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Abstract

While modern NLP models are adept at handling syntactically rich prose and
sentence structure, they still struggle with the flexible problem solving and general
reasoning ability that humans exhibit. In this paper, we apply diverse NLP methods
to one example of a semantically complex reasoning task, The New York Times
Connections game. We explore baseline methods that are specific to the semantic
grouping task, such as K-Means clustering on various word embeddings. Then,
we benchmark in-context learning on a large LLM as well as finetune a smaller
LLM using existing examples of solved puzzles. We also explore unique methods
of introducing complex linguistic and metalinguistic reasoning capabilities of a
larger LLM into a smaller LLM, through methods like fine-tuning with distilled
rationales and Verbal Reinforcement Learning. We found promising results with
Verbal RL, as the smaller model was able to absorb critique from a larger language
model and improve on previous answers, similar to how human solvers approach
language puzzles.

1 Key Information to include

• Mentor: Ryan Li

2 Introduction

The cognitive ability to draw associations between meaningful entities underlies human capabilities
to learn complex ideas and build new knowledge.[1] This ability is well-captured by the NLP task
of semantic grouping, which requires a language model to establish and evaluate word-to-word
connections. Semantic grouping requires model capacity beyond simple classification and demands
a nuanced understanding of different orders of word-to-word relationships, and a subtle learnable
strategy of prioritizing different relations in order to yield the most sensible groupings.

Existing NLP approaches to semantic grouping often rely on performing clustering or graph-
based algorithms directly on word embeddings, framing the problem in the paradigm of discrete
optimization[2][3][4][5]. Though incorporating Deep Learning methods brings better performance[6],
these models failed to address many semantic grouping tasks in interactive contexts, since word-
embeddings have limited expressivity.

∗These authors contributed equally to this work.
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Building upon existing methods, our project aims to take a novel approach by training a language
model to acquire semantic grouping capabilities through learning the New York Times game “Connec-
tions”. Inspired by NLP research that utilizes game settings and train models to solve word puzzles to
acquire generalizable abilities, we encapsulated the semantic grouping objective in a word-puzzle task
and train. This game-centric method diverges from the conventional reliance on ML-based clustering
techniques, seeking to exploit the highly-adaptive learning capabilities of language models.

To elicit better reasoning capabilities for the model, we fine-tuned our model using a combination of
Distillation and Verbal Reinforcement Learning methods, integrating the complex reasoning abilities
of LLM models into the fine-tuning process of a smaller Mistral Instruct Model. We’ve found that
the model has significantly improved semantic grouping ability after our training pipeline.

3 Related Work

3.1 Semantic Grouping

Embedding-based approaches to semantic grouping often leverage techniques like clustering [2][3][4],
graph-based methods [5], and dimensionality reduction[7][8]. General embedding-based clustering
methods group words based on semantic similarity extracted from large text corpora. Transformer
models have improved this process by dynamically understanding context within sentences, thereby
enhancing the quality and relevance of the groupings.[6] Despite the advancements, these models
often struggle with capturing the more interactive and playful aspects of human cognitive associations,
such as those needed in word games or creative contexts, where flexibility and adaptability are crucial.

3.2 Solving Word Puzzles

There is extensive literature on NLP methods for solving word puzzles such as puns, anagrams,
and various types of crosswords. Rozner, Potts, and Mahowald [9] investigated the T5 language
model’s ability to solve cryptic crosswords—a two-part crossword consisting of a definition and
a wordplay cipher which require more linguistic flexibility and better understanding of higher
semantic complexity. They synthesized the training crossword data and proposed a novel curriculum
learning approach which involves pre-fine-tuning the model on related but simpler tasks such as word
unscrambling and American crosswords, which appeared effective in improving the op-1 accuracy
score on various types of data splits.

Drawing inspiration from Rozner, Potts, and Mahowald, we decided to focus on NYT Connections
puzzles, as identifying the correct grouping among the 16 words in each puzzles also requires
advanced semantic familiarity and significant creativity and linguistic flexibility. We adopted a
similar K-Means clustering model for baseline evaluation with different word-vector embeddings.
On the other hand, our approach differs from theirs primarily in our much smaller dataset consisting
of authentic Connections puzzles and the incorporation of distillation in fine-tuning our language
model instead of pre-fine-tuning on simpler tasks.

3.3 Distillation and Verbal RL

Hsieh et al. [10] introduced step-by-step distillation to effectively utilize less training data for fine-
tuning small language models, while allowing them to outperform large language models (LLMs).
Given the success of this distillation mechanism in improving the T5 model and the limited size of
our training dataset, it is a natural choice to consider distillation for fine-tuning Mistral.

Verbal RL[11] is a form of reinforcement learning that incorporates natural language feedback to
guide a model’s learning process, allowing for more complex and nuanced information to be conveyed
beyond traditional numeric rewards. By integrating verbal cues and instructions in Verbal RL Pipeline,
our model could better understand and refine the reasoning behind its semantic grouping choices,
thereby making more-informed decisions in future iterations.

4 Approach

Our approach involves two baseline approaches and three main approaches.
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4.1 Baseline

The baseline involves using word-embedding methods, namely GloVe [12] and word2Vec [13], to
obtain word embedding for each of the 16 input words in the game, and directly performs high-
dimensional clustering on these word vectors. Since every instance of the Connections game results
in 4 groups of 4 words each, we chose "Balanced K-Means" as our clustering method. (We wrote our
own code for Balanced K-Means Implementation).[14]

4.2 In-Context Learning with DBRX

The first main approach uses an in-context learning method.[15] We prompted the DBRX model to
learn from a few example puzzles and solutions (3 examples per prompt) with minimal descriptions
for the groups. We also included necessary instructions on how to play the Connections Game from
New York Times’s official guide along with hints to avoid common mistakes.

4.3 Finetuning Mistral-Instruct

We also finetuned a Mistral Instruct model (Mistral-7B-Instruct-v0.2 [16]) on the training split of our
task-specific Connections dataset. We included the NYT instructions in our prompt (see Appendix
B) without direct in-context examples. For fine-tuning, we use Quantized Low Rank Adaptation
(QLoRA)[17], an improvement on LoRA that further increases parameter efficiency and speeds up
training.

After vanilla finetuning yielded poor results, we drew on the ideas of Hsieh et al. and added a
distillation component to our finetuning process, which we hypothesized would improve the model’s
capability to perform the chain-of-thought reasoning that humans employ to play the Connections
game.[18] We extracted rationales from the larger DBRX-Instruct model and used them as additional
supervision while finetuning Mistral-Instruct.

In particular, for all training and validation examples, we inputted into the model:

1. The same instructions and puzzle of 16 words that the Mistral model received.
2. The correct answer and brief, few-word descriptions of the provided given by NYT that the

Mistral model did not previously receive.
3. Context that it was teaching a student to play the game.

We prompted it to generate chain-of-thought, pedagogical rationales behind the groupings. The full
prompt can be found in Appendix B. After generating DBRX’s rationales, we fine-tuned the smaller
Mistral model to refer to them as ground truths and generate similar-capability rationales followed by
the groupings. The prompt we used for this step can be found in Appendix B. Distillation allowed us
to transfer some of the reasoning ability of the large model to our small Mistral model that we can
reasonably fine-tune.

4.4 Verbal Reinforcement Learning

To enabled our fine-tuned model to verbally reflect on its misgrouping instances and thereby arrive at
a better solution, we tried applying various versions of Verbal RL [11] at the end of our fine-tuning
pipeline. In every iteration where the model generates a version of answer, we feed that that answer
to a DBRX meta-model so that it could provide critiques, comments, or feedbacks. We then reprompt
our fine-tuned model with these relflective rationales, in hopes to induce better decision-making
performances for the subsequent trials.

4.5 Prompt Engineering (see Appendix B)

We followed the 26 ordered prompt engineering principles provided by Bsharat et al. [19] that
have proven effective in questioning LLM models such as LLaMA-2 and GPT-4. For both Mistral
fine-tuning and the distillation step with DRBX, we adopted a few-shot prompting technique by
providing a few concrete examples in our prompts. Specifically, we demonstrated to the model three
possible reasons why four words could be categorized into the same group and presented two example
groupings for each reason. Additionally, we broke down the task of identifying four groups at once
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by advising the model to identify the groups in increasing order of difficulty, providing hints on the
possible form the easiest category takes, which is usually objects that belong in the same category
or synonyms. To obtain the desired output format and content consistency, we instructed DBRX to
assume a teacher role, guiding the model to produce reasoning that a “student”—Mistral—could
follow. Mistral was instructed to output its responses in a JSON list, which proved much more
effective than our initial attempt at enforcing a line-by-line format that resulted in the model outputting
irrelevant words. Lastly, we assumed an instructive and objective tone and emphasized penalties to
ensure the model followed our instructions.

5 Experiments

5.1 Data

We used a total of 342 New York Times Connections puzzles that we scraped from the unofficial
Connections archive website (https://connections.swellgarfo.com/archive). The archive
ranks the four groups of words in each puzzle by their difficulty, which allowed us to create a
difficulty-based metric that evaluates our models by the number of groups it correctly clusters in each
difficulty category.

We divided the 342 puzzles into training, evaluation, and test datasets with an 80/10/10 split. There-
fore, we had a total of 274 puzzles for training and 34 each for testing and evaluation respectively.
For all LLM training and testing, we randomly shuffled the order of the 16 words in the prompt.

5.2 Evaluation method

We used the following metrics to evaluate our models.

• Number of Perfect Matches. The number of puzzles that the model answers completely
correctly, i.e. all 4 groups are right.

• Average Number of Matches per Difficulty. For each difficulty group, the total number of
correct groups of that difficulty divided by the total number of puzzles.

• Average Number of Matches. The total number of correct clusters divided by the total
number of puzzles. This number is equal to the sum of the four values in Average Number
of Matches per Difficulty.

• Average Entropy. We defined the classification probability as the ratio of the intersection
size between each predicted and true clusters divided by the cluster size (4). We took
the average of all predicted cluster entropies. Formally, the entropy of each cluster w is
defined by: H(w) = −

∑
c∈C P (wc) log2 P (wc), and the entropy per puzzle is given by

H(Ω) =
∑

w∈Ω
Nw

N H(w)

• Average Intersection Over Union (IOU). For each predicted group, its IOU ratio is
maximal value among the four IOUs when compared with the four true clusters. This ratio
is a fraction between 1/7 and 1 (perfect match). We took the average of all predicted cluster
IOUs.

5.3 K-Means Baseline

We used a standard sk-learn KMeans model and set the maximum iteration to be 100, with 0.0001
tolerance, then we applied a rebalancing function to ensure that all clusters represent 4-word groups.
We tried two different word embedding methods, namely GloVe and word2Vec.

5.4 In-Context Learning

We ran inference on Databrick’s DBRX model (132B parameters) using Together AI’s API. In
the prompt (see Appendix A), we included detailed instructions and 3 examples of correct puzzle
solutions along with short descriptions of the groups.
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5.5 Mistral-Instruct Finetuning and Distillation

For finetuning Mistral-Instruct (8B) with QLoRA, we trained for 3 epochs (after which validation
loss started to increase) using AdamW-32bit optimization on an NVIDIA A100 GPU. The other
hyperparameters we used are listed in Table 1.

Parameter Name Value

Batch size 4
Gradient accumulation steps 4
Learning rate (initial) 2e−4

Weight decay 0.001
Ratio of steps for linear learning rate warmup 0.03
Maximum gradient for clipping 0.3
LoRA update matrix rank 64
LoRA α scaling factor 16
LoRA dropout probability 0.1

Table 1: Parameters for Finetuning Mistral-Instruct

Note that even after iterations of careful prompting, the small Mistral model failed at following the
instructions and output format, frequently hallucinating words, answering with more or less than four
groups, and putting more or less than four words in each group. Our evaluations in Table 2 were run
after truncating the groups that were larger than four words and padding the groups with fewer with
empty strings. This significantly impacted performance based on on these metrics, as we’ll discuss in
Analysis.

To maintain comparability, our Mistral-Instruct model with a distillation component was fine-tuned
with the same parameters in Table 1. We saw much better task understanding with fewer format
errors, but only a small improvement in accuracy, as shown in Table 2.

5.6 Verbal Reinforcement Learning

In the Verbal RL Pipeline, we first collected the un-criticized 1st-iteration answer from the model
being trained, and feed that answer to the DBRX supervisor model responsible for generating
feedbacks. We tested 2 different configurations, one where the DBRX supervisor model is presented
with the ground truth of the correct answer, and another where the supervisor only relies on the
model-provided answer itself to offer critiques. Then the DBRX-provided feedback is fed to the
fine-tuned model as its new prompt, and the model will generate a new iteration of Connections
answers. We ran iterative evaluations for the duration of 3 iteration, essentially giving the model 3
chances of trials and error.

Baseline Main

GloVe Word2Vec In-context DBRX Finetuned Mistral With distillation Verbal RL

Perfect Matches 0 0 0 0 0 1
Avg. Matches (0) 0.0588 0 0.1176 0.0294 0.0588 0.222
Avg. Matches (1) 0.0588 0.0294 0.1765 0.0294 0.0588 0.222
Avg. Matches (2) 0.0294 0.0294 0.0882 0.0588 0 0.111
Avg. Matches (3) 0.0882 0.2058 0 0 0.0588 0.111
Avg. Matches (All) 0.2353 0.2647 0.3823 0.1176 0.1765 0.666

Avg. Entropy 0.7581 0.7565 0.7338 0.8312 0.7710 0.357
Avg. IOU 0.4513 0.4454 0.4867 0.3491 0.3359 0.357

Table 2: Evaluation of baseline and main methods. We use 0, 1, 2, 3 to denote the difficulty levels
with 0 being the easiest and 3 the hardest.
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6 Analysis

6.1 Baseline Clustering

As our baseline, clustering methods based on word-embedding yielded considerably stable perfor-
mance, but fail consistently on some word-grouping tasks. Notably, word-embeddings have limited
expressivity.

This means that a polysemous could suffer from the constraints of a single word-embedding, therefore
not able to fall into the correct grouping since the embedding is an averge resting across the border of
2 groups. For instance in one game, the word "look" should be associated to the group of "style",
"manner", "dress" due to one of its definition as "appearance", but instead "look" is being clustered
together with "sight" due to its other definition as "see/view".

What’s more, semantic proximity shouldn’t be the only indicator of semantic associativity. Just
because 2 words are semantically close to each other doesn’t mean that they will fall into the same
group in the Connections game, because possible grouping criteria extend beyond "words found in
the similar context (semantic proximity)" and could include "words in the same utility category",
which is not well reflected by semantic proximity in word embeddings. As from the ealier example,
"look" and "sight" are semantically close, but it makes more sense for "look" to associate with "style",
"manner", "dress" since they belong to the same category.

6.2 In-Context Learning

We found that in-context learning on a larger LLM performed better than baseline clustering methods,
but did not come close to human performance2., with an average number of matches of 0.3823. This
is an improvement from the word embedding model, which means that by leveraging the in-context
learning ability of LLM, our model has obtained a better grasp of knowledge of the word and their
corresponding relationships than what’s capture by Word2Vec or Glove embeddings.

6.3 Finetuning and Distillation of Mistral-Instruct

We found that finetuning the small Mistral model on only the prompt and answers was insufficient for
the model to improve linguistic and metalinguistic capabilities on Connections. It was even unable
to grasp the output structure and the task of grouping 16 words into 4 disjoint, equal subsets. This
caused it to omit and hallucinate words, which led to worse performance across the board in terms of
matches, entropy, and IOU than the domain-specific, yet rudimentary K-Means method. This was
unexpected and illustrates a distinct advantage of designing a task-specific model, as several research
efforts listed in Section 3 did for the task of language puzzles.

While we originally hypothesized that distillation would both help the model understand the task
better as well as obtain the linguistic and metalinguistic reasoning to complete it, we unfortunately
found that only the former was true. Since the ground-truth rationales we obtained for DBRX were
commonly in order of the answer groups, the Mistral model did learn to solve group-by-group
without repeating words or responding with more or less than 4 groups. However, we found that
distillation only slightly increased the average number of matches from 0.1176 to 0.1765, despite
being successful at significantly decreasing entropy, since more groupings had 2 or 3 matching words.
Because it achieves less than half of the 0.3823 average matches of in-context DBRX, distillation
was unsuccessful in transferring task-specific reasoning skills to the LLM. This could be one of
two reasons, assuming that distillation works for most specific tasks and small models, as shown
in [ADD]. The rationales we obtained were after DBRX was already provided the answer. This
caused the rationales to be less helpful in the case of reasoning from scratch, which we could fix
by prompting the DBRX model in a different way to extract better chain-of-thought rationales. The
alternate case is that because DBRX actually cannot solve the puzzle in the vast majority of cases, the
rationales it gives are poor and cannot be significantly improved by prompting. Such is an example
of a poor rationale for the answer grouping “CLOVER”, “HORSESHOE”, “MOON”, “RAINBOW”
with the description “LUCKY CHARMS”, since all are marshmallows in the well-known Lucky
Charms brand cereal. DBRX instead gives the rationale:

2This was not rigorously defined, but informally, most humans can usually solve the easiest grouping
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The third group of words can be formed by identifying the common theme of
lucky charms. The words CLOVER, HORSESHOE, MOON, and RAINBOW are
all considered to be lucky charms in various cultures. This group is formed by
recognizing the specific category that these words belong to.

For this example, and others that require niche pop culture knowledge, all the methods struggle and
even the larger DBRX struggles with reasoning after being given a correct grouping, cementing this
as a distinctly human task that is difficult for LLMs to perform.

6.4 Verbal RL

Because of the complexities of this task, we found that the only method that achieved close to
human-level performance was Verbal RL with DBRX on our fine-tuned Mistral-Instruct model. The
critiques that DBRX gave were helpful inputs to the small model to improve upon itself. Here is an
example critique on the grouping [“SIGHT”, “SMELL”, “TASTE”, “DRESS”]:

Your first group of words is related to the senses, which is a good start. However,
you have missed including ’SIGHT’ in this group. You could consider revising
your group to include ’SIGHT’ as it is also a sense like ’SMELL’, ’TASTE’, and
’TOUCH’.

After this critique was fed back into the Mistral model on the next iteration, it answered with the
correct grouping. This shows that our model, after incorporating Verbal RL, is capable of leveraging
effective reflection to solve some of the semantic grouping problems, but doesn’t offer perfect
solutions in all cases.

7 Conclusion

We discovered that Connections is a difficult task for language models to perform on their own,
because of niche human associations between words and the metalinguistic reasoning needed to
form certain groups. Our baseline K-Means clustering was a specialized but rudimentary method
to solve semantic grouping, while more complex methods like finetuning a small model with fewer
parameters failed at understanding the task itself.

Furthermore, our findings indicate that while in-context learning improved over baseline clustering
methods, achieving human-like performance remains challenging. The integration of distilled
knowledge and Verbal Reinforcement Learning showed promise, particularly the latter, which
significantly enhanced model reasoning and accuracy through iterative feedback.

This task underscores the current limitations of LLM in matching the creative and flexible nature of
human cognition. Future work could focus on more context-aware training methods that specialize
on language puzzles and feedback mechanism enhancements for RL.

8 Ethics Statement

Our project introduces specific ethical challenges and potential societal risks. Firstly, there’s a risk of
reinforcing biases present in the training data, which can lead the model to amplify stereotypes found
in language associations or word meanings. This could cause harm or perpetuate injustices, especially
when sensitive attributes such as race, gender, or cultural backgrounds are involved. Secondly, there
is the risk of misuse where, if extended beyond its intended recreational use, such technology could
be used to manipulate linguistic data or generate misleading content.

To mitigate these risks, we propose several strategies. For tackling biases, it’s possible to conduct
regular audits of both the training data and model outputs, specifically focusing on detecting and
correcting biased language associations. This could involve curating the dataset to ensure balanced
representation and using techniques like adversarial training to make the model robust against learning
biases. To prevent misuse, we will incorporate strict usage guidelines and access controls if the
technology were to be deployed or integrated into broader applications.
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A In-context Baseline Prompt

"""
Given 16 items, find groups of four items that share something in common.

Category Examples
Fish: BASS, FLOUNDER, SALMON, TROUT
Fire ___: ANT, DRILL, ISLAND, OPAL
Categories will always be more specific than “5-letter-words,” “Names” or “Verbs.”
Each puzzle has exactly one solution.
Watch out for words that seem to belong to multiple categories!
The following are three examples of 16 words and their corresponding answers.
You are also provided a brief description for what each group shares.
Learn from these examples and respond with just the answers for the following puzzle.
Respond in the same format as the examples: 4 lines, with a group on each line.
Follow the restrictions given at the end of the prompt.
The order within a group and between groups doesn’t matter, but the groups in the example answers and
descriptions are given in the order of easiest to trickiest to solve.

Examples:

Example 1.
HYPE, HITCH, AMP, ACOUSTIC, GAS, CABLE, ELECTRIC, SONIC, LINK, FIRE, WATER, COUPLE, HEARD, PUMP, AUDITORY, TIE

Answers:
CABLE, ELECTRIC, GAS, WATER
ACOUSTIC, AUDITORY, HEARD, SONIC
COUPLE, HITCH, LINK, TIE
AMP, FIRE, HYPE, PUMP

Descriptions:
Monthly bills
Related to sound/hearing
Connect
Excite, with “up”

Example 2.
COMPLAINT, LAWSUIT, ACTION, HANGAR, FOXGLOVE, CLAIM, RUNWAY, WINDSOCK, TERMINAL, RING, GUMSHOE, CLUB, TURNCOAT, TARMAC, BEANBAG, TORCH

Answers:
HANGAR, RUNWAY, TARMAC, TERMINAL
ACTION, CLAIM, COMPLAINT, LAWSUIT
BEANBAG, CLUB, RING, TORCH
FOXGLOVE, GUMSHOE, TURNCOAT, WINDSOCK

Descriptions:
Parts of an airport
Legal terms
Things a juggler juggles
Words ending in clothing

Example 3.
FESTER, SUNDAY, FRIDAY, ROT, LURCH, CAT, CHANCE, LIP, SPOIL, THING, THURSDAY, TURN, SATURDAY, WEDNESDAY, SOUR, TUESDAY

Answers:
FRIDAY, SATURDAY, SUNDAY, THURSDAY
ROT, SOUR, SPOIL, TURN
FESTER, LURCH, THING, WEDNESDAY
CAT, CHANCE, LIP, TUESDAY

Descriptions:
Days of the week
Go bad
The Addams Family characters
Fat ___

Now answer for these 16 words. Follow these restrictions for the output:
1. DO NOT include the descriptions. DO NOT have any "Descriptions:" text.
2. ONLY include the 16 words given. There should be NO OTHER WORDS.
3. DO NOT include any preceding text, like "Answers:", or line numbers, like "1.".
"""

B Distillation and Fine-Tuning Prompts

Distillation prompt is as follows.

"""
You are a teacher teaching a student to play the following game.
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Given 16 words, split them into 4 groups of 4 words, so each group is related by a certain theme or category.

Follow the restrictions at the end of the instruction.

Here are some hints.
1. The 4 words can be items that belong in the same category.
Example:
Fish: BASS, SALMON, TROUT, FLOUNDER
Body parts: HEAD, KNEES, SHOULDER, TOES

2. The 4 words can each form a common phrase when paired with another word.
Example:
Fire __: ANT, DRILL, ISLAND, OPAL
___ Change: CHUMP, CLIMATE, LOOSE, SEA

3. The 4 words can be associated with a certain verb phrase or action
Example:
Things to crack: EGG, KNUCKLES, SMILE, WINDOW
Removes the covering of: PARES, PEELS, SHELLS, SHUCKS

You have an example game with a answer key and teacher’s guide, and your task is to explain to a student how to arrive at
the solutions from the 16 words.

Here is the example game:
{Entries}

Answers:
{Answers}

Teacher’s Guide:
{Descriptions}

Explain with clean and clear logic, refer to word-level details and explain how the groups of words are formed sequentially.
"""

Mistral Fine-tuning prompt is as follows.

"""<s>[INST]
# CONTEXT #
You are playing a linguistic game that requires chain-of-thought reasoning and has only one correct answer.
Given 16 words, split 16 words into 4 groups of 4 words, so each group is related by a certain theme or category.

Provide your reasoning for the groupings along with your answers.

Each of the 16 words is in EXACTLY ONE of 4 groups. Each group has EXACTLY 4 words. Think through this step by step.
You should start by identifying the easiest group, which is usually four items that belong in the same category of objects.

Here are some hints.
1. A reason 4 words are in a group can be that they are items that belong in the same category.
Example:
Fish: BASS, SALMON, TROUT, FLOUNDER
Body parts: HEAD, KNEES, SHOULDER, TOES

2. A reason 4 words are in a group can be that they each form a common phrase when paired with another word.
Example:
Fire __: ANT, DRILL, ISLAND, OPAL
___ Change: CHUMP, CLIMATE, LOOSE, SEA

3. A reason 4 words are in a group can be that they are associated with a certain verb phrase or action.
Example:
Things to crack: EGG, KNUCKLES, SMILE, WINDOW
Removes the covering of: PARES, PEELS, SHELLS, SHUCKS

#########

# OBJECTIVE #
Provide your reasoning and the correct 4 groups of 4 words for these 16 words: input

#########

# RESPONSE FORMAT #
You answer should follow the following format exactly. Otherwise you will suffer consequences beyond imagination.

Respond with chain-of-thought reasoning for your grouping choices followed by "So the answer is:" and a JSON object with a single key
"answer" that has a list of 4 lists, each of which has 4 words.
Make sure each of the 16 words appears in EXACTLY one group and each group has EXACTLY 4 words.

DO NOT include anything after this JSON object.

#########
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# EXAMPLE #
Given the 16 words:
SHALLOW, MAKE UP, COO, SURFACE, IMPROV, SIDE, AD-LIB, BABBLE, COSMETIC, CRAWL, DOMINO, FREESTYLE, PLACEBO, NURSE, BUTTERFLY, EXTERNAL

The correct response would be:

[REASONING_HERE]

So the answer is:

"answer": [["AD-LIB","FREESTYLE","IMPROV","MAKE UP"],["BABBLE","COO","CRAWL","NURSE"],["COSMETIC","EXTERNAL","SHALLOW","SURFACE"],
["BUTTERFLY","DOMINO","PLACEBO","SIDE"]]
[/INST]"""

C Verbal RL Prompts
Supervisor (DBRX) prompt is as follows:

"""

You are a helpful assistant helping a student play a word game.

The instructions given to the student were:
###start of instructions###
instructions
###end of instructions###

The student’s answer is:
response

And the student’s reasoning is:
reasoning

Observe if the student’s grouping of the words and corresponding reasoning are reasonable.

Your job is to talk to the student, comment on the student’s current performance, and help the student improve the answer.

Format your response should address the student as if talking to him directly, starting with "You should notice these details:"
"""
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