
An Exploration of Multi-Task Learning over minBERT
Stanford CS224N Default Project (TA mentor: Josh Singh)

Chunming Peng
cmpeng@stanford.edu

Max Yuan
max9@stanford.edu

Annie Wang
wangj00@stanford.edu

Abstract

This project aims to enhance multi-task performance over minBERT in Sentiment
Analysis (SST), Paraphrase Detection (Para), and Semantic Textual Similarity
(STS). We explore various strategies: hyperparameter optimization, dataset aug-
mentation, loss function enhancements, contrastive loss, and multiple negatives
ranking loss. We also integrate LoRA, and additional attention head layers, seeking
to improve minBERT’s effectiveness across diverse NLP tasks. Through rigor-
ous experimentation, we demonstrate that our approach significantly improves
model generalization and robustness, resulting in notable performance enhance-
ments across all three tasks concurrently. Our method achieves the top 15 on
the leaderboard, underscoring its effectiveness and competitiveness in real-world
applications.

1 Introduction

The objective of the project is to boost BERT’s effectiveness with multi-task learning approaches,
and to develop an efficient and stable version of miniBERT. This refined version will be tailored
specifically for improving sentiment analysis, paraphrase detection, and semantic textual similarity
tasks. We aim to achieve this by exploring six strategies: hyperparameter optimization, dataset
augmentation using Llama3, loss function enhancements, contrastive loss, multiple negatives ranking
loss, integration with LoRA and additional attention head layers. Furthermore, we conduct compre-
hensive performance evaluations, comparing our methodology against existing baselines. The key
challenge lies in avoiding interference or negative transfer between multiple tasks and at the same
time enhancing their overall accuracy and performance, since multi task learner tends to interfere
with each other, and improving the performance with one task might degrade that of another.

2 Related Work

The recent advancements in natural language understanding tasks have seen BERT emerge as a leading
model, showcasing state-of-the-art performance. However, there remains room for improvement,
particularly in text classification tasks. Sun et al. (2019) presents a novel approach to fine-tuning
BERT, encompassing three crucial stages: initial pre-training on task-specific or domain-specific data,
optional integration of multi-task learning for related tasks, and subsequent fine-tuning tailored to
the target task. Additionally, it investigates diverse fine-tuning methodologies for BERT, including
strategies for preprocessing lengthy text inputs, identifying optimal layers for text classification,
mitigating the catastrophic forgetting phenomenon, and implementing layer-wise learning rate
adjustments, as demonstrated in 1 (Sun et al. (2019), Howard and Ruder (2018)). Furthermore,
the paper explores scenarios of low-shot learning, wherein the model adapts to limited training
data, thus contributing to a comprehensive understanding of BERT’s applicability and performance
enhancement strategies in various contexts. For extensive literature review, please find the "Related
Work" Section in the Appendix.

θtl = θt−1
l − ηl · ∇θlJ(θ) (1)
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3 Approach

Baseline minBert Model The project employed multi-task learning to simultaneously train sentiment
analysis, paraphrase detection, and semantic textual similarity tasks. We utilized a joint loss function
with linear weights for each task’s loss term. For sentiment analysis, minBERT Jiang et al. (2020)’s
pooler output, followed by a dropout layer and linear layer, optimized cross-entropy loss. Paraphrase
detection involved minBERT processing sentence pairs, concatenating embeddings, and applying a
linear layer to optimize binary cross-entropy loss. Semantic textual similarity utilized mean pooling
of minBERT’s last hidden state output, cosine similarity computation, and optimization of mean
squared error loss between scaled scores and labels.

Adding additional hidden layers to each attention head This approach increases model capacity,
allowing for better capture of complex patterns and relationships in data Vaswani et al. (2023). This
can enhance performance on various tasks. Additionally, deeper layers enable attention heads to
extract more nuanced features, beneficial for tasks requiring fine-grained understanding. However,
this may lead to increased model complexity, potential overfitting, and training instability.

LoRA Gu et al. (2023) addresses fine-tuning issues in pretrained models with limited resources,
by integrating trainable rank decomposition matrices, or modules, into pretrained model dense
layers while preserving original weights. Concerns include limited expressiveness due to low-rank
approximation and varying task-specific performance. We propose extending pretrained minBert with
LoRA modules for efficient task adaptation during fine-tuning, with adjustments based on dataset
and model architecture (its basic structure as shown in Appendix Figure 6).

Contrastive Loss This loss function leverages dropout masks to create different views of the same
sentence and encourages the model to produce consistent embeddings for these views. Specifically,
we use the unsupervised SimCSE approach Gao et al. (2021) where the model learns from augmented
versions of the input sentences, optimizing the similarity between the embeddings of these augmented
pairs. Denote hz = E(s, z) as encoding sentence s with a random noise z for dropout, we optimize
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Multiple Negatives Ranking Loss As this loss function is particularly effective for tasks involving
similarity and ranking, we aim to leverage it for paraphrase detection and semantic textual similarity.
The MNRL Henderson et al. (2017) works by considering positive pairs of sentences and multiple
negative examples to refine the model’s understanding of sentence similarity. The objective is to
ensure that embeddings of similar sentences are close in the feature space while those of dissimilar
sentences are pushed apart.

Data Augmentation To further improve minBERT, we performed data augmentation Ding et al.
(2024) where the smaller minBERT model is finetuned using output generated by a larger model
Llama3 as an additional source. The larger model preprocessed the source data by fixing errors or
missing values and generating new examples. The goal is to improve data quality and data imbalance
issues.

Hyperparameter optimization Lastly, once all the parts are working properly we performed hyper-
parameter optimization where we searched through a range of values for the optimal combination.
We looked at parameters such as batch size, learning rate, number of layers, dropout rates and
identify their relationships, while tracking training speed and compute usage. This process can be
automated through a grid search, random search Bergstra and Bengio (2012) or more advanced
Bayesian methods.

4 Experiments

4.1 Data

We utilize three datasets for training and evaluation: the Stanford Sentiment Treebank (SST) dataset
SST (11,855 sentences with labeled sentiment. 0-Negative; 1-Somewhat Negative; 2-Neutral; 3-
Somewhat Positive; 4-Positive) for sentiment analysis, the Quora dataset Quo (404,298 pairs of
labeled paraphrases) for paraphrase detection, and the SemEval STS Benchmark dataset Sem (8,628
sentences with similarity scores from 0 to 5) for semantic textual similarity (as shown in Figure 1).
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Class Count
0 1092
1 2218
2 1624
3 2322
4 1288

Class Count
0 10876
1 6483

Range Count
0 - 1 1287
1 - 2 955
2 - 3 1160
3 - 4 1593
4 - 5 1045

Figure 1: Histograms marking the distribution of the SST, Paraphrase, and STS datasets.

4.2 Evaluation method

For evaluation, we focus on task-specific metrics and baseline comparisons to assess our model’s
performance, as described in the project instructions. For SST, we use accuracy as the primary metric,
measuring the percentage of correctly classified sentences across five sentiment classes (negative,
somewhat negative, neutral, somewhat positive, positive). For paraphrase detection, we use accuracy
to measure the model’s ability to identify sentence pairs as paraphrases or non-paraphrases correctly.
For STS, we use Pearson correlation coefficient to evaluate the model’s ability to predict semantic

similarity scores. The overall score is calculated by:
SSTacc+( STScorr+1

2 )+Paraphraseacc
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4.3 Experimental details

For our experiments on the three default project tasks, we utilized the Google Cloud Platform (and
the weights and biases extension). We initially employed a virtual machine (VM) equipped with one
NVIDIA T4 GPU, with the "–use_gpu" argument included in all runs, and 13GB of internal memory.
Additionally, we utilized 2x NVIDIA H100 NVL with 94GB of VRAM and 2x NVIDIA RTX 6000
Ada with 48GB of VRAM. Our training configurations remained consistent across all experiments,
with learning rates ranging from 1e-3 to 1e-7, training for 1-50 epochs with batch sizes of 2, 4, 8, 16,
32, 64, 128, along with hidden dropout rates of 0.01 - 0.5. These settings were standardized across all
multitask experiments.

We explore six strategies to boost accuracy and model performance. These include enhancing the loss
function, using LoRA, and adding extra layers to attention heads. More details can be found in the
Appendix, in addition to: (1) For data augmentation, we are using Meta’s Llama3 (AI (2024)) open
source model on our local GPUs running vLLM (vLLM (2024)) for inference. vLLM provides an
API where we can call via a python script using our specifically designed prompt and stores results
from Llama3 in the same format as the existing files. We will use this to further preprocess the source
data used for finetuning and will attempt to generate more synthetic data using the same method to
augment our existing data. (2) For hyperparameter optimization, we are using Weights and Biases
Sweep tool to set up search ranges for optimization. Initially we are searching through learning rate
of [0.00001, 0.0001, 0.001, 0.01], a variety of batch sizes, as well as different fine-tuning modes
such as ["full-model", “last-linear-layer”], using a simple grid search to try out all the combinations
(See initial results in Figure 7 in the Appendix). Once we’ve completed hyperparameter search and
assessed results from all six approaches, we then determine the optimal combination and proceed
with refining the training and fine-tuning orders for the three NLP tasks accordingly.

4.4 Results

The table below shows the accuracy and correlation scores on dev datasets with different experiments
we have done: (1) Finetune with no attention layer. (2) With additional attention n-headed
layers. (3) Using LoRA for all linear layers. (4) Using LoRA for first-, mid-, and last four layers.
(5) Applying contrast loss. (7-10) Hyperparameter tuning. (11) Data Augmentation.
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Experiment Overall SST Acc Para Acc STS Corr.
No attention lyr 0.406 0.317 0.548 0
w/ attention lyr 0.596 0.494 0.466 0.477

w/ LoRA (first 4 layers) 0.667 0.517 0.729 0.755
w/ LoRA (mid 4 layers) 0.657 0.506 0.711 0.756
w/ LoRA (last 4 layers) 0.683 0.529 0.738 0.782

Contrastive Loss 0.647 0.457 0.794 0.379
No Activation D0.1 LR1e-4 0.7418 0.4323 0.8809 0.8243

Selu_Gelu_Gelu D0.05 LR0.7e-5 0.7781 0.4886 0.9074 0.8766
LeakyRelu BS32 D0.1 LR0.7e-5 0.7823 0.4968 0.9089 0.8823
LeakyRelu BS8 D0.05 LR0.7e-5 0.7889 0.5186 0.9069 0.8822

Data Augmentation BS32 D0.1 LR0.7e-5 0.7849 0.5068 0.9069 0.8821

Looking at experiments 1 and 2, the big jump in accuracy from 0.406 without the multi-headed
attention layer to 0.596 with it is better than expected. This shows that the multi-headed attention
really helps minBERT understand and handle complicated sequences better. It’s giving the model
more ways to pay attention to different parts of the text, making it much better at understanding
and processing information. For experiments 3 and 4, the differences in accuracy when applying
LoRA to different layers of minBERT are somewhat expected because each layer learns different
kinds of information. The higher accuracy with the last four layers might be because they capture
more important details for the task, while the middle layers might not be as relevant. This shows
that LoRA can adjust how important each layer is for the task, which is useful for improving overall
performance.

During hyperparameter optimization in experiments 7-10, the results were most expected but with
a few surprises. Notably, we observed the largest performance boost (+4.9%) when reducing the
learning rate, as it helped stabilize training and prevented overshooting. Conversely, removing the
activation function in experiment 7 led to a performance drop (-5.5%), it was as expected due to the
loss of non-linearity in the model. However, we did not expect the performance to improve after
decreasing hidden layer dropout rate to 0.05, contrary to the original BERT paper’s recommendation
of 0.1. Also we learned that it is a good idea to do hyperparameter optimization last, once the
model architecture has been settled. Additionally, data augmentation in experiment 11 yielded only a
marginal increase in accuracy (+0.3%). We did not have any expectations as it was a new experiment
with unknown outcomes. The results showed that there could be an issue with the limited sample size.
Increasing the synthetic data sample size by 10x could potentially reveal new emergent capabilities.

5 Analysis

5.1 Adding additional layers

We explored the value of adding extra attention layers to BERT-based models. We considered data
complexity and feature dimensionality, by using 1 to 2 hidden layers for simpler data to start with,
and proceed to 3 to 5 for more complex data. The observation is, while BERT often provides
high-level embeddings, adding a hidden layer can help capture nuanced patterns, especially in cases
involving combinatorial factors. However, when adding more than two hidden layers, the accuracy
is not improving any more but the model performance decreases. Adding multiple hidden layers to
MinBERT increases its capacity to capture complex patterns through hierarchical representations;
it succeeds in tasks with large datasets and complex data patterns but may fail due to overfitting,
vanishing/exploding gradients, and increased computational complexity, particularly with limited
data or resources. In summary, while additional attention layers may benefit certain scenarios, careful
consideration of data complexity and thorough optimization are crucial for determining the optimal
model architecture.

5.2 Multi-heads in attention layers

In our analysis, the choice of the number of heads in attention layers can be seen as a crucial design
decision rather than just a hyperparameter. Besides accuracy, we should also consider performance
and training efficiency when deciding on the number of heads in attention. Generally, increasing the
number of heads can improve results, but only if sufficient data is available. However, the number
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of heads does not alter the number of learnable parameters; it divides the embedding dimension
accordingly. Therefore, selecting the optimal number of heads requires balancing performance gains
with computational efficiency. In this case, since there is sufficient data with minBERT, increasing
the number of heads from 12 to 24 or 36 in the attention layer does not really enhance the accuracy.
Having multiple heads in the attention layer allows MinBERT to attend to different parts of the input
sequence simultaneously, enabling it to capture diverse contextual information; it succeeds in tasks
requiring fine-grained analysis and understanding of relationships between tokens but may fail if the
attention heads become too specialized or if there’s insufficient training data to effectively learn from
multiple perspectives.

5.3 LoRA

In analyzing our experiments, we observed that the inclusion of LoRA models led to minimal
decreases in accuracy and marginal increases in validation loss, indicating robustness in the training
process. This underscores the redundancy present in the change-in-weight matrices and elucidates
the widespread adoption of LoRA for training LLMs. Furthermore, when LoRA was applied to
the last four layers of the model architecture (compared to first- or mid- four layers), we noted the
shortest training time per epoch (25 min) compared to other configurations (38+ min). This suggests
that this particular model configuration may offer the most efficient utilization of computational
resources, potentially making it an attractive option for large-scale deployment scenarios. However,
it’s noteworthy that the five epochs of training time employed in our experiments appeared excessive
for most models. Interestingly, the model with LoRA applied to the last four layers did not fully
converge within this timeframe, indicating the possibility of further optimization through adjustments
such as increasing the learning rate. This observation underscores the importance of fine-tuning
hyperparameters to achieve optimal performance in training LLMs. Overall, applying LoRA in
minBERT adjusts the relevance of information across layers, allowing the model to emphasize
or de-emphasize specific features during training; it succeeds in improving model interpretability,
robustness to noisy inputs, and performance on tasks with hierarchical structures, but may fail if
the relevance adjustments are not properly calibrated or if there’s insufficient training data to learn
meaningful adjustments.

5.4 Contrastive Loss

In our experiments with the SimCSE method utilizing contrastive loss, we observed improvements in
paraphrase identification and STS tasks, but sentiment analysis saw only a marginal improvement.
This outcome was expected to an extent, given that contrastive loss is more suited for tasks involving
similarity. However, the marginal improvement in sentiment analysis was worse than anticipated.
This suggests that while the SimCSE approach is effective for tasks where semantic similarity is the
key focus, it may struggle with tasks requiring nuanced sentiment detection. This tells us that our
approach has potential and needs further refinement to handle the intricacies of sentiment analysis.

For example, the sentence "A coda in every sense, The Pinochet Case splits time between a minute-
by-minute account of the British court’s extradition chess game and the regime’s talking-head
survivors." was misclassified as neutral (2) instead of very positive (4). Similarly, the sentence
"Chilling but uncommercial look into the mind of Jeffrey Dahmer, serial killer." was misclassified
as positive (3) instead of neutral (2). These misclassifications highlight the limitations of SimCSE
and contrastive loss in capturing subtle sentiments in complex sentences. The method’s reliance
on dropout-induced augmentations might not effectively handle intricate sentence structures, where
sentiment is derived from the overall context rather than explicit indicators. Additionally, the focus on
generating consistent embeddings can lead to an overemphasis on factual descriptions, overlooking
nuanced evaluative tones.

5.5 Multiple Negatives Ranking Loss

Incorporating the MNRL method into our model aimed to enhance performance on tasks involving
similarity and ranking. In the outcome, the quantitative results did not meet our expectations. Contrary
to the anticipated improvements, the inclusion of MNRL led to a mediocre performance across
multiple tasks. Despite MNRL’s potential to enhance semantic understanding, it did not improve
performance in paraphrase detection tasks compared to the baseline. For instance, consider the
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sentence pair "What is the first thing you did with your salary?" and "What can I gift my grandparents
from my first salary?" Despite exhibiting clear semantic differences indicative of non-paraphrase
relationships, MNRL erroneously classifies them as similar. Another example is the pair "Are floppy
disks still used today?" and "Are floppy disks still useful?" Although these two sentences share a
similar sentiment and thematic content, MNRL fails to recognize their equivalence. The results
suggest that MNRL’s emphasis on pushing apart embeddings of dissimilar sentences may lead to
over-regularization. It does not capture the subtle semantic nuances. These outcomes indicate that
while MNRL has theoretical advantages, its practical application in our approach does not work as
expected.

5.6 Data Augmentation

We noticed from our experiments that the sentiment analysis task generally performed much worse
than the paraphrase and textual similarity tasks in the BERT model. The accuracy of the paraphrase
and text similarity tasks consistently reached around 0.90 dev accuracy, while sentiment analysis
stayed around 0.5 dev accuracy. Looking at the dev confusion matrix in Figure 2, it appears that
the model is mostly uncertain around the sentiment classes Somewhat-negative-1 and Somewhat-
positive-3, which is a challenging task. After all, it’s even hard for humans to distinguish between
a sentence that’s somewhat positive and one that’s positive. Maybe increasing the synthetic data
amount 10x would help. By examining the training data source, especially the SST dataset, we
found an imbalance of examples for each class. Negative-0 (1092 samples) and positive-4 (1288
samples) were the least common among the training data. Somewhat-negative-1 (2218 samples) and
somewhat-positive-3 (2322 samples) had the most numerous examples. We used the open source
model Llama3 to generate more examples of each class by asking the model to paraphrase the existing
examples. (See Appendix for an example prompt and response) The reason for asking the model
to paraphrase instead of generating completely new ones is to avoid potential data contamination,
as it is unclear what datasets were used for training Llama3. This resulted in all classes having the
same number of examples (See Figure 3). While we did not see a significant model performance
improvement (0.7818 before vs 0.7849 dev overall score with data augmentation) using this approach,
it is still worthwhile to explore new ways to improve data quality.

Figure 2: SST Dev Confusion Matrix Figure 3: Augmented SST dataset

5.7 Hyperparameter Optimization

In total, we performed over 300 combinations of manually selected hyperparameters including
learning rate, batch size, hidden layer dropout, activation functions, etc. (See Figure 4). We tried
using the automated sweep tool in W&B, but did not feel we would learn and to truly understand
the relationships between these hyperparameters, so we decided to do it manually. We started with a
batch size of 128 due to its fastest convergence rate and training speed, this allowed us to run more
experiments in the limited time available. We then looked at lowering the hidden layer dropout rate
for a more stable training, going from 0.5 to 0.01. Although, the original BERT paper used 0.1, we
found that 0.05 resulted in the most stable training with our multitask architecture.

We tested many relevant non-linear activations supported by PyTorch including: ELU, Hardswish,
ReLU, Random ReLU, SELU, CELU, GELU, SiLU. We looked at the top 5 performing activation
function for each task then tried different combinations of them (W&B naming scheme, mild-flower-
336, will be referred to as run 336 in this report). See Figure 5 for demonstration. For example,
SELU_GELU_GELU [run 295], the scaled exponential linear unit SELU performed quite well on
the sentiment analysis task due to it’s self-normalizing nature and GELU generally performed well
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Figure 4: Hyperparameter Optimization

on all 3 tasks. LeakyRELU_SELU_RReLU [run 275], is another activation function combination we
experimented with, which results in even higher dev accuracy.

Figure 5: Most interesting experiments

Next, we tested configurations with 3 and 4 hidden layers across all 3 tasks, focusing additional layers
on the sentiment analysis task (since the sentiment analysis task required the most help). However,
excessive layering led to overfitting, evident from training accuracy peaking at around 0.95 while dev
accuracy remained at approximately 0.45 [run 321]. Ablation studies include removing activation
functions and/or all hidden layers resulted in significantly more unstable training and performance
degradation [run 176].
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We experimented with learning rates from 1e-3 all the way down to 1e-7. Lowering the learning rate
and training for more epochs generally resulted in better performance and more stable training [run
352] At low learning rates, it seemed unnecessary to have a LR scheduler.

Decreasing batch size enhanced generalization (more updates per epoch), less overfitting, but also
introduced instability [runs 335, 347, 352]. Lengthening training epochs to 50 didn’t yield additional
gains [run 295].

Altering the default training order of SST, Para, STS to Para, STS, SST notably boosted sentiment
analysis performance by approximately 0.05 in dev acc [run 292]. We believe this is due to training
all 3 tasks where the parameters of each task overwrite each other, doing the sentiment analysis task
last allowed its values to remain dominant. Going with the same logic, we also attempted to delay
start the sentiment analysis task training for 10 epochs then joining the other tasks, however this did
not result in any performance gains [run 292].

After over 300 experiments, we finally found the most optimal configuration of hyperparameters to
be 2 hidden layers with a leaky ReLU activation, with a learning rate of 0.7e-5, batch size of 8, and a
hidden layer dropout of 0.05, after running for 25 epochs which resulted in an dev overall score of
0.7889.

6 Conclusion

In conclusion, our project showcases remarkable achievements in bolstering minBERT’s performance
across diverse NLP tasks. By integrating a multi-task learning framework with innovative techniques
such as loss function optimization, LoRA, and additional layers in attention heads, along with
meticulous data augmentation and hyperparameter tuning, we’ve significantly elevated minBERT’s
generalization capabilities. Notably, our experiments have propelled us to secure a prestigious
position within the top 15 on the test leaderboard across three distinct tasks. These accomplishments
underscore the effectiveness of our methods and their potential in advancing NLP model performance
while combating overfitting.

Main Findings So far our achievements and main findings include: (1) Our exploration of additional
layers in BERT-based models underscores the importance of carefully considering data complexity
and optimization for optimal model architecture. Similarly, the choice of the number of heads
in attention layers is crucial, balancing performance gains with computational efficiency. While
increasing the number of heads can enhance results, it may not necessarily improve accuracy beyond a
certain point. Additionally, our analysis of LoRA models highlights their robustness in training LLMs,
with potential benefits in computational efficiency when applied to specific layers. However, further
optimization may be necessary for full convergence. Finally, our multi-task learning model encounters
challenges in sentiment classification, emphasizing the need for improvements in data availability and
label consistency. (2) Integration of SimCSE method improves sentence embeddings by encouraging
consistency between augmented views. Although its effectiveness may vary across tasks, with minor
enhancement observed for tasks such as semantic textual similarity due to limitations in quantifying
similarity levels. MNRL, designed to enhance similarity and ranking tasks, did not significantly
boost performance. Its inclusion does not significantly improve performance across various tasks
such as sentiment analysis and paraphrase identification due to potential over-regularization issues
hindering the model’s ability to capture subtle semantic nuances and recognize clear equivalences.
(3) After over 300 experiments, we determined optimal multi-task training order (Para, STS, SST)
and hyperparameter selection (Lower LR 0.7-5, Batch Size 8, Hidden layer dropout rate 0.05), these
configurations affect model performance significantly.

Limitations Since the model is trained on limited datasets, in English-only language environment,
and not set for learning most recent trends in words and phrases, it will produce biased or culturally
insensitive outputs, particularly in tasks involving sensitive topics or diverse communities, and may
have difficulty adapting to specific domains or industries that exhibit specialized language patterns or
terminology not present in its training data. For future improvement, we need to feed the training
data with more diverse and up-to-date sources, fine-tune on domain-specific data, and implement
mechanisms to mitigate biases and ensure cultural sensitivity in its outputs.
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Ethical Considerations

Our project’s advancements in enhancing BERT’s performance across diverse NLP tasks hold
significant societal impacts. By improving sentiment analysis and streamlining data analysis in
sectors like healthcare, finance, and education, we empower organizations to derive valuable insights
from textual data with unprecedented accuracy. Moreover, our success in mitigating overfitting and
improving model generalization contributes to democratizing access to advanced AI technologies,
benefiting communities regardless of their technological proficiency or resources.

Although having a performant multi-task learner is mostly beneficial, there are certain negative societal
impacts that should not be overlooked. Specifically, the potential for increased unemployment by
replacing technical support staff with automated AI systems. It could have a cascading negative
effect causing less demand, in turn even more job losses. One recommendation is to slowly introduce
new AI features, giving people enough time to adjust and prepare, and ensure human oversight is
available. Additionally, more free educational resources on AI would help people better adopt new
tools and technologies. Another potential negative impact is mental health issues for people who
prefer interacting with real human beings and increased loneliness. One possible solution to address
this issue, is to always have a human in the loop, in case things go wrong unexpectedly. In summary,
having this system in a live production environment would enable us to discover additional issues
and solutions.
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A Appendix

A.1 Related Work

A.1.1 Extensive Literature Review

The focus of Sun et al. (2019), and Howard and Ruder (2018) is on text classification tasks, without
delving into BERT’s fine-tuning applications for other NLP tasks such as sequence labeling or
language generation. Moreover, the experiments are confined to a limited set of benchmark datasets.
Nevertheless, the findings presented in this paper hold relevance to our project, as they constitute a
pivotal aspect of our proposed work. Specifically, they elucidates various methodologies for tailoring
BERT to specific domains and tasks, encompassing additional pre-training, multi-task learning, and
fine-tuning strategies. However, fine-tuning pre-trained models for downstream tasks remains a
complex endeavor. The research showcases how these expansive, pre-trained models can be adapted
to target tasks and domains while capitalizing on their comprehensive, general-purpose language
representations. Additionally, it offers valuable insights into transfer learning and multi-task learning,
which align with the overarching objectives of our project.

In their work on gradient surgery for multi-task learning, T. Yu and the team Yu et al. (2020) aim
to address several motivations and challenges: (1) They tackle Gradient Interference, a significant
challenge in multi-task learning where gradients from different tasks interfere during optimization,
aiming to improve optimization efficiency. (2) They propose a simple and general approach to address
Optimization Challenges caused by gradient interference, promoting more efficient optimization
across multiple tasks. (3) Their efforts focus on achieving Efficiency and Performance Gains in multi-
task learning settings, demonstrating faster convergence and improved overall performance. (4) They
emphasize Model-Agnostic Compatibility, showing that gradient surgery can be seamlessly integrated
with existing multi-task architectures, enhancing their performance without major modifications.
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Figure 6: LoRA constrains the weight update (δW of a matrix W with two trainable low-rank
matrices A and B for q, k, v). We could start with a random Gaussian initialization for A and zero
for B, so δW is a zero-matrix at the beginning.

Their contributions include developing a novel algorithm, validating it extensively, demonstrating
model-agnostic compatibility, and validating on diverse datasets, collectively advancing multi-task
learning research and providing a valuable tool for practitioners aiming to improve optimization
efficiency and performance Bi et al. (2022). Limitations and ongoing discussions include (a) Loss of
Information: Modifying gradients may lead to a loss of valuable information about the underlying
optimization landscape, and might also obscure important signals that could potentially improve the
model’s performance. (b) Hyperparameter Sensitivity: The effectiveness often depends on the choice
of hyperparameters, such as clipping thresholds or scaling factors. Finding the right settings can
be challenging and may require extensive experimentation. (c) Overfitting Risk: It can sometimes
introduce biases into the optimization process, which may increase the risk of overfitting, especially
on smaller datasets. Careful regularization and validation procedures are necessary to mitigate this
risk.

Attention Layers (PALs), alongside BERT layers, provide low-dimensional multi-head attention
tailored to each task with minimal parameters Stickland and Murray (2019). The approach aims to
share BERT’s parameters across tasks while incorporating task-specific parameters for adaptation.
While effective, the method has performance drops in syntax tasks like CoLA compared to single-task
BERT, highlighting the limitations of multi-task transfer. The paper emphasizes the importance
of exploring alternative training methods to mitigate interference between tasks. This research is
valuable for our project as it delves into multi-task learning with large pre-trained models like BERT,
offering insights into efficiently adapting these models across various tasks. Additionally, PALs may
extend beyond BERT to other Transformer applications, contributing to the broader exploration of
multi-task transfer in the research community.

A.2 Approach

A.2.1 LoRA

A.3 Experiment

A.3.1 Experiment Details

Strategies other than data augmentation and hyper-parameter training are listed below:

• Adding hidden layers: Choosing the number of hidden layers (n_dim) involves trade-offs
between capacity, computational cost, and generalization performance. Careful considera-
tion is necessary based on the task and dataset, starting from n_dim = 728. The pseudocode
listed below outlines extending each attention head of minBERT with extra hidden layers
during fine-tuning. Through the ExtendedBertModel class, additional hidden layers are
added to each attention head inherited from BertModel. Input tokens undergo processing
in the base BERT model before extra hidden layers are appended to each attention head’s
output, and the extended model undergoes fine-tuning using standard optimization methods.
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Algorithm 1 Additional hidden layers
1: Load pre-trained minBERT model
2: Initialize ExtendBertModel Class
3: for epoch = 1, 2, . . . , self.num_hidden_layers do
4: for epoch = 1, 2, . . . , self.base_model.config.num_attention_heads do
5: Add additional hidden layers to each attention head
6: end for
7: end for
8: Define optimizer
9: for epoch = 1, 2, . . . , num_epochs do

10: for batch = 1, 2, . . . , len(training_data_loader) do
11: Forward pass
12: Backward pass with LoRA
13: Update parameters with optimizer
14: end for
15: end for

• LoRA: These modules enable storage- and computation-efficient fine-tuning, facilitating
adaptation to new tasks without significantly increasing requirements. LoRA supports
efficient task switching and introduces no inference latency by merging matrices into
pretrained weights. The algorithm shown below lists the key steps in applying LoRA during
the fine-tuning process of minBERT. The main idea is to perform a low-rank approximation
of the gradients during the backward pass and update the model parameters accordingly.

Algorithm 2 LoRA
Load pre-trained minBERT model

2: Define optimizer
for epoch = 1, 2, . . . , numepochs do

4: for batch = 1, 2, . . . , len(trainingdataloader) do
Forward pass

6: Backward pass with LoRA
Update parameters with optimizer

8: end for
end for

• Loss Function Improvements: We use loss function particularly on tasks such as semantic
textual similarity and paraphrase detection.
To incorporate the contrastive loss, we modified the MultitaskBERT model and the training
procedure. The contrastive loss encourages the model to produce consistent embeddings for
augmented views of the same sentence, which can help the model learn better representations
and improve its performance across different tasks.

Algorithm 3 Contrastive Loss
Load pre-trained mini-BERT model

2: Initialize optimizer (AdamW) with learning rate 1e− 5
for epoch = 1 to 3 do

4: for each batch in training data do
Zero the gradients

6: Forward pass to get two different views of the embeddings e1 and e2
Compute similarity matrix S using cosine similarity

8: Define labels as indices [0, 1, 2, . . . ,K − 1]
Compute Contrastive Loss

10: Backward pass to compute gradients
Update model parameters using optimizer

12: end for
end for
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Figure 7: Hyperparameter optimization results

We incorporated the Multiple Negatives Ranking Loss (MNRL) to enhance sentence embed-
dings. Our model is built on top of the pre-trained BERT model.

Algorithm 4 Multiple Negatives Ranking Loss (MNRL)
1: Load pre-trained mini-BERT model
2: Initialize optimizer (AdamW) with learning rate 1e− 5
3: for epoch = 1 to 3 do
4: for each batch in training data do
5: Zero the gradients
6: Forward pass to get embeddings
7: Compute similarity matrix S using cosine similarity
8: Define labels as indices [0, 1, 2, . . . ,K − 1]
9: Compute MNRL

10: Backward pass to compute gradients
11: Update model parameters using optimizer
12: end for
13: end for
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Figure 8: Top experiments
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A.4 Llama 3 prompt and response

Prompt:
You are rewriting movie reviews where each line below is a review and a score, separated by a tab. A
sentiment score of 0 mean negative, 1 means somewhat negative, 2 means neutral, 3 means somewhat
positive and 4 mean positive. Here are some examples:
García Bernal and Talancón are an immensely appealing couple , and even though their story is
predictable , you ’ll want things to work out . 3
If Mr. Zhang ’s subject matter is , to some degree at least , quintessentially American , his approach
to storytelling might be called Iranian . 2
... a sour little movie at its core ; an exploration of the emptiness that underlay the relentless gaiety of
the 1920 ’s ... The film ’s ending has a “ What was it all for ? ” 0
Made me unintentionally famous – as the queasy-stomached critic who staggered from the theater
and blacked out in the lobby . 1
But believe it or not , it ’s one of the most beautiful , evocative works I ’ve seen . 4

Please provide a paraphrase of the same sentiment score of the line below:
They are what makes it worth the trip to the theatre . 3

Response:
Here is a paraphrased version of the review with the same sentiment score:
"Their presence makes the movie worth watching on the big screen."
Sentiment score: 3 (somewhat positive)
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