
Multitask BERT Fine-Tuning and Generative
Adversarial Learning for Auxiliary Classification

Stanford CS224N Default Project

Christopher Sun
Department of Computer Science

Stanford University
chrisun@stanford.edu

Abishek Satish
Department of Computer Science

Stanford University
absatish@stanford.edu

Abstract

In this study, we implement a novel BERT architecture for multitask fine-tuning
on three downstream tasks: sentiment classification, paraphrase detection, and
semantic textual similarity prediction. Our model, Multitask BERT, incorporates
layer sharing and a triplet architecture, custom sentence pair tokenization, loss
pairing, and gradient surgery. Such optimizations yield a 0.516 sentiment classifi-
cation accuracy, 0.886 paraphase detection accuracy, and 0.864 semantic textual
similarity correlation on test data. We also apply generative adversarial learning
to BERT, constructing a conditional generator model that maps from latent space
to create fake embeddings in R768. These fake embeddings are concatenated
with real BERT embeddings and passed into a discriminator model for auxiliary
classification. Using this framework, which we refer to as AC-GAN-BERT, we
conduct semi-supervised sensitivity analyses to investigate the effect of increasing
amounts of unlabeled training data on AC-GAN-BERT’s test accuracy. Overall,
aside from implementing a high-performing multitask classification system, our
novelty lies in the application of adversarial learning to construct a generator that
mimics BERT. We find that the conditional generator successfully produces rich
embeddings with clear spatial correlation with class labels, demonstrating avoid-
ance of mode collapse. Our findings validate the GAN-BERT approach and point
to future directions of generator-aided knowledge distillation.

1 Key Information to include

TA Mentor: Neil Nie, External Collaborators: None, Sharing project: No, Equal author contributions

2 Introduction and Related Work

Bidirectional Encoder Representations from Transformers (BERT), a pretrained transformer-based
model, has revolutionized the field of Natural Language Processing (NLP) with its ability to produce
robust contextual word representations, which have in turn been used to fine-tune models and achieve
state-of-the-art performance in various NLP tasks [1][2][3]. Because of BERT’s notable use of
self-attention, the model can contextually learn and understand each word’s importance to a sentence.

In this work, we apply BERT embeddings and multitask learning to three downstream tasks: sen-
timent classification, paraphrase detection, and semantic textual similarity prediction. Multitask
learning aims to enhance model performance by using shared representations to improve a classifier’s
generalization ability and alleviate challenges of task interference and imbalanced learning priorities.
Liu et al. (2019) describes the complications that follow with multitask learning; when constructing
their Multi-Task Deep Neural Network (MT-DNN), the authors emphasize the importance of finding
cross-task data and using regularization to fight probable overfitting [3]. Our multitask BERT model
takes inspiration from Bi et al.’s summation of loss functions across tasks for gradient calculations

Stanford CS224N Natural Language Processing with Deep Learning

and parameter updates. However, such additive losses succumb to the issue of destructive gradients
[4]. Yu et al. (2020) propose a solution called gradient surgery, a technique that projects the gradient
of a specific task onto the normal plane of another task’s conflicting gradient. This method, called
PCGrad, helps alleviate the destructive gradient problem [4].

The goal of this work is to propose a high-performing BERT-based architecture for the aforementioned
NLP tasks. We first implement several optimizations for fine-tuning, including data augmentation,
architectural modifications, hyperparameter tuning, and adjustments in loss and gradient calculation.
We then apply generative adversarial learning to BERT, improving the GAN-BERT framework
developed by Croce et al. (2020), in which a discriminator conducts a k + 1 classification problem
using both real BERT embeddings and fake generator embeddings [5]. GAN-BERT has shown
promise for the incorporation of largely-unlabeled training data in semi-supervised training [5]. Our
GAN methodology comprises a significant part of our work going beyond the default final project.

3 Approach

3.1 Multitask BERT

We apply a suite of optimizations to improve BERT’s performance on downstream NLP tasks, includ-
ing multitask fine-tuning, manipulation of loss and gradient computations, and external augmentation
of training data. After implementing the base version of BERT (minBERT) and loading pretrained
weights using the provided starter code, we devise a novel head architecture for the simultaneous
completion of our three NLP tasks of interest. Figure 1 depicts the flow of information through our
classification system: for each prediction head, we pass raw sentence(s) into BERT, extracting the
special classification token [CLS] ∈ RH , where H is the the hidden dimension of 768. We use
layer sharing as motivated by previous success of MT-DNN in Liu et al. (2019) and biomedical
multitask learning in Peng et al. (2020) [3] [6]. In our shared block, layer normalization is applied in
between dense blocks because of training time benefits and batch size independence compared to
batch normalization [7].

Figure 1: Multitask BERT Architecture

Sentiment Analysis To classify phrase sentiment, we gather the shared block output, simulta-
neously pass [CLS] directly through a dense block, then concatenate these two representations
and project them linearly. Softmax activation is applied to generate a probability distribution for
multiclass classification.

Paraphrase Detection We apply a triplet network to learn thematic similarity between paired
sentences, as motivated by Dor et al. (2018) [8]. In Figure 1, U and V are alternate notation for
respective [CLS] embeddings retrieved from BERT, and |U−V| is the absolute difference in these
embeddings. All three representations are concatenated and passed through dense layers, after which
sigmoid activation is applied for binary classification.

2

Semantic Textual Similarity Though the STS task also involves sentence pairs, we opt for a
different tokenization mechanism: connecting two sentences as one with the [SEP] token (we further
discuss this decision in Section 4.3). This combined embedding passes through the same shared
block as for sentiment analysis, as we reason logically that measures of semantic similarity align with
sentiment relatedness.

Throughout the network, we apply dropout regularization to reduce overfitting [9].

3.2 Multitask Fine-tuning Optimizations

In multitask fine-tuning, a naive approach is to sum losses, then optimize parameters with respect
to this summed loss, as in Bi et al. (2022) [10]. However, because of possible conflicting gradients
between component losses for each prediction head, weights may be updated in suboptimal directions.
To alleviate this issue, Yu et al. (2020) develops a gradient surgery technique called projecting
conflicting gradients (PCGrad), which, simply put, involves modifying the gradient vectors before the
parameter update step to ensure they are more aligned [4]. In our approach, we optimize Multitask
BERT with “loss-pairing” and gradient surgery: in our training loop, we apply PCGrad* twice by
pairing losses as follows, where SST corresponds to sentiment analysis, P corresponds to paraphrase
detection, and STS corresponds to semantic similarity:

L1 = [LSST , LP], L2 = [LSTS , LP].

The motivation for pairing losses as such is that we find paraphrase detection to be the highest-scoring,
most smoothly-learning, most data-abundant task; taking this into account, we saw opportunity to
use the gradient of LP as the “uniter” between ∇LSST and ∇LSTS . Because of PCGrad, we can
rest assured that having one stable and reliable task in each loss pair L1 and L2 will prevent even
an outlandish gradient of LSST or LSTS from throwing off the optimal update trajectory. We apply
PCGrad on L1 and L2 sequentially, allowing the more optimal paraphrase learning to positively
affect the gradient updates of LSST and LSTS independently. Hence, we propose a combination of
PCGrad and paraphrase-paired loss as the optimal way to fine-tune Multitask BERT.

3.3 Summary of Semi-Supervised GAN Training Framework

We validate the GAN-BERT† framework and incorporate novel modifications, which we further assess
in Section 5. We develop a conditional Generative Adversarial Network (cGAN) from minBERT that
acts as an auxiliary classifier for sentiment analysis and paraphrase detection. We refer to this model
as AC-GAN-BERT, illustrated in Figure 2.

Figure 2: Auxiliary Classifier GAN-BERT Architecture (number of hidden layers variable)

The mathematical formulations in this section are directly adapted from Croce et al. (2020) [5]. Let
pd denote the real data distribution, pm denote model-predicted probabilities, and pG denote the
generated examples.

*We make use of Yu et al.’s source code linked in their paper.
†We inherit and make important modifications to Croce et al.’s source code.

3

Discriminator The Discriminator D is a head for the BERT base, operating on both BERT [CLS]
embeddings and Generator (below) outputs for multiclass classification. The Discriminator loss LD
is a sum of supervised and unsupervised loss terms LDS and LDU :

LDS = −Ex,y∼pd
log[pm(ŷ = y|x, y ∈ (1, . . . , k)]

LDU = −Ex∼pd
log[1− pm(ŷ = y|x, y = k + 1)]− Ex∼G log[pm(ŷ = y|x, y = k + 1)]

In simple terms, LDS represents the misclassification of a real labeled example belonging to one of k
classes, and LDU represents the misclassification of an unlabeled example as real or fake.

Conditional Generator The Conditional Generator G conditions on a class label to project from
latent space to a fake embedding, trying to fool the Discriminator into thinking the embedding is real.
The Generator loss LG is a sum of “feature matching” and unsupervised loss terms LGFM and LGU :

LGFM = ∥Ex∼pd
f(x)− Ex∼Gf(x)∥22

LGU = −Ex∼G log[1− pm(ŷ = y|x, y = k + 1)]

Since G ideally generates embeddings similar to pd, LGFM examines the difference between an
expected Generator example and the activation of an intermediate layer in D (hence the f(x))
expressed as a squared L2 norm. Finally, LGU considers the correct classification of fake (generated)
embeddings by D, which penalizes G because of the inability of G to fool D.

4 Experiments

4.1 Data

Sentiment Analysis We use the Stanford Sentiment Treebank (SST) dataset for the sentiment
classification task, which involves labeling phrases (215,154 in total) as negative, somewhat negative,
neutral, somewhat positive, or positive [11]. During fine-tuning, we also bring in the Massive Text
Embedding Benchmark (MTEB) dataset consisting of 31,015 additional rows of data [12]. However,
because MTEB labels range from 0-2, we scale them by 2; though this creates class imbalance, we
find this additional data to be beneficial (further discussion in Section 5.

Paraphrase Detection We use the Quora Question Pairs dataset to predict a binary label represent-
ing whether questions pairs (404,298 in total) are paraphrases of each other [13].

Semantic Textual Similarity We use the SemEval STS dataset for the regression task of predicting
semantic similarity on a scale of 0 to 5 between two sentences (8,628 in total) [14]. During fine-tuning,
we also bring in the Sentences Involving Compositional Knowledge (SICK) dataset consisting of
9,840 additional rows of data [15].

4.2 Experimental Details and Evaluation Methods

Before building the Multitask BERT architecture in Figure 1, we conduct a baseline sanity check with
minBERT that simply projects from [CLS] embeddings to task predictions using one linear layer per
output head, with a naive summing of losses and no gradient modifications.

Multitask BERT We train the sentiment analysis head with Categorical Cross Entropy loss, the
paraphrase detection head with Binary Cross Entropy loss, and the semantic textual similarity head
with Mean Square Error loss. As metrics, we track accuracy and Pearson correlation on train and dev
data through each epoch. We run experiments according to the optimizations discussed in Section
3.2.

As hyperparameters, we decide to use a batch size of 112 (the maximum before our machines crash),
learning rate of 1× 10−5, dropout probability of 0.5, and weight decay coefficient of 1× 10−3. We
train Multitask BERT for 10-15 epochs.

We also introduce cyclic data loaders, essentially exhausting all the possible data for training. Due
to large variance in dataset size across tasks, one zipped batch of data prevents data-abundant tasks
from undergoing maximal training. In practice, using a cyclic data loader means that while iterating
through the Quora Question Pairs data for paraphrase detection, we exhaust other tasks’ data and
ensure SST and STS data are passed into training again.

4

AC-GAN-BERT We run a series of experiments to investigate AC-GAN-BERT, training the model
as specified in Section 3.3:

• We test whether there is marginal benefit to using a conditional GAN (conditioned on class
labels) vs. normal GAN as in Croce et al. (2020). We accomplish this both quantitatively
through test accuracy and qualitatively through visual deciphering of embedding “quality.”

• We run experiments varying the depth of D and G, examining the relationship between the
number of hidden layers of AC-GAN-BERT and model performance.

• We also conduct a sensitivity analysis on semi-supervised learning on the sentiment analysis
task with AC-GAN-BERT, varying the proportion of labeled data to investigate how resistant
the model is to unlabeled data. We accomplish this by using a random seed to mask
out increasing numbers of phrases in the SST dataset; these masked out phrases become
unlabeled data for the discriminator to classify as real or fake. We seek to quantify a point at
which performance tapers off when using unlabeled data with respect to test accuracy.

We use a learning rate of 5 × 10−5 and a 100-length noice vector as generator latent space input.
Because of computational resource limitations, we train AC-GAN-BERT for 5 epochs, and for the
paraphrase detection task train data is truncated to 10,000 sentence pairs and test data to 2,000
sentence pairs. As evaluation methods, we quantitatively assess accuracy scores and qualitatively
assess embedding representations.

4.3 Results

Multitask BERT We list performance metrics for our baseline, several iterations of Multitask
BERT, and our final test leaderboard submission in Table 1. Some notable optimizations result in
large performance boosts, such as tokenization of both sentences separated with [SEP] for semantic
textual similarity as opposed to using the same triplet network approach as in paraphrase detection
(Light Multitask BERT and beyond have this modification). Interestingly and unexpectedly, adding
more data and larger, deeper layers did not positively affect sentiment classification accuracy.

Model Details Sentiment Paraphrase Similarity Overall
Baseline 0.410 0.532 0.102 0.498
Baseline with PCGrad 0.437 0.565 0.211 0.536
Pairwise Loss Addition with PCGrad 0.481 0.723 0.349 0.626
Double Triplet for Paraphrase and STS 0.513 0.756 0.361 0.650
Light Multitask BERT 0.496 0.870 0.825 0.760
Light Multitask BERT Data-Enhanced 0.502 0.878 0.822 0.764
Multitask BERT Data-Enhanced 0.501 0.888 0.872 0.775
Final Multitask BERT on Test Data 0.516 0.886 0.864 0.778

Table 1: Compilation of Multitask BERT Results

AC-GAN-BERT We list classification accuracies of GAN-BERT and AC-GAN-BERT in Table 2.
There is no statistically significant boost in accuracy resulting from the inclusion of a conditional
generator into the GAN-BERT framework. However, we observe qualitative improvements which are
discussed in Section 5.

Model Details Sentiment Paraphrase
GAN-BERT 0.502 0.816
AC-GAN-BERT Depth 1 0.503 0.814
AC-GAN-BERT Depth 2 0.510 0.820
AC-GAN-BERT Depth 3 0.495 0.817

Table 2: GAN-BERT Performance - Varying Hidden Depth

5

Figure 3 and Table 3 display the results of the semi-supervised learning sensitivity analysis on the
SST dataset, where λ represents the proportion of the SST dataset that is masked (where individual
examples are selected with a random seed). The overall trend is that a larger fraction of unlabeled
training data causes AC-GAN-BERT to perform with a lower accuracy. In particular, relative to
the performance of AC-GAN-BERT on a fully labeled dataset (λ = 0.0), the performance drop
becomes statistically significant (p < 0.05) when λ = 0.4, hence the color-coding of Figure 3. We
calculate p-values using a one-tailed t-test for difference in sample means, where a sample consists of
validation accuracies from all epochs. Table 4 contains all p-values in this analysis.

Figure 3: Unlabeling-Induced Accuracy Decrease

λ Max Acc. Min Acc. Mean Acc.
0.0 0.503 0.480 0.491
0.1 0.495 0.476 0.485
0.2 0.505 0.437 0.473
0.3 0.498 0.465 0.485
0.4 0.490 0.474 0.481
0.5 0.486 0.446 0.469
0.6 0.481 0.454 0.465
0.7 0.460 0.425 0.447
0.8 0.441 0.411 0.422
0.9 0.451 0.410 0.432

Table 3: Sensitivity Analysis Results

5 Analysis

5.1 Multitask BERT

Discussion When devising our final architecture on limited compute and a low batch size of 4 or 8
examples, we observe that using a lower learning rate of 8× 10−6 aided learning, as smaller updates
are conducive to better convergence, especially given that fine-tuning is a learning rate sensitive
task [16]. We also observe that doubling the number of hidden units in the shared and dense blocks
in Figure 1 boosts performance. However, after obtaining more computational power, we increase
batch size to 112, the maximum our GPU can handle; we also increase learning rate to 1× 10−5, as
with more examples per batch, we reason that larger update steps can be taken. In general, though
we apply dropout regularization, weight decay, and layer normalization, we still observe inevitable
overfitting, with training data accuracies very quickly reaching nearly 100%.

Noteworthy Optimizations We observe large improvements in paraphrase detection accuracy with
the triplet network architecture. Inspired by this, we originally attempt to use the same architecture
for STS prediction, but realize that Pearson correlation plateaus at around 0.4. We then switch
our STS tokenization mechanism, tokenizing sentence pairs simultaneously with the [SEP] token
as a connector. This adjustment improves STS Pearson correlation significantly by around 0.3.
Additionally, data augmentation through the SICK and MTEB datasets boosts performance on both
paraphrase detection and semantic similarity prediction, but interestingly does not increase sentiment
classification accuracy.

5.2 AC-GAN-BERT

Given that GANs are susceptible to mode collapse, we are especially interested in evaluating the
quality of Generator output [17]. Recall that one of our main motivations for developing a generative
adversarial framework is to assess the ability of the Generator to produce high-quality embeddings,
in other words, fulfill the same role as BERT. However, “quality” can be defined many ways: we
know that a good generator’s samples will mimic the true data manifold, and in computer vision
applications, mere visual inspection can be used to evaluate quality [18][19]. In our work, we
evaluate generator quality through visual inspection after mathematical manipulation. To qualitatively

6

assess embeddings, we apply t-distributed stochastic neighbor embedding (t-SNE) to reduce hidden
dimensionality from 768 (the hidden dimension of [CLS]) to 2, allowing embeddings to be plotted
on an xy-coordinate plane [20].

We extract both BERT and Generator embeddings for three models: 1) Croce et al.’s unconditional
GAN-BERT trained with 40% unlabeled data, 2) AC-GAN-BERT trained with 40% unlabeled
data, and 3) AC-GAN-BERT trained with 80% unlabeled data. Comparison between the first and
second allows us to isolate the marginal benefit in embedding quality of a conditional generator, and
comparison between the second and third reveals the effect of highly-skewed datasets on embedding
quality. Figure 4 illustrates t-SNE results of Model 1 embeddings, Figure 5 illustrates t-SNE results
of Model 2 embeddings, and Figure 6 illustrates t-SNE results of Model 3 embeddings.

(a) BERT Embeddings (b) Generator Embeddings

Figure 4: Unconditional GAN-BERT - 40% Unlabeled

(a) BERT Embeddings (b) Generator Embeddings

Figure 5: AC-GAN-BERT - 40% Unlabeled

Critically, we notice from Figure 4(b) that when using an unconditional Generator, there is no
spatial relationship between embedding and class label. However, we notice from Figure 5(b) that
embeddings seem to be clustered according to their class label, with equally-labeled embeddings
residing in similar spatial regions. This observation is even more stark in Figure 6(b), which reveals
that embedding regions are well-defined according to their class label. In all cases, BERT embeddings
possess a spatial relationship with class label, which of course is a validation of BERT’s quality.
But similar observations in conditional Generator embeddings serve as promising validation of their
diversity and quality. In general, Generators can fail to map from latent space to their full output
domain, instead creating outputs with very little variation. If this was the case in R768, then projecting

7

(a) BERT Embeddings (b) Generator Embeddings

Figure 6: AC-GAN-BERT - 80% Unlabeled

embeddings down to R2 with t-SNE would surely cause mode collapse to manifest visually. But
because we do not observe this, we can fairly confidently conclude an avoidance of mode collapse.

6 Conclusion

In this study, we present Multitask BERT, a novel architecture optimized for multitask fine-tuning on
sentiment classification, paraphrase detection, and semantic textual similarity prediction. As a result
of data augmentation, loss pairing, and custom tokenization, we achieve an overall performance score
of 0.778 on test data. Additionally, we introduce AC-GAN-BERT, which incorporates generative
adversarial learning to enhance BERT’s capabilities. The conditional generator within AC-GAN-
BERT successfully produces class-conditioned embeddings, avoiding mode collapse and showing
clear spatial correlation with class labels. Our results call for future work on more advanced loss
functions and better regularization mechanisms to further maximize accuracy. Our conditional
generator also offers potential as a student model for BERT knowledge distillation.

7 Ethics Statement

Classifiers like Multitask BERT and AC-GAN-BERT present the ethical challenge of propagation of
the biases embedded in their training data. AC-GAN-BERT, in particular, poses a heightened risk
of amplifying existing biases because of its adversarial nature, potentially reinforcing stereotypes
or discrimination in downstream NLP tasks. To address these concerns, it is crucial to train these
models on diverse and representative training data. Careful data curation can help with over- or
under-representation of certain demographic groups or high-resource languages. Implementing a
robust bias detection system during the data preprocessing stage can also help with filtering through
biased data, thereby reducing bias propagation. In addition, semi-supervised training on AC-GAN-
BERT means that both labeled and unlabeled data are necessary. This could raise concerns about the
misrepresentation of sensitive information, such as false attribution of personal details, especially
in domains like finance and healthcare. To mitigate this risk, training data should be anonymized
and subject to differential privacy methods. Establishing such protocols will ensure the ethical use of
models like Multitask BERT and AC-GAN-BERT.

References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[2] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

8

[3] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. arXiv preprint arXiv:1901.11504, 2019.

[4] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

[5] Danilo Croce, Giuseppe Castellucci, and Roberto Basili. Gan-bert: Generative adversarial
learning for robust text classification with a bunch of labeled examples. In Proceedings of the
58th annual meeting of the association for computational linguistics, pages 2114–2119, 2020.

[6] Yifan Peng, Qingyu Chen, and Zhiyong Lu. An empirical study of multi-task learning on bert
for biomedical text mining. arXiv preprint arXiv:2005.02799, 2020.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[8] Liat Ein Dor, Yosi Mass, Alon Halfon, Elad Venezian, Ilya Shnayderman, Ranit Aharonov, and
Noam Slonim. Learning thematic similarity metric from article sections using triplet networks.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 49–54, 2018.

[9] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[10] Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. Mtrec: Multi-task
learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669, 2022.

[11] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[12] Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text
embedding benchmark. arXiv preprint arXiv:2210.07316, 2022.

[13] Shankar Iyer, Nikhil Dandekar, and Kornel Csernai. First quora dataset release: Question pairs.
Quora, 2017.

[14] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. * sem 2013
shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43, 2013.

[15] Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and
Roberto Zamparelli. A SICK cure for the evaluation of compositional distributional semantic
models. In Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC’14), pages 216–223, 2014.

[16] Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran, Rahul Bhotika,
and Stefano Soatto. Rethinking the hyperparameters for fine-tuning. arXiv preprint
arXiv:2002.11770, 2020.

[17] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and
Antonio Torralba. Seeing what a gan cannot generate. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 4502–4511, 2019.

[18] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. How good is my gan? In
Proceedings of the European conference on computer vision (ECCV), pages 213–229, 2018.

[19] Pegah Salehi, Abdolah Chalechale, and Maryam Taghizadeh. Generative adversarial networks
(gans): An overview of theoretical model, evaluation metrics, and recent developments. arXiv
preprint arXiv:2005.13178, 2020.

9

[20] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Appendix

λ Columnwise p-values Relative to λ = column number
10

0.0 0.500
0.1 0.152 0.500
0.2 0.085 0.170 0.500
0.3 0.215 0.510 0.819 0.500
0.4 0.033 0.190 0.738 0.250 0.500
0.5 0.017 0.047 0.385 0.063 0.092 0.500
0.6 <0.001 0.010 0.271 0.019 0.021 0.347 0.500
0.7 <0.001 <0.001 0.044 <0.001 <0.001 0.035 0.044 0.500
0.8 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 0.012 0.500
0.9 <0.001 <0.001 0.007 <0.001 <0.001 <0.001 <0.001 0.075 0.849 0.500

Table 4: Summary of p-values Relative to Unlabeled Percentages

The way to interpret this table is as follows: in column i, the entry at row i will always equal 0.5,
because the p-value resulting from a one-tailed t-test of difference in sample means, where both
samples are the same, will always equal 0.5. In column i, the entry in row i+ j, where j ranges from
1 to 9− i, is the p-value representing the significance of the decrease in validation accuracy between
training AC-GAN-BERT with λ = i

10 and λ = i+j
10 .

10

	Key Information to include
	Introduction and Related Work
	Approach
	Multitask BERT
	Multitask Fine-tuning Optimizations
	Summary of Semi-Supervised GAN Training Framework

	Experiments
	Data
	Experimental Details and Evaluation Methods
	Results

	Analysis
	Multitask BERT
	AC-GAN-BERT

	Conclusion
	Ethics Statement

