lower
mean loss should indicate better tuning of the hyperparameters for the BERT embedding model.

5.3 Experimental details

Both the pre-training using CBCL and the fine-tuning on the three downstream tasks were done using similar
experimental setups. All experiments were run using Google Cloud Compute Engine virtual machines with
NVIDIA T4 GPUs. Some hyperparameter tuning was done for each of the two parts of our model pipeline,
and we found that in both sections using 10 epochs achieved sufficiently low loss and a batch size of 32 lead to
acceptable runtime speed without overloading computer memory. Then for pre-training using CBCL we found
that a learning rate of 2× 10−5 led to the lowest loss, whereas for task fine-tuning a lower learning rate of
1× 10−5 was better. Also, for the latter step a hidden layer dropout probability of 0.5 worked well.

5.4 Results

Our baseline model, which only takes the BERT embeddings and fine-tunes them on our three tasks and
does not implement contrastive learning or CBCL, performs best as seen in Table 1. In fact, on the test
leaderboard our baseline performs extremely well, with our overall test score being less than 0.015 below the
top performing model. Our SA task seems especially well-tuned, as our accuracy of 0.540 puts us level with
the third-placed model at the time of writing. The results of the same models on the dev set can be found in
Appendix Table A1.

However, surprisingly both contrastive learning and CBCL hurt the model’s ability to perform the three
downstream tasks. These were extensions that were supposed to improve BERT embeddings by making
them more distinguishable in the embedding space. This can possibly be explained by the fact that further
pre-training of BERT on a different loss, NT-Xent loss, which is not related to our downstream tasks of interest

5



can harm the performance on these tasks. Instead, we found that adjusting the multitask fine-tuning phase with
different learning rates, number of epochs, and task heads as well as using round-robin training led to much
better improvements than performing additional pre-training using CBCL. This shows us the importance of
fine-tuning: no matter how much pre-training is done to a model, it still needs to learn the specific tasks well
during fine-tuning to be able to perform adequately. This also tells us that our approach of using CBCL is not
effective for SC, PD, and STS tasks, and instead we were correct in spending significant time developing our
multitask fine-tuning pipeline.

Finally, when doing Synonym Replacement in addition to CBCL there is improvement on PD and STS tasks,
but this translates to an improvement of less than 0.010. This conforms with our tempered expectations as
Jungiewicz and Smywiński-Pohl (2019) had reported at best a 1.2% improvement in their CNN model via
their synonym replacement methodology, from which we took inspiration.

Model SA Accuracy PD Accuracy STS Correlation Overall Test score
Baseline 0.540 0.900 0.844 0.788

Curriculum-Based Contrastive Learning (CBCL) 0.518 0.896 0.833 0.777
CBCL with Synonym Replacement 0.518 0.900 0.838 0.779

Table 1: Results on Test Dataset

6 Analysis

6.1 Studying Select Examples

Inspired by Table I of Zhou et al. (2022) and Table 1 of Wahle et al. (2023), we developed a set of custom
categories to analyze why our language model failed to detect paraphrases. The criteria for an example to be
assigned to each category is detailed in section A.2 of our Appendix. To assess our model’s performance and
identify improvement areas, we manually categorized 100 random examples from the Quora Dev Set in which
our best performing model failed to make the correct prediction. To check if the frequency of these failure
categories was consistent with the overall distribution, we compared these with 100 random examples from the
Quora Training Set and another 100 random examples from the Quora Dev Set, all categorized under the same
criteria (Figure 1). By including these additional samples, we aimed to see if the support for each category
was roughly consistent with the failed examples. For binary classification tasks like paraphrase detection, the
reference sample set was categorized as if the model’s predictions had failed.

Figure 1: Frequencies of failure categories in paraphrase detection examples.

As shown in Figure 1, the most prominent category of failures was Context Misunderstanding. This was
expected, as it indicates that the language model has not yet developed a comprehensive understanding of
sentence directionality and contextual relationships. The second most prominent category, however, was
Domain-Specific Knowledge Gaps, which implies that the model has not been adequately exposed to specific
facts, proper nouns, or specialized knowledge areas. It should also be noted that 13% of the model’s failed
predictions in the sample were actually correct, as can be seen in the right-most category of Figure 1. This
highlights some concern with the Quora datasets but also demonstrates the power of our pre-training since the
model prevailed and made correct predictions even given mislabeled data during fine-tuning.

The prominence of Domain-Specific Knowledge Gaps as a failure mode led us to the hypothesis that this could
be attributed to limitations in the model’s training data. In particular, we theorize that the "bert-base-uncased"
model (Devlin et al., 2019), pre-trained on BooksCorpus (800M words) and English Wikipedia (2,500M
words), might not perform well on examples involving proper nouns lacking prevalence in the fine-tuning
data. To investigate this, we examined 1,300 Quora Dev Set predictions, in which we compared three correctly
classified PD examples against three incorrectly classified ones of similar topics. We traced the frequency of
proper nouns in all fine-tuning sentences, hypothesizing that failed examples would show fewer proper nouns.
However, our manual analysis, summarized in Table 2, did not support this hypothesis. Some failed examples
actually had higher proper noun frequencies compared to successful ones of similar topics, suggesting that the
multiplicity of pronouns and unaccounted frequencies of proper nouns in the large pre-training corpus might
be a confounding factor.

6



Predicted correctly Predicted incorrectly
Question Pair Noun Frequency Question Pair Noun Frequency
Are there any genetic basis for an IndoEuropean
(‘Aryan’) migration theory? / Who were the Indo-
Europeans?

IndoEuropean: 0,
Indo-Europeans: 2,
Aryan: 79

Is Ashwathama still seen in Himalayas? / Is Ash-
watthama of Mahabharat still alive?

Ashwathama: 3,
Ashwatthama: 3,
Mahabharat: 194,
Himalayas: 15

Is diphenhydramine soluble in water? Why or why
not? / Is zinc sulfate soluble in water? Why are
most sulfates soluble in water?

Diphenhydramine: 6,
Sulfate: 50,
Zinc: 59

What is the different between the Prozac and
Zoloft? / What is the difference between Zoloft
and Xanax?

Prozac: 38,
Zoloft: 14,
Xanax: 57

What are some good books on Joseph Goebbels? /
What are the best books on Joseph Goebbels?

Goebbels: 27,
Joseph: 55

Where is Anna Hazare these days? / Where is Anna
Hazare now?

Hazare: 5,
Anna: 520

Table 2: Comparison of Correctly and Incorrectly Predicted Paraphrase Pairs

6.2 Performance on Data Subsets

Previous papers on CBCL have only reported single overall numbers like accuracy to measure performance.
This can be misleading and does not provide insights into the strengths and weaknesses of a model. Thus, to
further examine how different elements of the training dataset contributed to the model’s overall performance
metrics across the three downstream tasks, we looked at the model’s precision, recall, and F1 scores across
different classes of the classification tasks SST and PD using the Dev dataset. The performance of our key
models on the SST dataset for sentiment analysis can be seen in Table 3.

Precision Recall F1 Score

Model 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Baseline 0.53 0.54 0.43 0.48 0.54 0.32 0.63 0.32 0.61 0.48 0.40 0.58 0.37 0.54 0.51
Contrastive Learning 0.55 0.51 0.41 0.47 0.57 0.31 0.59 0.34 0.62 0.47 0.40 0.55 0.37 0.54 0.51
Curriculum-Based Contrastive Learning 0.46 0.52 0.45 0.50 0.56 0.27 0.61 0.33 0.65 0.51 0.34 0.56 0.38 0.56 0.54
Synonym Replacement 0.44 0.53 0.42 0.49 0.55 0.34 0.60 0.33 0.63 0.43 0.38 0.56 0.37 0.55 0.48
CBCL with Synonym Replacement 0.47 0.49 0.42 0.49 0.59 0.26 0.73 0.19 0.64 0.45 0.33 0.59 0.26 0.56 0.51

Table 3: Precision, Recall, and F1 Scores per Class for Sentiment Analysis on Dev Set

From this table, we can see that our models generally performed best (in terms of F1 score, a balanced measure
of both precision and recall) at identifying slightly negative or slightly positive sentiments (classes 1 and 3).
All of our models uniformly struggled at identifying neutral sentiment (class 2), which we found unsurprising:
sentences that express neutral sentiment may by nature simply be more subjective or difficult to identify than
sentences that express a clear sentiment. The most surprising result is that all of our models struggled to
identify extreme sentiment, particularly extremely negative sentiment (class 0). By considering the context of
the dataset as consisting of movie reviews, we suspect that this is due to the fact that negative movie reviews
can often be sardonic or sarcastic, making it challenging for the models to accurately capture the intensity of
the sentiment. Additionally, extreme sentiments may involve more nuanced language or cultural references
that the models might not interpret correctly, leading to lower performance in these categories.

A similar analysis was conducted for the two classes in the PD task. The differences in performance were
minor and likely due to imbalances in class support within the training dataset. For instance, on the Quora dev
dataset, the F1 score for the "True" class was 0.86 when training with CBCL, while the "False" class achieved
a higher F1 score of 0.92. This discrepancy can be attributed to the support levels, with the "True" class having
104,579 instances compared to the "False" class’ 178,424 instances.

6.3 Ablation Studies

Since CBCL is a relatively new technique for improving BERT embeddings introduced in 2023, we wanted to
understand better how tuning hyperparameters pertaining to this technique would affect performance. This is
especially important since the paper introducing this method only uses a single combination of hyperparameters
without justification.

The first ablation study focused on λ which relates to the pacing function that decides when samples of varying
difficulty are introduced into the training process. Values of λ of 0.5, 1, and 2 relate to root, linear, and
quadratic pacing functions, respectively. The results of this study are below in Table 4, and we see that mean
contrastive loss decreases as λ decreases. Thus, choosing λ = 0.5 led to the best results as it made entailment
embedding pairings more distinct from contradiction embedding pairings.

λ Mean Contrastive Loss
0.5 3.577
1 3.606
2 3.646

Table 4: Pacing Function λ Ablation Study Results

7



Then the second ablation study was on the effect of the scoring technique used to sort training samples from
easy to hard. In the original CBCL paper Dehghan and Amasyali (2023) only a single technique is used:
labeling samples as easy, semi-hard, and hard triplets using a distance margin of 0.2 and then grouping by
these three groups. We experimented with changing this value of m. However, if the goal of curriculum-based
learning is to train the model on the easiest triplets first and the hardest last, we thought it made more sense to
sort triplets based on increasing entailment similarity or decreasing contradiction similarity. Thus, the triplets
where the anchor and entailment embeddings are closest or the anchor and contradiction embeddings are
furthest should be easiest and thus fed to the model first. But using the grouping technique used in the paper,
within easy, semi-hard, and hard groups there can still be a large variation in similarities between triplets which
is not ideal.

The results of the varying the triplet scoring technique are seen in Table 5. We can see that the choice of m
does not greatly affect the mean contrastive loss at the end of further BERT pre-training since all values are
within 0.001 of each other. Sorting by contradiction cosime similarity again led to almost identical results.
However, changing the technique to sorting triplets using entailment cosine similarities did improve results as
mean contrastive loss decreased by around 0.003. Although this number looks small, when using the model
resulting from this new technique on our three downstream tasks, we saw improvements of a few percentage
points on the two tasks evaluated on accuracy and a few tenths on STS.

Scoring Technique Mean Contrastive Loss
Grouping with m = 0.3 3.577
Grouping with m = 0.2 3.577
Grouping with m = 0.1 3.576
Grouping with m = 0.05 3.577

Entailment cosine similarity 3.573
Contradiction cosine similarity 3.577

Table 5: Triplet Scoring Technique Ablation Study Results

The third ablation study we performed was on the effect of the temperature hyperparameter τ in the NT-Xent
loss objective (Equation 1). Initially, we started with no temperature scaling (value of 1) to observe the baseline
performance. We then experimented with different values around the range of 0.05, the value used in Gao et al.
(2021), to understand the impact of varying the temperature hyperparameter. Through these experiments, we
found that a value of 0.05 yielded the best results. The results of our experiments varying τ on the NT-Xent
loss objective, when trained without curriculum pacing, can be seen in Table 6.

τ Mean Contrastive Loss
1 3.833

0.025 3.713
0.05 3.663
0.075 3.801

Table 6: Temperature Hyperparameter τ Ablation Study Results

7 Conclusion

Overall we built a very high-performing model that gets an overall score close to the top models on the test
leaderboard. This was done by building robust heads for our three downstream tasks SC, PD, and STS and
implementing the round-robin multitask training technique. We found that further pre-training BERT using
both contrastive learning and curriculum-based curriculum learning did not lead to significant improvements.
In contrast, these extensions actually detracted from performance for all three tasks. We hypothesize that this
is due to the fact that these extensions use a different loss function, and so pre-training BERT parameters using
this loss takes information away or distracts from the tasks we are interested in. Using data augmentation has
also been suggested in the literature to improve performance, but again we see no signficant changes in model
performance. Thus, our findings directly contradict those of Dehghan and Amasyali (2023) which introduced
CBCL in 2023. They used different evaluation metrics and different downstream tasks, and thus we have
shown that CBCL does not improve a model attempting to do all three tasks SC, PD, and STS at once.

For future work, we suggest exploring curriculum-based training with datasets and difficulty objectives
more closely related to the downstream tasks. This could involve tailoring the difficulty metrics to better
match the characteristics of SC, PD, and STS. Additionally, incorporating more complex data augmentation
techniques, such as paraphrasing, back-translation, and contextual word replacements, might help improve
model robustness and performance. These approaches could provide a better alignment between the pre-
training phase and the specific requirements of the downstream tasks, potentially leading to more significant
improvements.

8



8 Ethics Statement

One ethical challenge is avoiding the perpetuation of biases in our data. This issue is extremely pertinent to our
project since we perform contrastive learning. This technique spreads out word embeddings in the embedding
space. Thus, if our model learns bias in the pre-training phase in the form of embeddings differing depending
on race, ethnicity, gender, religion, etc., then these embeddings will become more dissimilar. For example,
if "she is a receptionist" and "he is a receptionist" have very different representations because the model is
trained that one is more frequent than the other, then our further pre-training with contrastive learning will
only exacerbate this gender bias. A strategy to mitigate this risk is the incorporation of bias detection tools
after our training on the contrastive learning objective. Some examples include applying the Word Embedding
Association Test (WEAT) or debiasing vectors using subspace projection according to Bolukbasi et al. (2016).
One potential limitation of the latter strategy, however, is that it has been primarily tested on gender-based bias
and not been empirically shown to be generalizable to all types of implicit bias.

A second concern is the potential for the model to produce and propagate misinformation, particularly in the
context of the downstream paraphrase detection and STS tasks. The model may incorrectly identify paraphrases
or label two bodies of text as more similar than they actually are, leading to the spread of inaccurate or outright
counterfactual information. This is especially dangerous if the model is used for tasks involving political
figures, historical topics, or other sensitive subjects where misinformation can have significant consequences.
For example, models trained for STS are commonly applied in news aggregation and content moderation,
where precise language is critical to preserving meaning. Our model training process is particularly vulnerable
to this issue because we do synonym replacement. Thus, we may make imperfect replacements that lead to us
generating paraphrases that are not truly equivalent in meaning. Mitigating this issue requires a systematic
analysis of standard synonym replacement databases with human-in-the-loop evaluations at each stage of
the training process, an approach suggested by Amershi et al. (2014). Additionally, implementing robust
monitoring systems, such as anomaly detection algorithms to identify unusual model outputs and automatic
alerts to flag potentially misleading information for human review, can help minimize the impact of any
misinformation generated by the model. Applying multi-layered strategies such as these, developed in
consultation with misinformation experts, is essential to maintaining the accuracy and trustworthiness of the
outputs of any public-facing language model.

9



References
Mahdi Abdollahi, Xiaoying Gao, Yi Mei, Shameek Ghosh, Jinyan Li, and Michael Narag. 2021. Substituting

clinical features using synthetic medical phrases: Medical text data augmentation techniques. Artificial
Intelligence in Medicine, 120:102167.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity,
pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014. Power to the people: The
role of humans in interactive machine learning. AI magazine, 35(4):105–120.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pages 41–48.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is
to computer programmer as woman is to homemaker? debiasing word embeddings. Advances in neural
information processing systems, 29.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pages
1597–1607. PMLR.

Somaiyeh Dehghan and Mehmet Fatih Amasyali. 2023. Selfccl: Curriculum contrastive learning by transferring
self-taught knowledge for fine-tuning bert. Applied Sciences, 13(3):1913.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821.

Michał Jungiewicz and Aleksander Smywiński-Pohl. 2019. Towards textual data augmentation for neural
networks: synonyms and maximum loss. Computer Science, 20.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus
of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

Lalu M. Riza Rizky and Suyanto Suyanto. 2021. Improving stance-based fake news detection using bert model
with synonym replacement and random swap data augmentation technique. In 2021 IEEE 7th Information
Technology International Seminar (ITIS), pages 1–6.

Tsegaye Misikir Tashu and Tomáš Horváth. 2022. Synonym-based essay generation and augmentation
for robust automatic essay scoring. In Intelligent Data Engineering and Automated Learning – IDEAL 2022,
pages 12–21, Cham. Springer International Publishing.

Jan Wahle, Bela Gipp, and Terry Ruas. 2023. Paraphrase types for generation and detection. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing. Association for Computational
Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers),
pages 1112–1122. Association for Computational Linguistics.

Chao Zhou, Cheng Qiu, and Daniel E. Acuna. 2022. Paraphrase identification with deep learning: A review of
datasets and methods.

10

https://doi.org/https://doi.org/10.1016/j.artmed.2021.102167
https://doi.org/https://doi.org/10.1016/j.artmed.2021.102167
https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.1109/ITIS53497.2021.9791600
https://doi.org/10.1109/ITIS53497.2021.9791600
https://doi.org/10.18653/v1/2023.emnlp-main.746
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://arxiv.org/abs/2212.06933
http://arxiv.org/abs/2212.06933


A Appendix

Model SA Accuracy PD Accuracy STS Correlation
Baseline 0.501 0.900 0.853

Curriculum-Based Contrastive Learning (CBCL) 0.504 0.898 0.842
Synonym Replacement 0.493 0.899 0.841

CBCL with Synonym Replacement 0.496 0.897 0.827
Table A1: Results on Dev Dataset

A.1 Key equations

L = −
N∑
i=1

yi log(ŷi) (3)

Equation 3: Cross-Entropy Loss Function, where yi is the true label and ŷi is the predicted probability for the
i-th instance.

L = − [y log(σ(ŷ)) + (1− y) log(1− σ(ŷ))] (4)
Equation 4: Binary Cross-Entropy Loss Function, where y is the true label (1 for paraphrase, 0 for non-
paraphrase), ŷ is the raw output (logit) from the model, σ(ŷ) is the sigmoid function applied to ŷ defined as
σ(ŷ) = 1

1+e−ŷ .

L =
1

N

N∑
i=1

(yi − ŷi)
2 (5)

Equation 5: Mean Squared Error (MSE) Loss Function, where N is the total number of samples, yi is the true
similarity score for the i-th sample, ŷi is the predicted similarity score for the i-th sample, scaled to the range
0 to 5.

A.2 Descriptions for Paraphrase Detection Failure Categories

Synonym Recognition Failure: The model fails to recognize synonyms that could be directly replaced by
each other. Example: “automobile” vs. “car”.

Context Misunderstanding: The model does not understand the directionality or context of the sentences,
leading to incorrect interpretations. The model may think that two completely unrelated sentences are the
same. Example: Questions beginning with “how” vs. “why”, or confusing two people in a sentence.

Domain-Specific Knowledge Gaps: The model lacks the specific knowledge required to understand domain-
specific topics, academic concepts, jargon, or proper nouns. Generally speaking, a failure that can qualify for
either (D) or (C) is categorized as (D) because (C) is a catch-all for complete misunderstandings of sentences.

Idiomatic Expressions and Metaphors: The model fails to understand idiomatic expressions or metaphors.
Example: Misinterpreting phrases like "layman’s terms."

Negation Handling: The model struggles with sentences that involve negation or opposites. Example: "The
dog is happy” vs. “The dog is not happy”.

Ambiguity and Multiple Meanings: The model cannot correctly disambiguate words with multiple meanings
based on context. Example: “bank” vs “bank”.

Numerical and Temporal Reasoning: The model struggles with sentences involving numerical or temporal
elements. Example: "How to get rich in 3 months” vs. “how to get rich in 4 months.” If the failure pertains to
a math equation with mostly algebra, categorize it as (d) instead.

Mislabeled Data: Failures due to incorrect labeling in the dataset, whereby the model’s prediction is actually
determined correct upon our manual review of the dataset.

11


	Key Information
	Introduction
	Related Works
	Contrastive Learning
	Curriculum Learning
	Synonym-based data augmentation

	Approach
	Baseline BERT
	Multitask Framework
	Sentiment Classification Head
	Paraphrase detection head
	Semantic textual similarity head
	Sequential vs Round Robin Training

	Curriculum-based contrastive learning (CBCL)
	Synonym Replacement

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Studying Select Examples
	Performance on Data Subsets
	Ablation Studies

	Conclusion
	Ethics Statement
	Appendix
	Key equations
	Descriptions for Paraphrase Detection Failure Categories


