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Abstract

In this study, we explore methods for collecting and augmenting training data using
Large Language Models (LLMs) and active learning. We analyzed the effect of
incorporating LLM-generated synthetic data into the training set of fine-grained
semantic classification on Stanford Semantic Treebank-5 [Socher et al.| (2013).
We observed that randomly generating samples from LLM leads to only a slight
improvement and even hurts the performance when the proportion of synthetic
data increases. This motivates us to further investigate strategies for collecting
and labeling training data. Our experiments show the challenges of using LLM-
generated synthetic data on fine-grain semantic classification problems: inaccurate
labels and differences in data distribution. We further show that LLM-generated
data can still be useful if a more accurate label is available. We also proposed two
methods to efficiently label unlabeled data based on active learning from model
uncertainty and query by committee, with model uncertainty outperforming the
baseline.
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2 Introduction and Related Work

High-quality, annotated data can be hard to obtain, but with the advent of Large Language Models
(LLMs), one can leverage their few-shot learning ability to create large amounts of synthetic data.
LLM data generation is much cheaper than human-created datasets or those from data brokers and
can be generated more quickly with an easily accessible language interface. This motivates us to
investigate if we can apply the method to fine-grain sentiment classification tasks and potential ways
of improving the LLM data generation process.

Researches show LLM data augmentation successful in specific tasks with limited labeled data or
unbalanced datasets (Chintagunta et al.| (2021)), |L1 et al.| (2022), Wan et al.[(2022)). However, works
that compare different LLM data augmentation paradigms |Bansal and Sharmal (2023), Ding et al.
(2024) show that randomly generated samples might lead to worse performance and generalization
on certain tasks and waste unnecessary LLM query cost and compute.

In optimizing the data collection process, the field of active learning focuses on improving model
performance by selectively choosing the most informative data points for labeling (Settles| (2009)).
Unlike traditional supervised learning, which relies on large, randomly sampled datasets, active
learning aims to reduce labeling costs and improve efficiency by querying only the most uncertain
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or informative samples. Key strategies in active learning include uncertainty sampling (Lewis and
Gale|(1994), Cohn et al.|(1994)), where the model selects data points with the highest prediction
uncertainty, and Query by Committee (QBC), which involves multiple models and selects samples
based on the level of disagreement among the models (Freund et al.|(1997)). Some more recent works
like Sener and Savarese| (2017) and [Kirsch et al.| (2019) demonstrated success in applying active
learning strategies to modern deep learning methods.

SQBC by |Wagner et al.| (2024) combines LLM data synthesis with active learning and looks into ways
to minimize data labeling costs while improving performance by utilizing active learning strategies.
SQBC inspired us to investigate its applicability and similar active learning approaches on SST-5.

We started with naive approaches to LLM data augmentation and examined the effectiveness of
fine-tuning the model on those data. We then tried to relabel the LLM-generated data with more
accurate labels. On active learning, we applied a model uncertainty approach and SQBC on SST-5
and compared them with the random sampling baseline.

3 Approach

The baseline model with the provided dataset alone already performs very well on the paraphrase
detection and semantic textual similarity tasks while the accuracy on the sentiment analysis task
remains low. Furthermore, we observed a significant overfitting problem while training the baseline
model on sentiment analysis compared to the other tasks despite regularization measures, indicating
great potential improvement with data augmentation. Thus, we decided to focus the data augmentation
methods and experiment design on improving the performance of the sentiment analysis task. The
baseline approach of the paraphrase detection and similarity detection will still be detailed in the
baseline section.

3.1 Baseline - Default Project

The baseline model was built on top of the 12-layer BERT model provided with the default project.
For each task, a different decoder output head is added on top of the pooler output of the base
BERT model, containing a dropout layer with a dropout rate of 0.5, one linear layer with a size
corresponding to the dimension of the desired prediction, and a non-linear layer (Softmax, Sigmoid)
to transform real number output to the space of the label if needed.

For semantic analysis, the tokenized input sentence is directly passed to the model without any
preprocessing. For paraphrase detection and semantic textual similarity, the input data contains
two sentences. We concatenate the two input sentences, separated by [SEP] token, and merge the
attention mask correspondingly. This allows the model to attend to tokens of both sequences in
every layer. In our experiments, concatenating the input at a sentence level outperforms passing
the two sentences through Bert separately and combining the embeddings before the decoder head,
especially on similarity detection. Notice that the downside of this approach is the doubling of the
input sequence length. Considering the transformer’s quadratic complexity growth rate with respect to
input size, the performance-complexity trade-off might not be justifiable with longer input sequences.

3.2 LLM Data Augmentation

We prompted the LLM with minimal guidance, a simple task description, and 3 randomly selected
examples from each class and asked it to generate a fixed number of labeled test data. The prompt is
included as following:

system: Your task is to generate training data for a movie review sentiment classification
model. Format your output as a JSON list of tuples with a sentence and its sentiment as an
integer. 0 is negative, 1 is somewhat negative, 2 is neutral, 3 is somewhat positive, and 4 is
positive.

user: Here are some examples: EXAMPLES_IN_JSON_FORMAT

user: Generate NUMBER_OF_SAMPLE samples




Considering the cost of LLM inference, we chose to use OpenAl’s gpt-3.5-turbo as the data augmen-
tation engine. We prompt the language model to generate 100 samples in JSON format and repeat the
process until we obtain sufficient synthetic data. We noticed that gpt-3.5-turbo doesn’t follow the
instructions completely and often fails to generate any data or tries to generate more data, resulting in
an incomplete response due to the context window size limit. Some parsing heuristics are applied to
the response to ensure the quality of the generated dataset.

3.3 Relabel LLM Generated Data

When doing exploratory error analysis on the performance of our baseline model, we found that the
model struggles the most with classifying between "somewhat positive" and "positive" and between
"somewhat negative" and "negative". This highlights the importance of accurate labeling of the
synthetic data. Therefore, we are curious about the performance gain on LLM augmented data if they
have ground truth labels, such as those annotated by humans, which are not accessible in the scope of
this project. We approximated human labels by labeling the data with a model on all training data
and validated it on the development set.

3.4 Data Selection Problem Setup

From the experiment with LLM-generated data in SECTION, we learned that multiple challenges
in LLM-generated data can jeopardize the effectiveness of incorporating synthetic data. We want
to further study the question of data selection by filtering out the effect of the difference in data
distribution.

In this and the following sections, we assume access to a limited labeled dataset Djgpeieq, @ validation
dataset D,q;, and a larger unlabeled dataset D, qpeieq- The goal is to maximize the performance
gain on D, by selecting data from D, 4peieq to be labeled and trained on while minimizing the
labeling cost.

In our experiments, we use a portion of labeled data as D, apeieq- When selecting the data from
Doyniabeled, We didn’t use any information on the label of D,,,,jqpeieq- The label is only accessed
when it’s selected to be used in training. This mimics collecting additional data from the true data
source and querying the same labeling method used to label D,,4;.

3.5 Data Selection - Uncertainty Sampling

Uncertainty Sampling is a popular strategy in active learning. The method selects the samples that
the model is least certain about for labeling. This approach aims to maximize the information gained
from each labeled example, theoretically improving model performance more efficiently compared
to random sampling. We trained a model on the Djgpeieq and ran prediction on Dypigpeieq before
computing the entropy H (6; X) of the model’s output with

H(0; X) =Y q(0; X,¢)log(q(6; X, ¢))
ceC

where ¢(0; z, c) is the model’s prediction of input X belonging to category c. We ranked Dynjqbet
with H(6; X) and prioritized labeling the samples with higher entropy.

3.6 Data Selection - Query by Committee

Another popular method is Query by Committee, which involves maintaining a diverse set of models
(the committee) and selecting samples for which the committee members disagree the most. This
disagreement indicates uncertainty, and labeling these samples can provide valuable information to
improve the overall model performance. We adopt the method of Synthetic Data-driven Query By
Committee proposed in CITE. For each sentence in D, qpeled, We searched for the K most similar
sentences in Djgpereq and computed the standard deviation of the labels on those sentences. The
standard deviation serves as an indicator of the disagreement between the labels.

In practice, we first embedded sentences from Djgpeieq and Dy piabeied to @ high dimensional latent
space with a BERT fine-tuned on Djgpeieq- We then fit a K-nearest neighbor classifier with Djgpered.



We use the KNN classifier to find the label of nearest neighbors for data in Dy, 4peieq to calculate
the standard deviation.

4 Experimental Setups

4.1 Data

We use the SST-5 dataset provided with the default project. The dataset contains single-sentence

movie reviews as input and five sentiment categories as output: "negative", "somewhat negative",
"neutral", "somewhat positive", and "positive".

We split the dataset randomly into Djgpeieq and Dypiabeieqa With a one to four ratio, the Djgpered
contains approximately 1700 samples and D, ;qpeleq cOntains approximately 6800 samples. For the
validation set D,,,;, we use the labeled dev split provided with the default project with about 1000
samples.

4.2 Evaluation method

Our experiments look at how effectively the increment in the amount of training data contributes to
performance gain on D,,;. For each approach, we add different amounts of additional training data,
LLM-generated or selected from D, ,iqpeied, 0 the training set with Djgpejeq, train three models on
it with different random seeds, evaluate the models’ accuracy on D,,;.

4.3 Baseline

A baseline we compare our approaches to is randomly sampling data from D, pjapeieq- This is
equivalent to randomly collecting an unlabeled dataset from the true data source and labeling the data
with the same labeling method as D,,,;.

4.4 Training Configurations

We followed the model configuration described in Section We use Adam optimizer with s of
(0.9, 0.999), a learning rate of 0.001, and a learning rate scheduler that decreases the learning rate by
0.5 every 20 steps. We train the model for 50 epochs with different fine-tuning methods:

e Last-Linear: finetune the last linear layer that maps BERT pooler output to the multiclass
categorization label.

* Pooler: finetune the last linear layer and BERT’s linear layer right before pooler output.

* Last-Attention: finetune all the last linear layer, pooler linear layer, and the last attention
module.

We chose not to experiment with tuning more than one attention module to make the result less noisy.
We observed that the model already overfits completely to the entire training split with Last-Attention
method even with heavy regularization measures. Tuning more parameters makes it even easier
to fit the training data, and under such a situation, it’s hard to measure the effectiveness of adding
new training data as the model can just memorize all of them and not generalize to the evaluation.
Fine-tuning with Last — Linear setting also results in less representable results as the model doesn’t
have enough complexity to fit to the training data. In our experiments, Fine-tuning with Last-Linear
is only able to achieve around 0.5 accuracy on Djgpeied-

5 Experiments

5.1 Default Project Test Leaderboard Results
5.2 LLM Generation

In this experiment, we want to analyze the effectiveness of incorporating LLM-generated data into
the training data and the performance difference between training on LLM-generated labels and the
label generated by the trained model.



Task | Sentiment Analysis | Paraphrase Detection | Similarity | Overall
Score on Dev Split | 0.509 \ 0.904 | 0867 | 0.782
Table 1: Baseline Performance on Test Split.
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Figure 2: Comparison Between Training with LLM Augmented Dataset and Original Dataset
Across Different Finetuning Methods.: The x-axis represents the amount of training data in addition
to Digbeled- X = 0 means the model is only trained on Djgpejeq- X = 4 means the model is trained on
Diabeieq and additional data 4 times |Djgpeicq|. The blue line: sampling additional data from the hold
out set of the original data. The orange line: sampling additional data from Djy;,,,. The green line:
sampling additional data from Dy;,,, ;. Each data point is average among 3 runs.
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We generated 8000 rows of labeled data Dy, with
the method described in Section We relabel
the data with a teacher model from Section 3.3] and
note the relabeled dataset Dy, ;. The two labels
only agree on 61.3% of the data, showing potentially
high discrepancy between the LL.M-generated label
and the true label. A confusing matrix between the
LLM-generated label and teacher model-generated ‘ ‘
label is shown in Figure[I] We can see that the labels L Label
highly disagree on labels between two neighboring

sentiment categories. This shows that GPT3.5 is
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Both datasets are randomly split into 4 subsets. We mix the different amounts of split with Digpereq
to train models and observe the performance changes in the amount of splits mixed in. The result is
shown in Figure 2]

From the result, we can see that directly using LLM-generated data in this task harms the model’s
performance. The model trained with additional LLM-generated data performs worse than the model
trained on much less data drawn from the original data distribution. We also observed that relabeling
the data with a teach model that approximates the true label generally improves the effectiveness of the
data augmentation process. The model shows performance gain trained on relabeled LLM-generated
data. With the fine-tuning method of Last-Attention, we even see the same performance gain as
the model fine-tuned on additional data drawn from the original data distribution. We also notice
the performance drop when the ratio of simulated data surpasses 1/3. Additional experiments are
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Figure 3: Data Selection Method Comparison Across Different Finetuning Methods.: The x-axis
represents the amount of training data in addition to Djgpeieq. X = 0 means the model is only trained
on Dygpeied- X = 4 means the model is trained on Djupeieq and additional data 4 times | Djqpeieq| drew
from Dy niapbeleq With the corresponding data selection method. The blue line: Randomly sample data
from Dy niapeied- The orange line: Select data from D.,iqpe1eq by the Model Uncertainty method.
The green line: Select data from D, qpeieq by the Query by Committee method. Each data point is
average among 3 runs.

needed to pinpoint the cause of this phenomenon. More discussion on possible reasons is addressed
in Section

Notice that the label from the teacher model is far from perfect. As we learned from training the
default project baseline, the model trained on this task typically only has 50 55% accuracy. It is very
likely that if provided with the true label, LLM-generated data can be much more effective.

5.3 Data Selection Strategies

This experiment compares the different data selection methods from Section [3.5]and Section [3.6]
across different fine-tuning methods. We calculate the entropy and disagreement (standard deviation
of labels of 5 nearest neighbors) of each instance in D, ,qpeieq- The correlation between entropy and
disagreement is only 0.161, indicating the two metrics are very different.

We separately ranked D, qpeleq USing the model uncertainty approach and the query by committee
approach. We sorted D,,14peieqd by the ranking and split them into 4 equally sized subsets. The
first split contains samples ranked the most effective by the selection method while the last split
contains the least. We trained models on Dj,pcieq plus different amounts of splits from D, niapeieds
splits marked with higher effectiveness always got mixed in first. We repeated this experiment with
different fine-tuning methods. Results are presented in Figure [3]

As mentioned in Section .4] when fine-tuning only the last linear linear, the model doesn’t have
enough complexity to fit to the training dataset. Across all methods and all training data configurations,
the model fails to achieve even 60% accuracy on the training set, therefore explaining the seemingly
random result shown with the Last-Linear finetuning method.

With finetuning methods that can fit the training data, the Query by Committee method performs
similarly to random sampling. The Model Uncertainty method outperforms Query by Committee
and random sampling as the model trained on data selected by Model Uncertainty achieves higher
performance gain.

Notice that all methods have the same accuracy when trained on additional data 4 times the original set.
This is because | Dyniabeied| = 4| Diabeled|, S0 no matter the selection method, selecting 4| Djgpered|
samples from | Dy piapeieq| Will exhaust the dataset and lead to the same training data.



6 Conclusion and Analysis

6.1 Reflection on Experiment Design

During this project, we noticed that overfitting poses a severe challenge to studying the relationship
between data and performance. The training set only contains 8500 samples while a 12 layers BERT
has 110M parameters. The last 2 layers of the classifier: the linear layer and pooler dense layer, have
about 768 * 5 parameters and 768 * 768 parameters respectively. Fine-tuning only the last linear
layer doesn’t have enough complexity to learn the task. Fine-tuning more layers is too complex and
overfitting the training data. Ideally, we will want to redo these experiments with other fine-tuning
methods like LoRA or conduct the experiments on tasks less prone to overfitting.

6.2 LLM Data Augmentation

Upon further analysis, we found that aside from the inaccurate labeling, LLM-generated data also has
a very different distribution than the original data. In Figure[d] we embedded the sentences from both
datasets with a pretrained BERT model and reduced the embedding to 2 dimension space. We noticed
the LLM-generated data is less diverse and doesn’t cover the distribution of the original data. In
Figure 5] we compare the labels (sentiment) of the two datasets. The original data has a bimodal-like
distribution centered at "somewhat positive" and "somewhat negative" while LLM-generated data
concentrates on "positive" and "negative". It’s unclear why GPT3.5 tends to generate "positive"
samples while examples are provided equally. Together with inaccurate labeling, the distribution
difference might explain the ineffectiveness of training on LLM-generated Data.

However, relabeling the LLM-generated data with an inaccurate teacher model still shows perfor-
mance gain, showing the potential of using LLM-generated Data with human labeling or other
accurate labeling methods.

In the future, it’1l be interesting to look into data generation methods other than in-context learning or
different prompting strategies that promote more accurate data distribution.
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6.3 Data Selection

We show that Model Uncertainty can be a good indicator of the effectiveness of training on a data
sample. This selection method doesn’t require the additional data to be labeled, making it useful
when iteratively developing an ML system to effectively prioritize labeling efforts. This approach
can also be used to more efficiently label LLM-generated data, compensating for LLM’s inability to
generate fine-grain labels from just the examples.



7 Ethics Statement

The method poses two ethical concerns: (1) The LLM-generated data may inherit the bias of the LLM
and the downstream model trained on those data will consequentially inherit the bias as well. (2) LLM
might perform worse in the domain where data are underrepresented, leading to lower quality and
less diverse data on underrepresented subjects and worse downstream performance on those subjects.
The two concerns might lead to a biased model that perpetuates and potentially exacerbates existing
inequalities and discrimination if it’s being used in sensitive applications, such as loan applications
and hiring processes.

Some practical strategies to mitigate those risks are evaluating the model with fairness metrics at every
step of the process. For example, we might want to have additional labels for the sensitive attributes
of the data points and make sure the model output and the model’s performance are independent of
those attributes. Furthermore, we also want to make sure the synthetic data generated by LLM gives
equal coverage among those sensitive attributes.
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