
SLOTH: Semantic Learning Optimization and Tuning
Heuristics for Enhanced NLP with minBERT

Stanford CS224N Default Project

Phillip Miao
Department of Computer Science

Stanford University
pmiao@stanford.edu

Cici Hou
Department of Computer Science

Stanford University
xhou@stanford.edu

Abstract

Advancements in Natural Language Processing (NLP) through models like BERT
have significantly propelled the field, yet challenges persist in tasks such as sen-
timent analysis, paraphrase detection, and semantic textual similarity due to the
nuanced nature of human language. This paper presents an innovative approach to
these tasks by enhancing the BERT model with Multiple Negatives Ranking Loss
(MNRL) and regularized optimization techniques, specifically aimed at improv-
ing semantic understanding and model generalization. We introduced fine-tuning
strategies that leverage task-specific head variations and pre-concatenation of sen-
tence pairs, offering a deeper contextual analysis. Our experimental results exhibit
notable enhancements across all tasks, with our methods achieving leading scores
on benchmark leaderboards. The implementation of MNRL demonstrated a refined
ability to discriminate between closely related texts, whereas the regularization
methods effectively mitigated the overfitting problem prevalent in deep learning
models. This study highlights the critical aspects of model tuning and loss function
selection in achieving superior NLP task performance.

1 Key Information to include

• Mentor: Johnny Chang
• External Collaborators (if you have any): No
• Sharing project: No

2 Introduction

Natural Language Processing (NLP) has witnessed remarkable progress with the advent of advanced
models, yet certain tasks such as sentiment analysis, paraphrase detection, and semantic textual
similarity remain challenging due to the intricacies of human language. These tasks are crucial for
various applications including sentiment prediction in reviews [1], identification of duplicate questions
in forums [2], and accurate understanding of sentence meaning, which can enhance machine-human
interactions and information retrieval systems [3].

The difficulty in these tasks arises from the complexity of natural language, which includes nuances
such as context, sarcasm, idiomatic expressions, and subtle semantic differences [4]. Current state-
of-the-art models, such as BERT (Bidirectional Encoder Representations from Transformers) [5],
have significantly improved performance by leveraging deep bidirectional context understanding.
However, they still face limitations like overfitting during fine-tuning, inability to capture all semantic
nuances, and computational inefficiency [6].

Our project aims to address these challenges by enhancing BERT through several approaches. We
investigate the use of Multiple Negatives Ranking Loss (MNRL) to better distinguish between

Stanford CS224N Natural Language Processing with Deep Learning

semantically similar and dissimilar sentence pairs, thereby improving paraphrase detection [7].
Additionally, we implement fine-tuning with regularized optimization techniques to combat overfitting
and enhance generalization across various tasks [8]. Our methodology includes experimenting
with task-specific head variations and pre-concatenation of sentence pairs to leverage contextual
relationships more effectively.

Our results demonstrate significant improvements in model performance across all three tasks,
achieving the highest score on both the Dev and Test leaderboards (by 9 pm on June 8th). In
the following sections, we delve into the related work that informed our approach, the detailed
methodology employed, and a thorough evaluation of our experimental results. The findings highlight
the importance of pre-concatenating sentence pairs before inputting them into the BERT model and
fine-tuning task-specific head hyperparameters. Additionally, they underscore the value of regularized
fine-tuning in enhancing the optimization process.

3 Related Work

3.1 Background of BERT

Before the advent of BERT (Bidirectional Encoder Representations from Transformers) [5], various
language models significantly contributed to the development of natural language processing (NLP).
Early models like Word2Vec [9] and GloVe [10] laid the foundation for word embeddings by capturing
semantic relationships between words through context. However, these models had limitations, as
they produced static, context-independent embeddings for words.

Later, context-dependent models emerged, addressing the shortcomings of static embeddings. The
ElMo (Embeddings from Language Models) model [11] introduced contextualized word embeddings
by using a bidirectional LSTM to process text, capturing context from both directions. This approach
significantly improved the performance of various NLP tasks. Similarly, the GPT (Generative Pre-
trained Transformer) model [12] utilized a unidirectional transformer architecture, showing that
pre-training on a large corpus followed by fine-tuning could yield state-of-the-art results in several
NLP benchmarks.

3.2 Bidirectional Encoder Representations from Transformers (BERT)

BERT, introduced by Devlin et al. (2019), marked a significant breakthrough in NLP by implementing
a bidirectional transformer architecture [5]. Unlike previous models, BERT was designed to pre-train
deep bidirectional representations by jointly conditioning on both left and right contexts in all layers.
This approach allowed BERT to achieve a more profound understanding of language context and
nuance.

BERT’s architecture consists of several transformer layers [13] that enable it to capture intricate
patterns in the text. The model’s training process includes two key unsupervised tasks: Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP). MLM involves randomly masking
words in a sentence and training the model to predict them, thereby allowing it to learn context-
dependent word representations. NSP helps the model understand the relationship between sentences
by predicting whether a given sentence follows another in the corpus. In our project, we utilize
pre-trained BERT, adding task-specific heads and fine-tuning them to serve as our project’s baseline.

3.3 Multiple Negatives Ranking Loss

Following BERT’s success, numerous methods have been developed to further enhance language
understanding capabilities. One such method is the Multiple Negatives Ranking Loss (MNRL),
which was introduced to improve the efficiency and scalability of training ranking models [7]. MNRL
operates by treating all other examples in the training batch as negative samples for a given positive
example. This mechanism aims to minimize the distance between similar sentences while maximizing
the distance between dissimilar pairs.

MNRL is particularly well-suited for our paraphrase detection task, as the objective aligns with
distinguishing between semantically similar and dissimilar sentence pairs. We experimented with
MNRL as an additional fine-tuning step. Our goal was to assess whether this approach could enhance
the model’s ability to discern subtle semantic differences between sentences.

2

3.4 Fine-Tuning with Regularized Optimization

Fine-tuning pre-trained language models often faces the challenge of overfitting, which can hinder
the model’s ability to generalize to unseen data. To address this issue, Jiang et al. introduced the
SMART method, which stands for Robust and Efficient Fine-Tuning for Pre-trained Natural Language
Models through Principled Regularized Optimization [8]. SMART employs two primary strategies:
Smoothness-inducing regularization and Bregman proximal point optimization, both designed to
ensure robust and efficient fine-tuning.

In our work, we applied the SMART methodology across three tasks: paraphrase detection, sentiment
analysis, and semantic textual similarity. For each of these tasks, the principles of regularized
optimization provided by SMART were instrumental in achieving robust fine-tuning. The application
of SMART in our experiments demonstrated its versatility and effectiveness in fine-tuning pre-trained
language models across diverse NLP tasks.

4 Approach

4.1 Baseline

We implemented the minBERT model, a minimalist implementation of the BERT model [5], and
added our classifier and the Adam optimizer. For the baseline, we finetuned the last linear layer and
the full model on the SST, Quora, and SemEval datasets to perform all three tasks and evaluated
our results. Specifically, we used cross entropy loss, binary cross entropy loss, and mean square
loss as the loss function for sentiment analysis, paraphrase detection and sementic textual similarity
respectively. The specific architecture for the model is shown in Figure 1(a) and 1(b).

(a) (b) (c)

Figure 1: The architectures of our baseline models and pre-concatenation models. (a) is our baseline
model for sentiment analysis. (b) is our baseline model for paraphrase detection and semantic textual
similarity. (c) is the pre-concatenation model for paraphrase detection and semantic textual similarity.

4.2 Sentence Pair Pre-Concatenation

We experimented with the pre-concatenation of sentence pairs before inputting them into our BERT
model, generating one unified embedding for each pair as shown in Figure 1(c). This method
involves concatenating two sentences into a single input sequence by passing them through the
tokenizer and then feeding this concatenated sequence into the BERT model. By doing this, we aim
to leverage BERT’s capability to understand and encode the relationship between the two sentences
more effectively.

4.3 Multiple Negatives Ranking Loss (MNRL) Learning

The MNRL Learning method aims to minimize the distance between similar sentences while maxi-
mizing the distance between dissimilar pairs [7]. Please refer to the Appendix Methodology Details
section for the specific method to calculate per-batch MNRL.

3

Figure 2: MNRL Learning Model Structure

In our study, we employed the MNRL Learning method as an additional fine-tuning step for the
paraphrase detection task, as illustrated in Figure 2. We conducted experiments to fine-tune the
model using MNRL on two types of datasets: those containing only positive sentence pairs, and
those comprising both positive and negative sentence pairs. This approach allowed us to assess the
effectiveness of MNRL in enhancing the model’s capability to accurately identify paraphrases.

4.4 Fine-Tuning with Regularized Optimization

Aggressive fine-tuning often leads to overfitting, causing the model to fail to generalize to unseen data.
To address this issue, we adopt two approaches proposed by Jiang et al. across all three tasks: (1)
Smoothness-inducing regularization, which effectively manages model complexity, and (2) Bregman
proximal point optimization, a trust-region method that prevents aggressive updates [8]. Specific loss
functions and optimization equations are listed in Appendix A.1.2 and A.1.3.

4.5 Task-Specific Head Variation

Finally, we experimented with various variations of the task-specific head to examine the combination
that contributed to the best performance. The parameters we tuned included: the number of linear
layers, the dropout rate, and with or without layer normalization.

5 Experiments

In this section, we present a detailed account of the experiments conducted to evaluate the performance
of our proposed methods across three NLP tasks. Our goal was to assess the effectiveness of various
strategies, including sentence pair pre-concatenation, Multiple Negatives Ranking Loss (MNRL),
Regularized Optimization, and Task-Specific Head Variation in improving the performance of BERT-
based models.

5.1 Data

Table 1 shows the datasets we are using with regard to their tasks.

Task Dataset Train # Dev # Test #

Sentiment Analysis SST 8,544 1,101 2,210
CFIMDB 1,701 245 488

Paraphrase Detection Quora 283,010 40,429 80,859
Semantic Textual Similarity SemEval STS Benchmark 6,040 863 1,725

Table 1: Datasets for Different Tasks

4

5.2 Evaluation method and Experimental Details

For sentimental analysis and paraphrase detection, we will use accuracy to evaluate performance. For
semantic textual similarity, we use, as in the original SemEval paper [14], Pearson correlation of the
true similarity values against the predicted similarity values.

For most of our experiment unless specified, we use learning rate equals to 10−5 and a batch size
equals to 64 for semantic textual similarity and sentimental analysis and 16 for paraphrase detection
due to memory limitations. The maximum number of epochs was set to 20. A linear learning rate
decay schedule with warm-up of 0.1 was used. To avoid gradient exploding, we clipped the gradient
norm within 1. For regularized optimization, we set the perturbation size ϵ = 10−5 and σ = 10−5.
We set µ = 1 and the learning rate η for the gradient desent step for solving Equation 4 is set to 10−3.

5.3 Sentence Pair Pre-Concatenation

During our experiments, we found that pre-concatenating sentence pairs and generating a single
embedding for each pair resulted in significantly improved performance compared to treating the
sentences independently. The pre-concatenation method performs consistently better than the original
method on paraphrase detection (from 78.61% to 91.13%) and semantic textual similarity tasks (from
43.17% to 88.32%). The specific accuracy curve comparison can be found in Appendix A.2.2. This
improvement is likely due to the enhanced contextual information that BERT can capture when
the sentences are processed together. This is the most important improvement that we see in our
experiments.

(a) (b)

(c) (d)

Figure 3: The accuracy curve on the dev dataset over training epochs. Figure (a), (b), (c) compare the
Pre-concatenated Baseline with the best-performing model with Regularized Optimization on each of
the three tasks. Figure (d) compares MNRL Finetuning model with the Pre-concatenated Baseline.

5

5.4 Multiple Negatives Ranking Loss Experiments

We implemented Multiple Negative Ranking Loss (MNRL) for the paraphrase detection task and used
it as the primary loss function. Since MNRL is designed to be used with positive pairs, we filtered
the dataset to include only positive pairs. For each batch, we generated all possible permutations
between sentence one and twos as training samples. With pre-concatenation of sentence pairs, we
receive an accuracy of 59.86% on the dev set. The accuracies are lower than the baseline accuracy.
We believe the main issue is that we trained only on positive pairs, a biased portion of data samples.
We concluded that MNRL should be employed as an additional fine-tuning loss alongside the original
binary cross-entropy loss. With this approach, we see a faster convergence to a higher accuracy on
dev set as shown in Figure 3(d) although the improvement is very subtle.

5.5 Fine-Tuning with Regularized Optimization

We observed numerous instances of overfitting in our model across all three tasks—evidenced by
a substantial gap between dev and training accuracy, as well as a decline in dev accuracy towards
the end of training—we utilized regularized optimization techniques. Therefore, we implement both
Smoothness-Inducing Adversarial Regularization (SIAR) and Bregman Proximal Point Optimization
(BPPO) as a way to regularize our training process. The impact of these regularization methods
is substantial, as illustrated in Figure 3(a), 3(b), 3(c). These techniques contributed to the model’s
convergence towards a more optimal solution by effectively reducing overfitting. The implementation
of SIAR ensures that the model maintains smoothness in its predictions, reducing sensitivity to
minor fluctuations in the training data. Meanwhile, BPPO aids in stabilizing the optimization
process, ensuring that the model does not deviate too far from previous iterates, thereby enhancing
generalization performance.

5.6 Task-Specific Head Variation

After implementing all the previous extensions, we conducted a grid search to determine the optimal
combination of hyperparameters for our task-specific head. We initially observed that tuning the
entire model yields significantly better results than tuning only the classification head; therefore, we
performed the grid search exclusively on the fully-tuned model. The parameters we adjusted included
the number of linear layers, the dropout rate, and the presence or absence of layer normalization. The
results are displayed in Table 3 for all three tasks. Notably, we did not complete the full model grid
search for paraphrase detection due to the lengthy runtime of these experiments; instead, we focused
on the two hyperparameters that achieved the best results for SST and STS. We observed an increase
in performance after selecting the optimal hyperparameter combination for the model head.

of layers LayerNorm Dropout SST Quora STS

0 No 0.1 53.95 91.42 89.43
0.4 53.68 - 89.44

2 No 0.1 52.50 - 89.35
0.4 51.32 - 89.08

2 Yes 0.1 52.41 91.47 89.59
0.4 51.95 - 89.25

Table 2: Grid search results to determine the optimal combination of hyperparameters for our task-
specific head for all three tasks.

5.7 Test Results

After implementing various models and tuning hyperparameters, we submitted our best-performing
models to the test leaderboard. Interestingly, only the best-performing model on the Quora dataset
in the dev set achieved the best performance on the test set. For both SST and STS, the highest test
leaderboard scores were obtained with the second-best-performing models from the dev set. This
discrepancy is primarily due to overfitting. The second-best-performing model utilized a dropout
rate of 0.4 instead of 0.1, making it less prone to overfitting. As a result, our test accuracy actually
increased compared to the dev accuracy. As of the time of writing this report (9 pm on June 8th), we

6

have achieved the highest score on both the Dev and Test leaderboards with the both the overall
score equals to 80.1%.

Task # of layers LayerNorm Dropout SMART MNRL Dev Acc Test Acc
SST 0 No 0.4 Yes - 53.7 53.9

Quora 2 Yes 0.1 Yes Yes 91.5 91.5
STS 0 No 0.4 Yes - 89.4 89.5

Overall - - - - - 80.1 80.1
Table 3: Best Dev and Test leaderboard results for all three tasks.

6 Analysis

6.1 Multiple Negatives Ranking Loss

From our predictions on the DEV dataset, we observed that the MNRL method performs exceptionally
well on positive sentence pairs but exhibits instability on negative sentence pairs. For instance, the
model accurately predicted similarity for the complex and structurally diverse pair, "Why is Narendra
Modi promoting Reliance Jio?" and "Why did Narendra Modi allow Reliance to publish his photo on
their Jio ad?" This demonstrates the model’s ability to handle intricate sentence structures effectively.
Conversely, for dissimilar pairs that could be easily distinguished by human, "I bought a 35 day old
pug puppy. I know it is really too young for it to be away from his mother. How do I take care
of him and make him healthy?" and "Can I give Himalaya Digyton to a 27 day old pug puppy?",
or "How much money do you need to start a new life?" and "How do I disappear and start a new
life?", the model incorrectly assigned positive ratings, indicating similarities between pairs. This
misclassification suggests that the model, predominantly trained on positive cases, lacks sufficient
experience with negative cases. Consequently, while the model achieves high accuracy in identifying
paraphrases, it struggles to accurately distinguish non-paraphrase pairs. This imbalance in training
data likely contributes to its reduced performance in detecting dissimilar sentences.

6.2 Best Performing Model Error Analysis

6.2.1 Sentimental Analysis

The misclassified pairs reveal specific challenges in sentiment analysis, particularly with sarcasm,
humor, and contextual understanding. Here are some illustrative examples:

• Example 1: "movie fans, get ready to take off . . . the other direction." misclassified as 4
instead of 1.

• Example 2: "the words, ‘frankly, my dear, i don’t give a damn,’ have never been more
appropriate." misclassified as 4 instead of 1.

Sentences with sarcasm or humor, as seen in Example 1, pose significant difficulties for the model.
Example 2 highlights the model’s struggle with nuanced context, particularly with phrases that
have cultural or historical significance. These misclassifications suggest that the model lacks a
comprehensive understanding of context and the subtleties of sarcasm, leading to errors in sentiment
prediction.

6.2.2 Paraphrase Detection

We examined the misclassified pairs and provided some examples as follows:

False Positives (Predicted 1, True 0):

• Example 1: "what is the average salary of an architect?" vs. "what is the average salary of a
business architect?"

• Example 2: "what do successful people do?" vs. "what are some little things that successful
people do?"

False Negatives (Predicted 0, True 1):

7

• Example 1: "how can i interest my thirteen year old neighbour to get into programming?"
vs. "how can i use minecraft to get my 13 year old interested in programming?"

• Example 2: "where can you go to look up a license plate and owner of a car without any
charge?" vs. "how do you look up license plate numbers?"

We can generalize some patterns in our errors. For example, sentences with slight differences in
context or specific details for example "architect" vs. "business architect" seem to cause confusion
and make the model believe they are paraphrases. Besides, minor changes in phrasing or added
details can lead to misclassification, for example, "how do you look up license plate numbers ?" vs.
"where can you go to look up a license plate and owner of a car without any charge ?"). The potential
improvements can be introducing more training data with similar contextual variations to help the
model learn to distinguish subtle differences and use more advanced models that can better capture
the nuances in language.

6.2.3 Semantic Textual Similarity Analysis

The misclassified pairs in the semantic textual similarity task highlight specific challenges in ac-
curately assessing similarity between sentences. Below are some selected examples and a brief
analysis:

• Example 1: "world stocks rise on hopes fed to keep stimulus" and "fed expected to maintain
stimulus" with a predicted similarity score of 3.6140003204345703, but a true score of 1.0.

• Example 2: "work into it slowly." and "it seems to work." with a predicted similarity score
of 3.558607578277588, but a true score of 0.0.

• Example 3: "it’s also a matter of taste." and "it’s definitely just a matter of preference." with
a predicted similarity score of 2.084804058074951, but a true score of 5.0.

Notably, the model struggles with understanding and differentiating the context in which similar
phrases are used, as evidenced by the high similarity scores for sentences with common words but
differing meanings, as shown in Example 1 and 2. Furthermore, the model demonstrates a weakness
in recognizing synonymous phrases, leading to low similarity scores for sentences that convey the
same sentiment, as shown in Example 3.

7 Conclusion

In this project, we focused on improving the performance of BERT-based models for three critical
NLP tasks: paraphrase detection, sentiment analysis, and semantic textual similarity. Our approach
incorporated advanced techniques including Multiple Negatives Ranking Loss (MNRL), fine-tuning
with regularized optimization, and pre-concatenation of sentence pairs. These methods aimed to
enhance the model’s ability to distinguish between semantically similar and dissimilar sentences,
mitigate overfitting, and leverage contextual relationships more effectively.

Our experiments demonstrated significant improvements in model performance across all three tasks.
The use of pre-concatenation notably boosted the accuracy of paraphrase detection and semantic
textual similarity, highlighting the importance of capturing contextual relationships between sentence
pairs. Fine-tuning with regularized optimization, specifically using Smoothness-Inducing Adversarial
Regularization (SIAR) and Bregman Proximal Point Optimization (BPPO), played a crucial role in
addressing overfitting challenges and stabilizing the optimization process. However, while MNRL
provided valuable insights, its effectiveness was limited when used as the sole loss function due to
insufficient exposure to negative examples.

Despite these achievements, our work faced several limitations, such as the model’s difficulty in
handling nuanced language features like sarcasm, idiomatic expressions, and contextual subtleties.
The computational demands of fine-tuning and the complexity of hyperparameter optimization also
posed constraints. Future work could focus on incorporating more diverse training data with a broader
range of contextual variations and exploring advanced language models with enhanced contextual
understanding capabilities. Overall, this project highlighted the potential of combining innovative
techniques with robust optimization strategies to advance the state of NLP models, providing a strong
foundation for future research aimed at achieving greater accuracy and generalization in natural
language understanding tasks.

8

8 Ethics Statement

Our project, aimed at enhancing BERT-based models for NLP tasks, poses several ethical challenges
and potential societal risks. One major concern is the propagation of biases present in the training
data, which can lead to discriminatory outcomes in applications such as hiring and loan approvals. To
mitigate this, it is crucial to ensure diverse and representative training datasets and implement bias
detection and correction mechanisms throughout the model development process. Additionally, the
potential misuse of NLP models for generating harmful content, such as fake news and misinformation,
necessitates the development of robust content verification systems and user education on responsible
AI use.

Privacy concerns associated with large-scale data collection for training NLP models also need to be
addressed. Sensitive personal information can be inadvertently included in training datasets, leading
to potential privacy breaches. Implementing stringent data anonymization techniques, adhering to
data protection regulations like GDPR, and maintaining transparent data governance practices can
help mitigate these risks. By proactively addressing these ethical challenges, we can promote the
responsible development and deployment of NLP technologies, ensuring they benefit society while
minimizing potential harms.

References
[1] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew

Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In David Yarowsky, Timothy Baldwin, Anna Korhonen, Karen Livescu, and
Steven Bethard, editors, Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics.

[2] Yun Zhang, David Lo, Xin Xia, and Jian-Ling Sun. Multi-factor duplicate question detection in
stack overflow. Journal of Computer Science and Technology, 30:981–997, 2015.

[3] Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin, and Zhiyuan Liu. Neural sentiment
classification with user and product attention. In Conference on Empirical Methods in Natural
Language Processing, 2016.

[4] Bo Pang, Lillian Lee, et al. Opinion mining and sentiment analysis. Foundations and Trends®
in information retrieval, 2(1–2):1–135, 2008.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[6] Xue Ying. An overview of overfitting and its solutions. In Journal of physics: Conference
series, volume 1168, page 022022. IOP Publishing, 2019.

[7] Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun hsuan Sung, Laszlo Lukacs, Ruiqi Guo,
Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. Efficient natural language response suggestion
for smart reply, 2017.

[8] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao.
SMART: robust and efficient fine-tuning for pre-trained natural language models through
principled regularized optimization. CoRR, abs/1911.03437, 2019.

[9] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013.

[10] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans, editors, Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics.

[11] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations, 2018.

9

[12] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding with unsupervised learning. Technical report, OpenAI, 2018.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[14] Eneko Agirre, Daniel Matthew Cer, Mona T. Diab, Aitor Gonzalez-Agirre, and Weiwei Guo.
*sem 2013 shared task: Semantic textual similarity. In International Workshop on Semantic
Evaluation, 2013.

A Appendix (optional)

A.1 Methodology Details

A.1.1 Multiple Negatives Ranking Loss

The MNRL function operates on training data consisting of sets of K sentence pairs
[(a1, b1), . . . , (an, bn)], where each pair (ai, bi) is labeled as similar, and all other pairs (ai, bj)
with i ̸= j are labeled as dissimilar. The MNRL minimizes the distance between similar sentence
pairs (ai, bi) while maximizing the distance between dissimilar pairs (ai, bj). Specifically, the train-
ing objective is to minimize the approximated mean negative log probability of the data. For a single
batch, this is calculated as shown in Equation 1, where θ represents the word embeddings and neural
network parameters used to calculate S, a scoring function.

J (x, y, θ) = − 1

K

K∑
i=1

logPapprox(yi|xi)

= − 1

K

K∑
i=1

S(xi, yi)− log

K∑
j=1

eS(xi,yj)

 (1)

A.1.2 Smoothness-Inducing Adversarial Regularization

Given the model f(·; θ) and n data points of the target task denoted by {(xi, yi)}ni=1 where xi

represents the embeddings of input sentences from the language model’s first embedding layer and yi
are the associated labels, Jiang et al.’s method solves the following fine-tuning optimization problem:

min
θ

L(θ) + λsRs(θ) (2)

where L(θ) is the loss function defined as:

L(θ) = 1

n

n∑
i=1

ℓ(f(xi; θ), yi), (3)

and ℓ(·, ·) is the task-dependent loss function: cross-entropy for sentiment analysis and paraphrase
detection, and mean squared error for semantic textual similarity. The term λs > 0 is a tuning
parameter, and Rs(θ) is the smoothness-inducing regularizer defined as:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs(f(x̃i; θ), f(xi; θ)), (4)

where ϵ > 0 is another tuning parameter. For sentiment analysis and paraphrase detection, f(·; θ)
outputs a probability simplex and ℓs is chosen as the symmetrized KL-divergence:

ℓs(P,Q) = DKL(P∥Q) +DKL(Q∥P), (5)

while for semantic textual similarity, f(·; θ) outputs a scalar and ℓs is chosen as the squared loss:

ℓs(p, q) = (p− q)2. (6)

10

A.1.3 Bregman Proximal Point Optimization

Jiang et al. also propose a Bregman proximal point optimization method to solve Equation 2. This
method applies a strong penalty at each iteration to prevent aggressive updates. Using a pre-trained
model as the initialization denoted by f(·; θ0), the vanilla Bregman proximal point (VBPP) method
updates as follows at the (t+ 1)-th iteration:

θt+1 = argmin
θ

F(θ) + µDBreg(θ, θt) (7)

where µ > 0 is a tuning parameter and DBreg(·, ·) is the Bregman divergence defined as:

DBreg(θ, θt) = ℓs(f(x̃i; θ), f(xi; θt)), (8)

with ℓs defined in Equation 5 and Equation 6.

If you wish, you can include an appendix, which should be part of the main PDF, and does not count
towards the 6-8 page limit. Appendices can be useful to supply extra details, examples, figures,
results, visualizations, etc. that you couldn’t fit into the main paper. However, your grader does not
have to read your appendix, and you should assume that you will be graded based on the content of
the main part of your paper only.

A.2 Additional Results and Plots

A.2.1 Baseline Task-Specific Head Variation Table

Number of layers / dropout values 0.1 0.4

Last Linear Layer
0 0.471 0.466
2 0.475 0.468
2 with normalization 0.475 0.466

Full Model
0 0.510 0.519
2 0.512 0.507
2 with normalization 0.513 0.507
Table 4: Performance metrics for Sentiment Analysis

Number of layers / dropout values 0.1 0.4

Last Linear Layer
0 0.710 0.706
2 0.771 0.749
2 with normalization 0.786 0.765
Table 5: Performance metrics for Paraphrase Detection

Number of layers / dropout values 0.1 0.4

Last Linear Layer
0 0.346 0.343
2 0.427 0.383
2 with normalization 0.433 0.390

Full Model
0 0.378 0.383
2 0.377 0.370
2 with normalization 0.404 0.377

Table 6: Performance metrics for Semantic Textual Similarity

A.2.2 Pre-concatenation vs. Baseline Accuracy Curve

11

(a) (b)

Figure 4: The accuracy curve on the dev dataset over training epochs, comparing the baseline with
pre-concatenated baslin.

12

	Key Information to include
	Introduction
	Related Work
	Background of BERT
	Bidirectional Encoder Representations from Transformers (BERT)
	Multiple Negatives Ranking Loss
	Fine-Tuning with Regularized Optimization

	Approach
	Baseline
	Sentence Pair Pre-Concatenation
	Multiple Negatives Ranking Loss (MNRL) Learning
	Fine-Tuning with Regularized Optimization
	Task-Specific Head Variation

	Experiments
	Data
	Evaluation method and Experimental Details
	Sentence Pair Pre-Concatenation
	Multiple Negatives Ranking Loss Experiments
	Fine-Tuning with Regularized Optimization
	Task-Specific Head Variation
	Test Results

	Analysis
	Multiple Negatives Ranking Loss
	Best Performing Model Error Analysis
	Sentimental Analysis
	Paraphrase Detection
	Semantic Textual Similarity Analysis

	Conclusion
	Ethics Statement
	Appendix (optional)
	Methodology Details
	Multiple Negatives Ranking Loss
	Smoothness-Inducing Adversarial Regularization
	Bregman Proximal Point Optimization

	Additional Results and Plots
	Baseline Task-Specific Head Variation Table
	Pre-concatenation vs. Baseline Accuracy Curve

