
UnBERTlievable: How Extensions to BERT Perform
on Downstream NLP Tasks

Stanford CS224N Default Project

Sophie Andrews
Department of Computer Science

Stanford University
sophie1@stanford.edu

Naomi Boneh
Department of Computer Science

Stanford University
naomicyb@stanford.edu

Abstract

In the modern world, it is impossible to accurately digest all information. We rely on
summary tactics like sentiment analysis to understand the overall opinion towards
a service or paraphrase detection to eliminate redundant information. In this paper,
we develop a minBERT implementation, and then apply multiple extensions to
fine-tune the model for the three tasks of sentiment analysis, paraphrase detection
and determining semantic textual similarity. We apply a combination of techniques
including cross-encoding our inputs, gradient surgery, and careful selection of
fine-tuning data to achieve our best model that has significant improvements over
the base minBERT model.

1 Introduction

The development of the pre-trained language model BERT set state of the art performance on many
sentence classification and sentence-pair regression tasks. The abilities of the BERT model can aid
significantly in data aggregation and providing statistical analysis on large amounts of data. However,
in order to understand different ways of conveying meaning and achieve strong performance, BERT
requires fine-tuning bidirectional pre-trained representations on individual downstream tasks, which
can be computationally intensive (Devlin et al., 2019).

In this paper, we present our multi-task learning strategy to advance the performance of the base
minBERT model on sentiment analysis, paraphrase detection, and semantic textual similarity tasks.
This strategy primarily leverages cross-encoding for sentence pair tasks and fine-tuning on datasets
through running pre-training epochs. In addition, we evaluated the efficacy of several multi-task
fine-tuning techniques including using different loss functions, SMART regularization, gradient
surgery, and making slight modifications to data labels. In doing so, we hope to implement and
present a model with the capabilities of pre-trained BERT that also addresses the existing difficulties
with multi-task learning.

2 Related Work

Here, we introduce BERT and discuss various adaptations to improve the performance of this model.
BERT is a pre-trained transformer network that can accomplish downstream NLP tasks. The original
BERT paper employs cross-encoding, in which input sentences are first concatenated with a [SEP]
token, then passed into BERT to produce a single embedding (Devlin et al., 2019). This technique
is largely used for tasks where the input is a pair of sentences, including paraphrase detection and
semantic textual similarity. Hence, we were motivated to explore this technique in our enhancements
to the BERT model.

Another paper presents a new tool, Sentence-BERT or SBERT, which improves the performance
of finding semantically similar sentences (Reimers and Gurevych, 2019). One limitation of the

Stanford CS224N Natural Language Processing with Deep Learning

original BERT model is that it does not produce independent sentence embeddings. SBERT addresses
this limitation and achieves a speedup by passing sentences independently through the same BERT
network, using a siamese network architecture to ensure that each network has the same weights, and
the result is a fixed size embedding.

With fixed-sized sentence embeddings, cosine similarity, a fast calculation, can be computed to
find similar sentences. This method falls under a technique called bi-encoding, which differs from
cross-encoding in that the input sentences are considered separately. We were inspired by this research
and its use of cosine similarity to experiment with different methods of combining embeddings.

When leveraging multi-task learning, it is possible for the gradient directions of different tasks to
interfere with each other, affecting performance. In Yu et al. (2020), researchers propose the use of
gradient surgery to mitigate this issue by projecting one task’s gradient onto the normal plane of a
competing gradient from another task. They concluded that this method improves performance on
multi-task supervised problems.

Lastly, when overly fine-tuning large pre-trained models on smaller downstream tasks, overfitting can
negatively affect performance. Jiang et al. (2020) describes the regularization technique SMART,
which employs both smoothness-inducing adversarial regularization and Bregman proximal point
optimization, to balance the model’s learning of task-specific configurations and its ability to adapt to
new data.

3 Approach

3.1 Network Architecture

Following the architecture detailed in Devlin et al. (2019), we implemented multi-head self-attention
and the transformer layer features of a base minBERT model. The embedding layer contains a
word embedder, position embedder, and 12 BERT encoder transformer layers. Every transformer
layer consists of a multi-head attention layer, an additive and normative operation with a residual
connection, a feed-forward layer, and another additive and normalization layer with a residual
connection. We use the AdamW optimizer and implemented decoupled weight decay regularization.

In our final approach, each task has its own dropout layer and linear layer. We use different loss
functions for each downstream task because each task has a different objective. For both sentiment
analysis and paraphrase detection we use cross-entropy loss because there are multiple, discrete
output classes. For semantic textual similarity, we use mean-squared error (MSE) loss because the
outputs are continuous.

Our baseline is our base minBERT model, which achieves an accuracy of 0.489 on the Stanford
Sentiment Treebank (SST-5) dataset, an accuracy of 0.676 on the Quora Question Pairs (QQP) dataset,
and a Pearson correlation coefficient of 0.29 on the SemEval STS dataset.

3.2 Downstream Tasks

After obtaining the encoded pooled representations of each sentence of our data, we fine-tuned the
base minBERT model to our downstream tasks. For each task, we created a dropout and linear layer.
For sentiment analysis, we obtained logits for the five different sentiment values. For paraphrase
detection and semantic textual similarity, our input consisted of two sentences. We experimented
with bi-encoding and cross-encoding techniques before outputting a prediction. In both cases, we
predicted a single logit that either represented whether two sentences were paraphrases of each other
or a logit that represented how similar the two sentences were.

3.3 Encoding Methods: Cross-encoding and Bi-encoding

The paraphrase detection and semantic textual similarity tasks take in two sentences as input to
determine similarity between the two sentences. We evaluated three strategies related to embeddings
for sentence-pair tasks: cross-encoding, bi-encoding, and bi-encoding with cosine similarity.

Cross-encoding is explained in (Devlin et al., 2019), and involves concatenating the two input
sentences with a [SEP] token before feeding the input into the BERT model. Dropout and a linear
layer are then applied to the resulting embedding to output a prediction. The cross-encoding technique

2

(a) Cross-encoding with a linear layer (b) Bi-encoding with cosine similarity

(c) Bi-encoding with a linear layer

Figure 1: Encoding Methods for Sentence-pair Tasks

is more effective for learning the relationship between the two input sentences, as the embedding
itself captures this relationship.

With bi-encoding, each input sentence is independently passed into BERT, then concatenated into a
single embedding and passed through a linear layer. For the semantic textual similarity task only, we
also tested bi-encoding with cosine similarity to determine the degree of closeness. Once we had
the two sentence embeddings from BERT, we applied cosine similarity as a measure of closeness
in semantic meaning. Then we applied ReLU to ensure the result was between 0 and 1, and then
multiplied the result by 5 since the final scores are between 0 and 5.

3.4 Training Techniques

Given that each dataset was a different size, we used different sampling techniques to take full
advantage of all data that was provided. We started with using a sampled round-robin approach,
which fully iterated through the STS dataset since it was the smallest, but did not make full use of the
SST or QQP datasets. To address this, we assessed different staggered fine-tuning strategies, where
we trained only on the full SST dataset for a certain number of epochs, on the full QQP dataset for a
number of epochs, and then continued the original round-robin approach.

We discovered the most optimal epoch configuration was to train on the full SST dataset for 2 epochs,
train on the full QQP dataset for one epoch, and then use round-robin sampling for the remaining
7 epochs. Pre-training of the datasets for sentiment analysis and paraphrase detection enabled the
model to fully take advantage of these larger datasets and perform better on the corresponding tasks
without causing overfitting through continuous cycling of the smaller STS dataset.

3.5 Additional Methods

We utilized the Pytorch-PCGrad module (Tseng, 2020) to implement gradient surgery in our model
in order to reduce potential destructive interference between task gradients during multi-task learning
(Yu et al., 2020). This method makes direct changes to an i-th task’s gradient gi as follows, where gj

3

is the gradient of a competing task:

gi = gi −
gi · gj

||gj||2
· gj

Additionally, we used the smart-pytorch module (Schneider, 2022) to integrate the SMART
technique, specifically the smoothness-inducing adversarial regularization method detailed in (Jiang
et al., 2020). This approach is meant to mitigate overfitting, which is a particular risk with the
similarity score task given that the STS data is the smallest dataset, and hence is cycled through more
than other datasets during training. It works by reconfiguring and solving the following optimization
to use a smoothness-inducing adversarial regularizer with the standard loss function for fine-tuning:

minθF(θ) = L(θ) + λsRs(θ)

In the equation above, L(θ) is the loss function, λs is a tuning hyperparameter. Rs(θ) is the
moothness-inducing adversarial regularizer. Rs(θ) is defined with the following equation:

Rs(θ) =
1

n

n∑
i=1

max
||x̃i−xi||p≤ϵ

ls(f(x̃i; θ), f(xi, θ))

When leveraging SMART, we apply Kullback-Liebler (KL) loss in addition to cross-entropy loss to
sentiment analysis and paraphrase detection, as they are both classification tasks. Specifically, the
cross-entropy loss is perturbed by a small amount according to the KL loss and a defined weight, and
we set this weight to be 0.02. For semantic textual similarity, we use MSE loss for both the actual
loss and the degree of perturbation to this loss. SMART injects perturbation to encourage F(θ) to be
more smooth, which is meant to prevent overfitting and improve generalization.

4 Experiments

4.1 Data

For sentiment analysis, we used the Stanford Sentiment Treebank (SST) dataset made up of sentences
from movie reviews. The dataset has 8,544 train sentences, 1,101 dev sentences, and 2,210 test
sentences. Each sentence is rated negative, somewhat negative, neutral, somewhat positive, or positive.
We also used the CFIMDB dataset of polar movie reviews. There were 1,701 train sentences and
245 dev sentences that we used. We did not use the test sentences. Each sentence is labeled positive
or negative.

We used the CFIMDB dataset in two different ways. In the first experiment, we enhanced the SST
train set by adding in the CFIMDB train and dev examples. Given that the CFIMDB reviews are
highly polar, we thought it was reasonable to assign CFIMDB’s positive reviews the same positive
label as used in the SST dataset and assign CFIMDB’s negative reviews the same negative label as
used in the SST dataset. Given the polarity, we did not feel like we had to indicate that any sentences
should be labeled “somewhat positive" or “somewhat negative".

In our second usage of this dataset, we trained an extra head in our model to perform classification
on the CFIMDB dataset to update the overall weights of our model. In this case, we did not have to
change any labels in the dataset.

For the paraphrase detection task, we used the Quora Question Pairs (QQP) dataset. Each item in the
dataset is a pair of questions with a label indicating whether one question is a paraphrase of another.
There are 283,010 train examples, 40,429 dev examples, and 80,859 test examples.

To determine the semantic textual similarity between a pair of sentences, we use the SemEval dataset.
Unlike the paraphrase detection task, the semantic similarity of two sentences is not indicated by a
binary label, but instead by a score on a continuous scale of 0-5, where 0 indicates no similarity and
5 indicates same meaning. There are 6,040 train examples, 863 dev examples, and 1,725 text
examples.

4.2 Evaluation method

Since the labels in the sentiment analysis and paraphrase detection tasks are discrete, we evaluate our
model using accuracy percentage. We measure number of correctly labeled examples as a fraction

4

of the total number of examples. To evaluate the similarity task, which has continuous labels, we
calculate the Pearson correlation coefficient between the true similarity scores and our predicted
scores as described in (Agirre et al., 2013). We measure our model’s total performance on the
leaderboard using this formula: SentAcc + ParaAcc + 0.5 + 0.5(SimCoeff)

3 .

4.3 Experimental details

We ran our experiments on an Nvidia GPU through Google Compute Platform. For the model itself,
we tried two learning rates of 1−5 and 2−5. For our AdamW optimizer, we used a learning rate of
1−3 and weights of 0.9 and 0.999, as outlined in the original Devlin et al. (2019) paper. For each of
our dropout layers, we used a probability of 0.1. We tested batch sizes of 8 and 16.

Each experiment took approximately two hours, where one hour was spent in the three pre-training
epochs using the full SST and QQP datasets, and another hour on the seven training epochs that use a
round robin strategy to train on all three tasks.

4.4 Results

We report the results of all experiments we ran, indicating whether the results were from the dev or
test set, and analyze them below. For all experiments, we used the full model (instead of just the
last linear layer) so the BERT embeddings could reflect the latest state of the fine-tuned model. At
the time of this writing, we were 29 on the TEST leaderboard, and 22 on the DEV leaderboard.

We refer to our best model as BestBERT. BestBERT uses cross-encodings for the paraphrase and
similarity tasks, and conducted two pre-training epochs on the full SST train set, followed by one
pre-training epoch on the full QQP train set, followed by seven epochs using a round robin strategy
to sample from all three train sets and update the weights of the model.

Model Total Score SentAcc ParaAcc SimCoeff
Baseline: minBERT (dev) 0.603 0.489 0.676 0.290
BestBERT (test) 0.779 0.513 0.881 0.888
BestBERT + gradient surgery (test) 0.779 0.511 0.882 0.889

Table 1: Our two best models show significant improvement over the baseline, with the biggest
improvement occurring in the semantic similarity task.

We also incorporated gradient surgery into our BestBERT model. Interestingly, the overall score
remained the same because the paraphrase and similarity scores increased while the sentiment analysis
score decreased.

Gradient surgery improved the results for the two tasks that involve pairs of sentences, since it is able
to better leverage the shared information between the sentences to make a prediction. However, when
using gradient surgery, the sentiment classification accuracy suffered, likely because the fine-tuning
that learned to compare two sentences was not able to use that same approach when there was only
one sentence to label in the sentiment classification task.

To compare our different models and how we determined which to submit to the TEST leaderboard,
we looked at results on the dev set. All results below are reported on the dev set.

We first tried to uncover how embedding strategies would affect our results. In the “Combo” model,
we used cross-encoding for the paraphrase detection task (Fig. 1a) and bi-encoding with cosine
similarity for the similarity score task (Fig. 1b). Using cosine similarity was specifically used to
target the semantic similarity task, yet that ended up performing worse than cross-encoding. This
shows that the weights of the linear layer learned more complex information than just taking a cosine
similarity between two embeddings. As expected, using bi-encoding (Fig. 1c) performed the worst
since these embeddings only considered each sentence in the pair in isolation, not together. Since
the paraphrase detection task and the similarity score task heavily rely on the relation between the
sentences, the embedding methods considered both sentences together performed much better. Based
on the results in Table 2, we used cross-encoding in all further experiments.

Our datasets were different sizes. When training on all three tasks simultaneously, we had to ensure
that we were using the same number of examples. However, that left many of the examples in the SST

5

Model Total Score SentAcc ParaAcc SimCoeff
Cross-encoding (BestBERT, dev) 0.784 0.529 0.880 0.884
Combo (dev) 0.778 0.525 0.881 0.843
Bi-encoding (dev) 0.659 0.526 0.766 0.368

Table 2: Effects of different encoding strategies on model performance. We chose cross-encoding as
it had best overall performance.

and QQP datasets unused. Therefore, we decided to fine-tune on these datasets by running pre-training
epochs at the beginning of our experiment. These pre-training epochs involved training on the full
dataset for the respective task. We experimented with the number of pre-training epochs to use for
each of the sentiment analysis and paraphrase detection tasks. We were pleasantly surprised that two
fine-tuning epochs on SST and one fine-tuning epoch on QQP provided such a large improvement,
highlighting the importance of a large and diverse training set. While the similarity scores generally
remained the same across experiments, as expected since our main focus was how best to use the STS
and QQP datasets, these experiments revealed a tradeoff between the sentiment analysis accuracy and
paraphrase detection accuracy.

When adding gradient surgery to the model, we saw that paraphrase accuracy and similarity scores
increased, while sentiment accuracy decreased. We then ran this experiment again with an additional
pre-training epoch on the SST dataset in order to increase the sentiment classification accuracy.
However, this led to overfitting as both sentiment classification accuracy and paraphrase detection
accuracy decreased. Using only one fine-tuning epoch on SST clearly revealed the tradeoff between
the sentiment analysis and paraphrase detection tasks.

Model Total Score SentAcc ParaAcc SimCoeff
2 epochs SST, 1 epoch QQP, 0.784 0.529 0.880 0.8847 epochs RR (BestBERT, dev)
3 epochs SST, 2 epochs QQP, 0.711 0.520 0.673 0.8827 epochs RR (dev)
2 epochs SST, 1 epoch QQP, 0.784 0.524 0.883 0.8857 epochs RR + gradient surgery (dev)
3 epochs SST, 1 epoch QQP, 0.778 0.516 0.876 0.8857 epochs RR + gradient surgery (dev)
1 epoch SST, 1 epoch QQP, 0.779 0.509 0.887 0.8837 epochs RR + gradient surgery (dev)

Table 3: Effects of pre-training on model performance. Given the wide variation in the sizes of the
datasets, we pre-trained on the larger datasets in order to ensure that we took advantage of all data
that was available to us. RR means round-robin, where we sampled from all three datasets while
training on all tasks in a single epoch.

Since our model consistently performed worse on the sentiment analysis task and given we had
another dataset to leverage, we decided to incorporate the CFIMDB train and dev examples. We
either directly added the examples to the train set or we trained a separate head on the CFIMDB
dataset. Unfortunately, neither of these experiments improved our results, likely indicating that the
CFIMDB examples did not align with the existing SST examples.

Model Total Score SentAcc ParaAcc SimCoeff
Just SST (BestBERT, dev) 0.784 0.529 0.880 0.884
Combine SST and CFIMDB data for train (dev) 0.779 0.520 0.877 0.882
Train separate head with CFIMDB (dev) 0.778 0.519 0.882 0.867

Table 4: Effects of using the CFIMDB data for training the model. While we were hopeful that this
new dataset would improve our sentiment analysis predictions, it did not.

Next, we turned to the SMART algorithm to improve overall performance given that it smooths the
model by penalizing sharp variation in predictions. SMART actually reduced the performance of our

6

model, suggesting that there was not any sharp variation to begin with and the SMART algorithm
overcompensated.

Model Total Score SentAcc ParaAcc SimCoeff
No SMART (BestBERT, dev) 0.784 0.529 0.880 0.884
With SMART (dev) 0.759 0.511 0.870 0.879

Table 5: Effects of using the SMART algorithm for regularization. Our model performed better
without it.

Our final experiments involved small changes to the architecture of the model. The default learning
rate was 1−5, but we also tried 2−5 used by Devlin et al. (2019). This led to a significantly worse
performance, particularly for the sentiment analysis task. We also tried a batch size of 16 to increase
the stability in each update to the model. However, this also decreased the performance, indicating
that a batch size of 8 already captured enough detail about the sentences without high variance in the
gradients.

Model Total Score SentAcc ParaAcc SimCoeff
LR 1−5, batch size 8 (BestBERT, dev) 0.784 0.529 0.880 0.884
LR 1−5, batch size 16 (dev) 0.776 0.511 0.878 0.880
LR 2−5, batch size 8 (dev) 0.770 0.493 0.876 0.882

Table 6: Effects of small changes in model setup

5 Analysis

We noticed a general trend in our experiments that there was a tradeoff between performance in
sentiment analysis and paraphrase detection tasks. We believe this tradeoff exists because both tasks
require discrete labels but the actual prediction relies on different features of the sentence. Paraphrase
detection takes in two sentences while sentiment analysis only takes one. Furthermore in sentiment
analysis, we care more about tone and emotion of the words, whereas paraphrase detection is based
on meaning. Since the sentiment similarity scores are continuous and not discrete buckets, we believe
this task is more resistant to the tradeoff.

Overall, sentiment analysis was the hardest task. This was not surprising, as a 5-bucket task is harder
than a binary classification. It can also be hard for a even a person to detect the line between a
“somewhat positive” and a “positive” sentiment. To further analyze the results, we created a confusion
matrix (Fig. 2) for this task.

Figure 2: Normalized Confusion Matrix on the SST dataset

7

We see that the correctly classified examples are concentrated in the “somewhat positive” and
“somewhat negative” categories, but our model had more trouble determining what made an example
extreme enough to be labeled “positive” and “negative”, or have no strong sentiment to be labeled
“neutral”. In these three categories, there were many classifications to neighboring labels, showing
that the distinction is difficult. We believe that this is a reflection of the difficulty of the task, even for
a person. For example, the true label for the sentence “It’s a lovely film with lovely performances
by Buy and Accorsi.” is “somewhat positive” while our model rated it as “positive”. We prefer our
model’s rating here, due to the presence of the two positive adjectives “lovely”.

This unclear distinction in labels is perhaps why using the CFIMDB dataset for sentiment analysis
actually made our predictions worse. Even though the CFIMDB reviews were described as “highly
polar”, they may have been reviewed on a different scale than the SST datasets. Since our model
already struggled with the nuances between categories, having sentences that were labeled “positive”
from two different sources may have further confused the model.

Our model consistently achieved a high Pearson correlation coefficient on the semantic similarity
task. We believe this is due to the continuous nature of the scores. Even if our model did not perfectly
predict the similarity score, it was still able to predict a score in a reasonable range. Furthermore,
given the STS dataset was the smallest, we were always using the full dataset when training on all
three tasks, which benefitted this task. For sentiment analysis and paraphrase detection, we only used
the full dataset in the pre-training epochs and sampled from them when training on all three tasks.

6 Conclusion

After evaluating multiple different techniques, we discover that our model achieves its best perfor-
mance through using cross-encoding and pretraining on the SST and QQP datasets in their entirety.
Specifically, we train on the entire SST dataset for two epochs, train on the entire QQP dataset for
one epoch, then use round-robin sampling of all three datasets for the remaining seven epochs. We
learned that the implementation of the SMART technique did not improve our model performance
in any tasks. Gradient surgery improved performance on the paraphrase detection and semantic
textual similarity tasks, but worsened performance on sentiment analysis, making the overall score
unchanged.

Our model attains an overall score of 0.779. It achieves a final accuracy of 0.513 for sentiment
analysis, an accuracy of 0.881 for paraphrase detection, and a Pearson Correlation of 0.888 for
semantic textual similarity. Compared to our baseline, it yields an improvement of 0.024 (4.9%
increase) for sentiment analysis, 0.205 (30.3% increase) for paraphrase detection, and 0.598 (206.2%
increase) for semantic textual similarity. Relative to other submissions on the TEST leaderboard, our
model performs best on the semantic textual similarity task.

Some limitations of our model include that currently, it can only accomplish NLP tasks in English.
Additionally, the SST dataset used for sentiment analysis is solely targeted towards movie reviews,
resulting in the model not learning sentiment nuances in other forms of text. Further, the QQP dataset
is quite large for the use of paraphrase detection, but if the model were to conduct this task for a
high-risk scenario, e.g. healthcare data, it should be trained on data related to this specific application.

7 Key Information to include

Mentor: Tim Dai External Collaborators: None Sharing project: No

For code, Naomi integrated the gradient surgery and SMART algorithms into the model. Sophie
worked on the different embedding strategies and the different sampling techniques. We both equally
contributed to the final paper.

8 Ethics Statement

Language is constantly evolving, with the development of both new vocabulary and novel usage of
existing words. Hence, we expect that our model will require continuous maintenance and appropriate
modifications to its training data in order to avoid producing outdated and inaccurate results.

8

We have made deep ethical considerations specific to each of the three tasks that our model is
trained to execute. To begin with, we trained our model to have the ability to detect whether
questions are paraphrases of each other using Quora questions. However, our same model could
be deployed to a forum specifically containing healthcare questions. It would be a problem if the
answers for all questions that were deemed paraphrases were grouped together, since there could be
conflicting healthcare information in this aggregated answer if questions were incorrectly identified
as paraphrases. If two questions were incorrectly grouped, they might recommend two different
treatments, and one might actually be harmful for the person’s intended query.

To mitigate this, we can ensure that questions always appear with their answer, so a user can see
specifically what answer a questions is addressing. We can also display a rating of how well we think
questions are paraphrases of each other, so a user can pay more attention if two questions have more
uncertainty of whether they are actually paraphrases.

Regarding sentiment analysis, we have considered that the expression of sentiment differs depending
on cultural contexts and connotations. Some social groups may place stronger emphasis on politeness
even while expressing negative sentiment, while members of another demographic may prefer to use
strong or jarring language to describe something positively. This issue exemplifies the possibility of
our model having higher rates of incorrect sentiment classification for certain demographics, which
could lead to misunderstanding and discrimination against these groups.

This model could also be used to analyze feedback for a service to determine people’s satisfaction
with the service. However, if only a certain demographic or community typically used this service,
and if features of their vernacular were underrepresented in the training data, then the model could
incorrectly classify clients’ sentiment about this service and portray the service and as better or worse
than it really is. This then has implications for the success of the service and the business providing
it, and may mislead the public. One possible mitigation strategy is to add more training data with
as much diverse vernacular as possible, or to make the training data specific to the context that the
model is working in.

Lastly, the ability of our model to perform semantic textual similarity prompts open-ended ethical
inquiries and debates about the definition of plagiarism, as well as the efficacy of plagiarism detection
tools. Should it be considered plagiarism if our model determines that two texts have extremely
similar semantics? If an individual were to use our model as a plagiarism detection tool, this user
could also hold significant power in that they can decide what the threshold value of semantic
similarity for which texts are considered plagiarism. A threshold that is set too low can lead to a high
false positive rate and have implications for the acadmeic and social reputation of students, and all
writers in general. One method to mitigate this issue is for us, as developers of the model, to publicly
advocate for and recommend a standard threshold value for plagiarism classification.

References
Eneko Agirre, Daniel Matthew Cer, Mona T. Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013.

*sem 2013 shared task: Semantic textual similarity. In International Workshop on Semantic
Evaluation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2020.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics.

Flavio Schneider. 2022. Flavio schneider/smart-pytorch.

9

https://api.semanticscholar.org/CorpusID:10241043
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.18653/v1/2020.acl-main.197
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://github.com/archinetai/smart-pytorch

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning.

10

https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/2001.06782

	Introduction
	Related Work
	Approach
	Network Architecture
	Downstream Tasks
	Encoding Methods: Cross-encoding and Bi-encoding
	Training Techniques
	Additional Methods

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Key Information to include
	Ethics Statement

