
BERT: Battling Overfitting with Multitask Learning
and Ensembling
Stanford CS224N Default Project

Mentor: Timothy Dai

Javier Nieto
Department of Computer Science

Stanford University
jgnieto@stanford.edu

Annabelle Jayadinata
Department of Computer Science

Stanford University
abellej@stanford.edu

Abstract
Transformers have revolutionized the field of neural NLP thanks to the advantages
of the self-attention mechanism. Fine-tuning a Transformer which has previously
been pre-trained on a large corpus of data to carry out a downstream task has been
found to be a highly successful approach used by many SOTA models. In this
paper, we fine-tune a BERT Transformer for three tasks: sentiment classification,
paraphrase detection, and semantic textual similarity. To combat overfitting, we use
multitask training across all tasks, SMART regularization, LoRA and ensembling.
We also explore hyperparameter tuning, PCGrad, L1L2 regularization and DoRA,
and examine their impact on scores. We observe much better scores than the
baseline and find conclusive evidence that our techniques to fight overfitting are
effective and our downstream model performs well with unseen data.

Member Contributions: Javier wrote around two-thirds of the code and one-third of the report,
while Annabelle wrote around one-third of the code and two-thirds of the report. Both contributed
equally to planning the project and researching extensions.

1 Introduction

The realm of machine analysis and processing of human natural language data, known as natural
language processing (NLP), has seen significant advancements and widespread applications from
translation to speech-to-text transcription among others. At present, we have been able to achieve
fantastic results for such tasks due to massive data collection efforts, compute power, and costs
undertaken by large organization to train large models on billions of words. However, for smaller
players interested in solving more specific tasks, data deficit and poor model generalization remain a
hindrance, and this is where transfer learning comes into play by allowing us to use fine-tune large
pre-trained models and re-use them in new settings.

In this paper, we will improve on fine-tuning approaches on Bidirectional Encoder Representations
from Transformers (BERT) Devlin et al. (2019), which is originally designed to pre-train deep
bidirectional representations from unlabeled text by jointly conditioning on both left and right context
in all layers. We will investigate methods that can can help such representations generalize better
for different downstream tasks, namely sentiment analysis, paraphrase detection, and semantic
textual similarity. By incorporating several advanced fine-tuning techniques including DoRA, LoRA,
an original multitask training process, PCGrad to minimize weaknesses associated with multitask
learning, and other optimizations such as Elastic Net and SMART regularization, we seek to promote
more efficient knowledge transfer and improve effectiveness across the different tasks. Our results
demonstrate notable improvements over baseline models. In the following sections, we will review
related works, outline our approach, investigate experimental results, and discuss the implications of
our findings for future advancements in multitask BERT NLP.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

In order to adapt BERT to perform particular tasks, the process of fine-tuning still presents a challenge
regarding parameter efficiency. Hu et al. introduced a novel parameter-efficient fine-tuning (PEFT)
method known as Low-Rank Adaptation (LoRA) which freezes the pre-trained model weights and
injects trainable rank decomposition matrices into each layer of the Transformer architecture, greatly
reducing the number of trainable parameters for downstream tasks Hu et al. (2021). Statisically, LoRA
is able to reduce the number of trainable parameters by 10,000 and the GPU memory requirement by
3 times as compared to GPT-3 175B fine-tuned with Adam.

Building on top of LoRA is Weight-Decomposed Low-Rank Adaptation (DoRA)Liu et al. (2024),
another novel parameter-efficient fine-tuning (PEFT) method that incorporates weight decomposition,
achieving a learning capacity closely resembling full fine-turning (FT) while mitigating overfitting,
without any additional inference latency over LoRA Hu et al. (2021). The main upgrade that sets
DoRA apart is that their method limits LoRA to concentrate mainly on directional adaptation that
is optimized and made more stable through weight decomposition, although in the process, still
allowing the magnitude component to be tunable.

Furthermore, although BERT was able to achieve pioneering performance across eleven NLP tasks,
the original paper did not explore it as a multitask learning model. We believe that investigating
this aspect is essential for improving BERT’s adaptability and potential in diverse real-world NLP
applications. However, a significant challenge with multitask learning is the difficulty of optimizing
one task without negatively impacting the performance of another. Yu et al recommended a technique
known as PCGrad which which solves this problem by projecting the gradient of each of the two
tasks in conflict onto the normal plane of the gradient of the other task, thereby reducing the amount
of destructive gradient interference between tasks Yu et al. (2020). Additionally, we will investigate
regularization techniques like SMART Jiang et al. (2020) to mitigate model overfitting.

3 Approach

Baseline. We started with minBERT 1, a minimal version of BERT as described in the DFP handout,
along with the utilization of pre-trained BERT-base weights2 from Huggingface. For our baseline, we
extend the model with a linear layer for each task, which takes pooled encodings from minBERT
as input and produces logits or a raw value, depending on the task, as output. This baseline model
establishes the initial performance benchmark before fine-tuning the minBERT weights.

Task-specific approach.

• Sentiment analysis: use BERT to encode the input sentence (“[CLS] Sentence [SEP]”) and
a single linear layer with dropout to output five logits, one for each sentiment classification
option. Those values are fed through a sigmoid and optimized with cross-entropy loss.

• Paraphrase detection: use BERT to encode each of the two input sentences separately as
above, as well as encoding both sentences at the same time as follows “[CLS] Sentence A
[SEP] Sentence B [SEP]”. That way, we can take advantage of the self-attention mechanism,
as described by Devlin et al. We then take those three embeddings and pass them as input to
a linear layer with dropout with a single output logit. That value is fed through the sigmoid
function and optimized with binary cross-entropy loss. We observed empirically that not
feeding both sentences to BERT together and only doing that both worsen scores, which is
why we used this combined approach.

• Semantic textual similarity: use the same approach as paraphrase detection, but the output is
instead fed through ReLU and optimized with smooth L1 loss. We used ReLU since STS
scores are bounded between 0 and 5, and we observed that while scores did not surpass 5,
they frequently were slightly negative. We tried both MSE loss and smooth L1 loss and
found the latter to be slightly better.

Apart from the baseline sentiment analysis approach described in the DFP handout, all code for this
section is fully original. The intuition to encode both sentences together is original, and came as

1https://github.com/barneyhill/minBERT
2https://huggingface.co/google-bert/bert-base-uncased

2

https://github.com/barneyhill/minBERT
https://huggingface.co/google-bert/bert-base-uncased

a result of an in-depth reading of the BERT paper. It required us to hack the dataset preprocessing
mechanism. We thank our mentor, Tim, for suggesting we also encode each sentence separately.

Multitask Batch Sampling. Upon reviewing the data, we identified a significant imbalance: the
sentiment analysis dataset (SST) contains 8,500 examples, the textual similarity dataset (SemEval)
6,000 examples, and the paraphrase detection dataset (Quora), 210,000 examples. Initially, we
sampled 6,000 examples each epoch from each dataset to compensate for the imbalance, in effect
pretending that SST and Quora were “as small as” SemEval for a given epoch. While the difference
between SST and SemEval in this case was negligible, we were severely underutilizing the Quora
dataset. Over 5 epochs, the model would see around 14% of the dataset in the best case. Consequently,
we proposed a down-weighting strategy for the Quora data. Specifically, at each iteration we sample
10 examples from Quora and average the losses.

We implemented this strategy ourselves.

Multitask Learning. We primarily focus on a single multitask model consisting of a single BERT
model and three task-specific heads as described above, where the weights of the BERT model are
shared across all tasks. We then performed multitask fine-tuning to find parameters θ of the BERT
model fθ that achieves high average performance across all three training tasks. We adapted the
provided code to, each iteration, run a training batch on each of the three tasks and do backpropagation
with the sum of the losses:

L = Lsentiment + Lparaphrase + LSTS

We hypothesized that the reason we were not getting the scores we expected was a clash between
gradient vectors of different tasks. A comparatively larger gradient of one task will dominate the
average gradient, and a high positive curvature may significantly overestimate improvement in
performance from the dominating task while underestimating its degradation. Hence, we integrated a
technique recommended bu Yu et al, PCGrad, which solves this problem by projecting the gradient
of each of the two tasks in conflict (negative cosine similarity) onto the normal plane of the gradient
of the other task, thereby reducing the amount of destructive gradient interference between tasks Yu
et al. (2020). The algorithm is as follows:

Algorithm 1 PCGrad Update Rule

Require: Model parameters θ, task minibatch B = {Tk}
1: gk ← ∇θLk(θ) ∀k
2: gPC

k ← gk ∀k
3: for Ti ∈ B do
4: for Tj

uniformly∼ B \ Ti in random order do
5: if gPC

i · gj < 0 then
6: // Subtract the projection of gPC

i onto gj

7: Set gPC
i = gPC

i −
gPC
i ·gj

∥gj∥2 gj

8: return update ∆θ = gPC =
∑

i g
PC
i

Figure 1: Task i’s gradient is projected onto the normal vector of j’s gradient using the formula: gj =
gi − gi·gj

∥gj∥2
gj

We developed the multitask model from scratch and implemented the PCGrad technique on top of it
by adapting the code provided in the paper.

Fine-Tuning Methods for BERT: LoRA & DoRA. We explored parameter efficient finetuning,
specifically, LoRA, to improve our model. LoRA allows us to train some dense layers in a neural

3

network indirectly by optimizing rank decomposition matrices of the dense layers’ change during
adaptation instead, while keeping the pre-trained weights frozen, as shown in 2. This reduces the
number of trainable parameters whilst still achieving a higher training throughput.

Figure 2: Reparametrization where only the injected smaller low-rank matrices, A and B, are trainable and
optimized.

For a pre-trained weight matrix W0 ∈ Rd×k, LoRA constrains its update by representing it with
a low-rank decomposition W0 + ∆W = W0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and the rank
r ≪ min(d, k). During training, W0 is frozen and does not receive gradient updates, while A and B
contain trainable parameters. Note both W0 and ∆W = BA are multiplied with the same input, and
their respective output vectors are summed coordinate-wise. For h = W0x, the modified forward
pass yields:

h = W0x+∆Wx = W0x+BAx (1)

A is initialized using a random Gaussian while B is initialized to zero, so that ∆W = BA is zero at
the beginning of training. ∆Wx is then scaled by α/

√
r, where α is a constant. When optimizing

with Adam, tuning α is roughly the same as tuning the learning rate if we scale the initialization
appropriately. As a result, we simply set α to the first value we try and do not tune it in order to
reduce the need to retune hyperparameters when we vary r Hu et al. (2021).

Figure 3: (a) Magnitude and direction updates of FT (b) LoRA, (c) DoRA, taken from Liu et al. (2024)

However, Liu et al. found that LoRA exhibits proportional relationship between changes in direction
and magnitude when updating the weight matrix, which is opposite of learning patterns found in
FT, as shown in 3, where a more varied learning pattern with a relatively negative slope is observed,
indicating a different learning capability. It shows that LoRA falls short in executing slight directional
changes alongside more significant magnitude alterations which is a feature characteristic of FT that
is desirable Liu et al. (2024). Hence, they proposed DoRa, an adaptation method that decomposes
the pre-trained weight into its magnitude and directional components and finetunes both of them. To
avoid initialization concerns, DoRA is initialized with pre-trained weight W0, such that magnitude
vector m = ∥W0∥c and directional matrix V = W0. The directional component is then updated
through LoRA, resulting in the following equation: W ′ = m(V+∆V)

∥V+∆V ∥c
= m(W0+BA)

∥W0+BA∥c
, where ∆V

is the incremental directional update learned by multiplying two low-rank matrices B and A, and
the underlined parameters denote the trainable parameters. We can derive the gradient of loss L
as follows: ∇V ′L = m

∥V ′∥c

(
I − V ′V ′⊤

∥V ′∥c
2

)
∇W ′L. This equation reveals that the weight gradient

∇W ′L is scaled by m
∥V ′∥c

and is projected away from the current weight matrix, which aligns the
gradient’s covariance matrix more closely with the identity matrix, thereby enhancing the learning
stability of LoRA.

The study showed that similar to FT, DoRA is characterized by a distinct negative stope and was able
to demonstrate the ability to make only substantial directional adjustments with minimal changes

4

in magnitude, or vice versa, thereby showing learning patterns closer to FT. The reason behind this
might be due to the fact that pre-trained weights might in fact already possess sufficient knowledge
suitable for downstream tasks. Hence, having a larger magniture or direction alteration alone is
sufficient for adaptation.

We adapted code from the LoRA and DoRA papers respectively. LoRA required significant rework to
adapt.

Elastic Net Regularization. Initial iterations hinted that we were experiencing significant overfitting
challenges. Although training loss continued to decrease, accuracy on dev set peaked around epoch 3
and worsened thereafter. Hence, we implemented Elastic Net Regression, which merges both L1 and
L2 penalty on the loss function across all three tasks using the following equation:

L = L(y, ypred) + α1

m∑
i=1

|θi|+ α2

m∑
i=1

|θi|2 = L(y, ypred) + α1∥θ∥1 + α2∥θ∥22

We implemented this regularization ourselves.

SMART Framework. Aggressive fine-tuning often causes the models to overfit and fail to
generalize to unseen data. To address this issue, we explored the SMoothness-inducing Adversarial
Regularization and BRegman pRoximal poinT opTimization (SMART) framework proposed by Jiang
et al Jiang et al. (2020). It effectively manages the complexity of the model and the utilization of
Bregman proximal point optimization, which is an instance of trustregion methods, can prevent
aggressive updating.

Specifically, given the model f(·; θ) and n data points of the target task denoted by {(xi, yi)}ni=1,
where xi denote the embedding of the input sentences obtained from the first embedding layer of the
language model and yi are the associated labels, their method solves the following optimization for
fine-tuning:

min
θ

F (θ) = L(θ) + λsRs(θ),

where L(θ) is the loss function defined as

L(θ) = 1

n

n∑
i=1

ℓ(f(xi; θ), yi),

and ℓ(·, ·) is the loss function depending on the target task, λs > 0 is a tuning parameter, and Rs(θ)
is the smoothness-inducing adversarial regularizer. Rs(θ) is defined as

Rs(θ) =
1

n

n∑
i=1

max
∥xe

i−xi∥p≤ϵ
ℓs(f(x

e
i ; θ), f(xi; θ)),

where ϵ > 0 is a tuning parameter annd ℓs is the symmetrized KL-divergence for the classification
task and the squared loss for the regression task.

Significant adaptations had to be made in order to properly integrate SMART into our framework,
and we mostly wrote original code based on the original algorithm.

Ensembling. Ensemble models are a machine learning approach to combine multiple models in
the prediction process. Each model will make some mistakes due to randomness introduced during
training. By aggregating the outputs of diverse models, the ensemble can achieve better generalization
and accuracy than just a single model alone. As our final model, we ensembled three single-task
models trained separately on only one of the downstream tasks, as well as our multitask model, and
used a voting approach to get the final prediction of the ensemble model. In particular, we averaged
values for the regression task (semantic similarity) and we took the mode in paraphrase and sentiment
analysis, classification tasks.

We implemented the ensemble model ourselves from scratch.

5

Figure 4: Our final model was composed of an ensemble of four models. One for each task, plus another
multitask model.

4 Experiments

Data. To train and evaluate or model, we used the three datasets specified in the DFP hand-
out. Namely, Stanford Sentiment Treebank (SST)3 for sentiment classification, Quora dataset4 for
paraphrase detection, and SemEval STS Benchmark5 dataset for semantic textual similarity analysis.

Evaluation method. Following DFP, we evaluate the model using accuracy for SST and Quora,
and Pearson correlation for STS. The overall score is computed as an average among the three, with
correlation linearly mapped from [−1, 1] to [0, 1]. In addition to that, we also track the number of
total and trainable parameters and epoch time to evaluate the trade-off between performance and
computational cost.

Experimental details. We ran our model on Modal labs with NVIDIA T4 or A10G GPU’s, as
available. We trained BERT using AdamW Optimizer, learning rates of {1× 10−5, 2× 10−5, 3×
10−5}, and performed training for about 1.5 hours. We used a dropout rate of 0.3 for BERT weights
and 0.5 for the last linear layer, which we determined empirically.

Results.

Model Score Sent.
Acc.

Para.
Acc.

STS
Corr.

Params
(Train/Total)

Baseline (last linear layer) 0.588 0.381 0.661 0.445 8K / 109M
Single task (full model) 0.735 0.490 0.791 0.848 324M / 324M
Multitask Equitable Sampling 0.743 0.517 0.785 0.851 109M / 109M
Multitask Down-weighting 0.756 0.527 0.813 0.755 109M / 109M
Multitask Down-weighting PCGrad 0.500 0.802 0.842 0.741 109M / 109M
Multitask Down-weighting SMART 0.759 0.526 0.823 0.856 109M / 109M
Multitask Down-weighting SMART PCGrad 0.762 0.525 0.836 0.850 109M / 109M
Multitask Down-weighting SMART PCGrad
LoRA 0.760 0.510 0.841 0.859 25M / 110M

Multitask Down-weighting SMART PCGrad
DoRA 0.714 0.442 0.793 0.813 25M / 110M

Ensemble 0.768 0.532 0.840 0.863 1.2B/1.2B
Table 1: Dev set scores for selected models.

Overall Score Sentiment Acc. Paraphrase Acc. STS Corr.
0.770 0.538 0.840 0.862

Table 2: Leaderboard test results from final ensemble model.

Models limited to pre-trained weights shared across the three downsteam tasks have the lowest
parameter overhead since only the final classification layers are trained. However, they also demon-
strate the lowest accuracy at 0.588. Fully fine-tuned models perform significantly better, reaching

3https://nlp.stanford.edu/sentiment/treebank.html
4https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
5https://aclanthology.org/S13-1004.pdf

6

https://nlp.stanford.edu/sentiment/treebank.html
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/S13-1004.pdf

an accuracy of approximately 0.7. However, they are the most expensive to train, requiring around
200M additional parameters.

5 Analysis

Multitask Learning.

Figure 5: Comparison of Single Task and Multitask Learning. Rightmost is Multitask.

Single-task models tend to perform with low accuracy. However, our multitask model, which employs
PCGrad, effectively leverages the inherent correlations among these tasks, improving its overall
training and prediction capabilities.

Parameter efficient Fine-tuning (PEFT). We can achieve comparable overall performance with
our optimized models while using far fewer parameters with PEFT methods. By utilizing LoRA
and DoRA techniques, the number of trainable parameters is significantly reduced from 109 million
to 25 million. We found that LoRA enhanced our model’s performance and reduced overfitting
by decreasing the number of trainable parameters, thus avoiding excessive complexity. In contrast,
DoRA did not perform as well. This is likely because, as the authors suggest, DoRA’s similarity to
full fine-tuning compared to LoRA mitigates its efforts to reduce overfitting.

Gradient Surgery. PCGrad took a much longer runtime of approximately 80% more time overall,
as pairwise comparison of loss gradients is performed at every timestep during training. This is
inefficient and also did not generate substantial improvement to our overall accuracy. We hypothesize
that PCGrad undermines to some extent the benefits of multitask learning. In a sense, conflicting
gradients are a feature, not a bug, which prevent the model from overfitting to training data too much,
and projecting them might allow the model to better memorize examples.

Furthermore, in fact, implementing PCGrad on top of both LoRA and DoRA reduced accuracy
significantly. This might be because PCGrad changes the gradient directions to resolve conflicts, and
such orthogonal projections can interfere with the fine-tuning dynamics and low-rank structures that
LoRA relies on, leading to suboptimal updates. Furthermore, LoRA already limits the parameter space
by focusing on low-rank adaptations, and with PCGrad further restricting it, will cause insufficient
capacity for proper learning and adaptation.

PCGrad PEFT LR Hidden, Last Dropout Dev Sent. Dev Para. Dev STS Dev overall
✗ ✗ 1× 10−5 0.3, 0.5 0.516 0.821 0.857 0.755
✓ ✗ 1× 10−5 0.3, 0.5 0.500 0.802 0.842 0.741
✗ DoRA 2× 10−5 0.3, 0.5 0.302 0.769 0.810 0.659
✓ DoRA 2× 10−5 0.3, 0.5 0.253 0.632 −0.030 0.457
✗ LoRA 1× 10−5 0.3, 0.5 0.495 0.801 0.837 0.738
✓ LoRA 1× 10−5 0.3, 0.5 0.257 0.734 0.808 0.632

Hence, we decided not to combine these two techniques in a single model, even if we ensembled
some of them together.

Hyperparameter tuning.

Overfitting was a significant issue in our initial trials, so we introduced dropout to regularize the
model. To mitigate overfitting, we experimented with different dropout rates in the hidden layers
and the final layer of our model. The overall development score was higher (0.723) for the higher
dropout rates, compared to 0.706 for the lower dropout rates, reinforcing the benefit of higher dropout
rates in improving the model’s robustness and performance. This configuration provided a balanced
improvement across various tasks, making it a better choice for our experiments.

7

Hidden, Last Dropout PEFT PCGrad LR Dev Sent. Dev Para. Dev STS Dev overall
0.5, 0.6 ✗ ✓ 2e-5 0.464 0.783 0.844 0.723
0.1, 0.5 ✗ ✓ 2e-5 0.425 0.768 0.852 0.706

We also experimented with different learning rates on our model. Specifically, we found that as the
learning rate increased, the overall score generally decreased as we are overshooting optimas and
had poor generalization, indicating that lower learning rates performed better in our experiments.
A learning rate of 1e-5 allowed us to achieve the best overall score of 0.750, with significant
improvements in sentiment classification and paraphrase detection accuracy.

Learning Rate Overall
Score

Sentiment
Classification Acc.

Paraphrase
Detection Acc.

Semantic Textual
Similarity Corr.

1× 10−5 0.750 0.510 0.814 0.854
2× 10−5 0.736 0.476 0.805 0.856
3× 10−5 0.720 0.445 0.789 0.853
4× 10−5 0.696 0.406 0.764 0.836
5× 10−5 0.699 0.427 0.765 0.809

Table 3: Learning rate fine-tuning results

In addition, we also fine tuned the λ in the SMART framework. Using their recommended 1 sampling
step, ϵ = 1e−6, η = 1e−3, p =∞, we experiment with different choices for λ. As shown in 6, we
find that λ = 2 performed well and hence, we decided to adopt this value for future experiments.
Lower values had little effect and higher values had too great an impact.

Figure 6: Effect of λ in SMART regularizer on dev
model accuracy

Figure 7: SST Result Breakdown

We also examined our lowest-performing task, sentiment classification. Instances where the prediction
is slightly off, such as predicting very negative instead of slightly negative, are often subjective.
Considering only exact matches (Off by 0) as correct, makes our model appear to be less accurate
than it really is.

6 Conclusion

Fully fine-tuned models excelled across all tasks due to their extensive trainable parameters and the
capacity for task-specific fine-tuning. Supplementary enhancements like LoRA can further elevate
efficiency by significantly reducing parameter overhead while maintaining competitive performance
across tasks through reduced over-fitting. Conversely, the performance of PCGrad with LoRA or
DoRA resulted in inferior performance as it resulted in over-correction and simplification of the model.
Conflicting gradient adjustments underscores the importance of carefully balancing regularization
techniques with model architecture adaptations.

Moreover, our hyperparameter tuning efforts revealed that higher dropout rates and lower learning
rates were essential to improved generalization and overall performance. While our study achieved
promising results in parameter efficiency and task performance, it is essential to acknowledge the
limitations, including the complexity introduced by multitask learning dynamics and the sensitivity
of results to hyperparameter settings. Future research could explore more sophisticated strategies
for integrating regularization techniques with parameter-efficient fine-tuning methods, as well as
investigate adaptive approaches to gradient correction that align more closely with low-rank model
adaptations.

8

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
SMART: Robust and efficient fine-tuning for pre-trained natural language models through princi-
pled regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2177–2190, Online. Association for Computational Linguistics.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora: Weight-decomposed low-rank adaptation.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning.

7 Ethics Statement

One potential ethical concern of using our BERT system to analyze sentiment is the introduction
of unfair bias. Suppose that our system were to be employed as a review aggregator by taking as
input social media posts which mention a given movie to produce “audience score” on a movie
review website. Not only must we ensure that overall accuracy is reasonably good, but there is
a danger of learning that, say, the use of African American Vernacular English (AAVE) in a post
implies a more negative review, or that “I love how It takes horror to the next level” is a negative
review because it says the word “horror.” In those examples, movies more likely to have reviews in
AAVE or mentioning the word “horror” would get statistically worse audience scores, which could
disproportionately hurt niche yet important genres. A potential mitigation strategy is to train a model
for each movie category in isolation, and then force all genres to have the same average.

A concern about paraphrasing detection is that, if the system were to be employed to identify
plagiarism in academic works, there would be a risk of false positives. In this case, the great risk is
user’s overdependence and trust of the system. For example, the Texas A&M professor who failed
students after ChatGPT told him that it had written the students’ papers, even though Transformers
only predict the next token and ChatGPT has no recollection of specific usage by other users in the
past. That case exemplifies that our model too can, as a result of human negligence, be the cause
of great anxiety in innocent students who did not know of its existence, let alone authorize its use.
Perhaps the only way to mitigate this risk is to clearly warn users that paraphrasing detectors are
fallible and must always be corroborated by a human reviewer.

9

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
http://arxiv.org/abs/2402.09353
http://arxiv.org/abs/2001.06782
https://www.businessinsider.com/professor-fails-students-after-chatgpt-falsely-said-it-wrote-papers-2023-5

	Introduction
	Related Work
	Approach
	Experiments
	Analysis
	Conclusion
	Ethics Statement

