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Abstract

We implement an extension of the BERT model with architectural changes and
learning and regularization techniques to optimize performance on three different
tasks: sentiment analysis using the Stanford Sentiment Treebank (Socher et al.,
2013 [1]); paraphrase detection on Quora Question Pairs (Fernando and Stevenson
2008 [2]), and semantic equivalence (Agirre et al., 2013 [3]). Specifically, we
implemented the S-BERT architecture [4] to improve the performance of the para-
phrase detection task, PCGrad [5] to reduce performance trade-offs, and SMART
regularization [6] to address overfitting on STS and SST tasks. Additionally, we
experiment with different loss functions (MSE and cross-entropy) for the STS
task, as well as various hyperparameters (learning rate, dropout, weight decay, and
batch size) and optimizers (AdamW, Adam, and SGD). Our approach effectively
balances versatility and specialization in multi-task learning, which will become
increasingly important as the complexity and size of language models continue to
scale.

Key Information: Our TA mentor is Neil Nie. We have no external collaborators or mentors,
and we are not sharing the project. We contributed equally to this project. Luke implemented the
baseline BERT model and made stronger contributions to the code base, while Emma implemented
optimizations and focused more on writing and analysis.

1 Introduction

Language models are increasingly expected to excel across a large, diverse set of tasks, as shown
by the rise of benchmarks like MMLU (Massive Multitask Language Understanding). This reflects
the belief that models should mirror a general, human-like form of intelligence rather than focus on
performance for more specific, narrowly defined tasks.

In our project, we addressed a fundamental challenge of multi-task learning: balancing generalization
while maintaining strong performance on specialized tasks, namely sentiment analysis, paraphrase de-
tection, and semantic equivalence. We implemented various learning, regularization, and architectural
techniques, making incremental changes based on the results of experiments. Ultimately, we arrived
at our highest-performing model by implementing the S-BERT representation of multi-sentence em-
beddings, with various hyperparameter adjustments and the use of MSE loss. Surprisingly, we found
that more advanced techniques, such as PCGrad and SMART regularization, did not substantially
improve results, especially relative to architectural changes.
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2 Related Work

Multitask learning (MTL) is a paradigm that leverages shared representations to solve multiple tasks
with the same model, realizing large computational efficiency gains and generalizability relative to
independent task training.

One of the first unified MTL architectures was proposed in 2008 by Collobert and Weston[7], who
achieved state-of-the-art performance by training jointly on multiple tasks by using weight-sharing.
A few years later, Turian et al.[8] and Dai and Le 2015 [9] showed that word features can be learned
in an unsupervised, task-agnostic manner and improve in generalization accuracy on a variety of
downstream tasks. Similar promise has been seen with transfer learning from supervised data,
particularly in vision research. Yosinski et al. 2014 [10] showed the effectiveness of fine-tuning
models after pre-training on ImageNet.

However, MTL has also proven difficult to optimize due to issues such as overfitting and conflicting
gradients. Overfitting can arise when fine-tuning on downstream tasks is too aggressive, leading the
model to overfit and perform poorly on unseen data. Dropout, proposed by Hinton et. al. in 2014
[11], is a regularization technique that randomly drops units in the hidden layer to zero to prevent
over-indexing on any one unit to encourage greater generalization. More recently, Jiang et al. (2020)
[6] propose SMART regularization, which uses adversarial regularization and Bregman Proximal
Point Optimization (BPPO) to manage complexity and aggressive updating at the fine-tuning stage.
Yu et al., on the other hand, attribute the primary issue to the conflicting gradient problem, defining
gradients to be conflicting if they have negative cosine similarity. More specifically, they find that
such conflicts are detrimental to optimization when they coincide with high positive curvature in the
optimization landscape and are significantly different in magnitudes. Under these circumstances,
the multi-task gradient is dominated by a singular task gradient, resulting in the improvement of the
dominating task being over-estimated. This is shown visually in Figure 1

Figure 1: Visualization of 2D multi-task optimization. The gradient vectors of the two tasks are
indicated by the blue and red arrows. Optimization trajectory goes from black to yellow. Without

PCGrad, optimization stops in the first valley (at the intersection of the gradient vectors).

We attempt to combine different approaches to MTL optimization discussed above, using adjusted
representations (i.e. absolute difference) of embeddings, gradient projection methods, and robust
regularization to tackle the challenge of MTL.

3 Approach

We first implemented a very basic multi-task model, with only linear layers projecting the BERT
embeddings onto the task-specific class space (five classes for sentiment classification and two classes
for paraphrase detection, with cosine similarity being used for semantic textual similarity). This did
rather poorly, performing slightly above random guessing for sentiment classification and under for
paraphrase detection. We implemented five experiments, detailed below.

1. S-BERT + Cosine Similarity
On the baseline, both the paraphrase detection and sentence similarity tasks were perform-
ing poorly (paraphrase detection was below the 0.5 accuracy of random guessing). We
implemented the S-BERT architecture as outlined by Reimers and Gurevych [4] for the
paraphrase detection task, shown in Figures 2 and 3. We also added cosine similarity for the
STS task.
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Rather than simply concatenating the two pooled embeddings from A and B and running
that through a classifier, we concatenated the embeddings with the element-wise absolute
difference |u − v| and multiplied that with weights W ∈ R3n, projecting onto a binary
subspace (paraphrase or no paraphrase). At the same time, because sentiment classification
was more distinct from the other two tasks, we added a few task-specific layers to the
architecture (two hidden layers with dropout and activation functions). Additionally, we
experimented with adding additional full-connected layers with dropout and activation
functions to the standard S-BERT architecture (after pooling).

Figure 2: Training Architecture Figure 3: Inference Architecture

2. PCGrad
As mentioned in Section 2, one issue with MTL is conflicting gradients. During our
hyperparameter experiments with the S-BERT architecture, we noticed trade-offs (sometimes
rather large) between the three tasks. For example, as SST or STS improved, paraphrase
detection performance would worsen. As discussed by Yu et al. [5], this is sometimes
the result of conflicting gradients. Using an existing implementation of PCGrad [12],
we incorporated their proposed solution of PCGrad into our architecture, projecting the
conflicting gradient onto a surface acute to the other gradient, to attempt to address this
problem. Specifically, for two task gradients gi, gj , when cosϕi,j < 0, then:

gPC
i = gi −

gi · gj
||gj ||2

gj

For three tasks, the process is repeated for each task and then summed, such that gPC =∑
i g

PC
i . This process ensures that the gradients of any individual task interfere minimally

with the gradients of other tasks.
3. SMART Regularization

We observed severe overfitting with both the S-BERT and S-BERT + PCGrad implemen-
tations, especially on the STS and SST tasks. In some cases, dev accuracies were twice
that of validation accuracies (e.g. 0.9 vs 0.4 for SST). As outlined by Jaing et al. [6],
aggressive fine-tuning on downstream tasks can cause model overfitting. We used the public
implementation of SMART regularized optimization by Jiang et al. to address the overfitting
in SST and STS fine-tuning. We made a small modification to their implementation by
dynamically changing the amount of regularization based on the degree of overfitting for
each task.

4. Changing Loss Functions
Although MSE loss is common for regression tasks, and thus theoretically better suited for
the semantic similarity task, we wanted to experiment with our model sharing the same
loss function (cross-entropy). It is important to keep gradients on the same scale when
implementing multi-task learning, and having different loss functions can cause different
gradient scaling, affecting the optimization. We used both MSE and cross-entropy loss on
STS in each of the above architectures, noticing different results for all three.

5. Hyperparameter Tuning
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On each of the above architectures, we did a hyperparameter sweep of different learning rates,
dropouts, and weight decays. We also experimented with different optimizers (AdamW,
Adam, and SGD), but found that AdamW performed best across the board.

4 Experiments

Data & Evaluation Method We used the Stanford Sentiment Treebank (SST) and CFIMDB dataset
in the first part of the project. In the second, we used the SST dataset for sentiment analysis, the
Quora dataset for paraphrase detection, and the SemEval dataset for semantic textual analysis. For
sentiment analysis and paraphrase detection, we use accuracy as our measure of evaluation. For
textual similarity, we use the Pearson correlation coefficient.

Baselines Our baseline architecture added one layer for each task (a linear layer projecting down
onto the appropriate output space and an activation function) with the standard hyperparameters
found in the first part of the project (learning rate = 1E-5, batch size = 8, epochs = 10). We achieved
the following scores.

Model Overall Score SST Acc (Dev) Para Acc (Dev) STS Corr (Dev)
minBERT 0.422 0.290 0.373 0.205

Table 1: Baseline Results

The baseline model performs very poorly, with SST accuracy just above random guessing (0.2) and
paraphrase accuracy below random guessing (0.5).

Experimental Details We initially implemented each of the first four experiments with the same
baseline hyperparameter settings (learning rate = 1E-5, batch size = 32, epochs = 10, dropout = 0.1,
weight decay = 0.01). We then ran a hyperparameter sweep on each model to obtain the best settings.
We decided to experiment with learning rates, dropout probabilities, and weight decay. As mentioned
earlier, we also ran experiments with various optimizers (AdamW, Adam, SGD), but found that
AdamW worked best across the board.

5 Results & Analysis

S-BERT + Cosine Similarity The implementation of S-BERT for paraphrase detection, cosine
similarity on STS, and sentiment-specific layers for SST dramatically improved our baseline. As
shown in Table 2, we saw improvements to both paraphrase and STS when using cosine similarity
architecture on STS, and a larger performance jump for paraphrase when adding S-BERT. The
sentiment-specific layers (specifically two hidden fully-connected layers with dropout and ReLU
activation) also notably boosted SST performance.

Model Overall Score SST Acc (Dev) Para Acc (Dev) STS Corr (Dev)
STS Cosine Similarity 0.636 0.497 0.598 0.626
S-BERT (para) + CosSim 0.687 0.486 0.771 0.610

Table 2: Initial S-BERT Experiments with Default Hyperparameters

We experimented with different variations of the embedding concatenation method. Like Reimers and
Iryna Gurevych, we found that the concatenation mode used by Cer et al. in the Universal Sentence
Encoder [13], in which (u, v, |u − v|, u ∗ v) is used as input to the classifier, slightly decreased
performance relative to concatenating the embeddings with absolute difference alone. One possible
explanation is that element-wise multiplication can be dominated by large values in either vector and
lead to less stable gradient updates.

After running a hyperparameter sweep on this architecture, we found that the two most effective
parameters to tune were weight decay and dropout, most likely because the sentiment and similarity
tasks were overfitting. Increasing dropout had a fairly large effect on paraphrase detection and
sentiment classification, while weight decay had large effects on sentiment classification and similarity.
This is shown in Table 3.
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Hyperparameters Overall Score SST Acc (Dev) Para Acc (Dev) STS Corr (Dev)
Weight Decay: 0.1, Dropout: 0.3 0.687 0.486 0.771 0.610
Weight Decay: 0.1, Dropout: 0.5 0.718 0.482 0.826 0.694
Weight Decay: 0.3, Dropout: 0.3 0.720 0.500 0.782 0.758
Weight Decay: 0.3, Dropout: 0.5 0.720 0.510 0.784 0.731

Table 3: Experiments with Hyperparameters on SBERT Architecture

PCGrad During the hyperparameter sweep of the SBERT architecture (which included the layers
added to the sentiment task), we noticed that the improvements in SST and STS reduced the
performance of paraphrase detection. This is common in MTL optimization; the improvement
of the dominating tasks is over-estimated while poor optimization of secondary tasks is under-
estimated. As discussed in section 3, Yu et al. propose PCGrad as a method to fix conflicting
gradients and improve optimization across all tasks in MTL [5]. We believed that adding PCGrad
could help reduce the performance hit that the paraphrase task took when increasing weight decay.
However, we were surprised to find that it didn’t lead to any improvements, as shown in Table 4.
Rather, in many cases, it performed worse than the simple S-BERT architectures. As expected,
PCGrad diminished performance in SST, but we were surprised to find that it also harmed results in
paraphrase detection, as that was supposed to be the secondary task that would benefit from adding
PCGrad.

One possible reason may be that we had to use slightly smaller batch sizes (16 as opposed to 32),
because of memory issues on our virtual machines. We tried various implementations of PCGrad, but
each ran into memory issues. Future work could include utilizing different virtual GPU instances that
allow for larger batch sizes when using PCGrad. However, in our initial baseline experiments, we
didn’t notice significant score differences between batch sizes, and STS and SST overfitting wasn’t
significantly different on the PCGrad architecture compared to the S-BERT architecture. Thus, it is
unlikely that the batch size difference significantly hindered the performance of PCGrad.

Model Overall Score SST Acc (Dev) Para Acc (Dev) STS Corr (Dev)
S-BERT (best) 0.720 0.510 0.784 0.731
S-BERT + PCGrad 0.707 0.489 0.767 0.733

Table 4: Initial S-BERT + PCGrad Experiments with Default Hyperparameters

Importantly, on some hyperparameter settings (such as weight decay = 0.1 and dropout = 0.3),
S-BERT + PCGrad performed more optimally than S-BERT alone. However, the most optimal
hyperparameters found for S-BERT alone were more optimal than when adding PCGrad. This is
shown in Table 5.

Hyperparameters Overall Score SST Acc (Dev) Para Acc (Dev) STS Corr (Dev)
Weight Decay: 0.01, Dropout: 0.1 0.457 0.253 0.632 -0.030
Weight Decay: 0.1, Dropout: 0.3 0.705 0.489 0.766 0.717
Weight Decay: 0.3, Dropout: 0.3 0.707 0.489 0.767 0.733

Table 5: Experiments with Hyperparameters on S-BERT + PCGrad Architecture

SMART Regularization We implemented SMART regularization in an attempt to reduce over-
fitting on the SST and STS tasks. We did see an improvement in the STS task, but it came with an
equally significant reduction in improvement on SST, as shown in Table 6.

However, in both cases, SST and STS continued to overfit drastically. We were seeing dev accu-
racies of 0.95+ for both tasks, with validation fold performance stagnating at ∼ 0.51 and ∼ 0.76,
respectively. This can be clearly seen in Figure 4 The issue of overfitting plagued many of our
experiments. Adding SMART, changing model architecture, increasing dropout and weight decay,
and increasing batch size did little to affect overfitting. We realized too late that the next step might
be to try data augmentation. We were so focused on changing the model to reduce overfitting that
we hadn’t considered the data to be the primary culprit. Future work would include additional data
generation, possibly using a tool like GPT-4, or masking on the original dataset.
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Model Overall Score SST Acc (Dev) Para Acc (Dev) STS Corr (Dev)
S-BERT (best) 0.720 0.510 0.784 0.731
S-BERT + SMART (best) 0.720 0.488 0.766 0.817

Table 6: S-BERT + SMART Experiments with Best Hyperparameters

Figure 4: Overfitting on SST: Dev vs Validation Accuracy

Changing Loss Functions We had initially standardized our loss function across all three tasks
as cross-entropy loss. This was done to maintain similar scale across gradients. However, we
overlooked the common use of MSE on regression tasks (which STS was), as opposed to the use of
cross-entropy on classification tasks (of which both SST and paraphrase detection are). We saw some
improvements in the STS task, but the biggest jump in paraphrase, as shown in Table 7. Although
initially surprising, we noticed that when using cross-entropy loss, the loss for STS was much larger
than that of the other two tasks (often twice as large). It is possible that is dominated the optimization,
reducing performance on the other tasks. Thus, when switching to MSE loss, it actually resulted in
the gradients and losses for all three tasks to be on a more similar scale, boosting performance on
paraphrase detection. Because MSE loss is more resilient to outliers, it is better suited for regression
tasks with more noisy data. We did not attempt this configuration with PCGrad, but future work could
look into doing so, as this may be a case of conflicting gradients.

Hyperparameters Overall Score SST Acc (Dev) Para Acc (Dev) STS Corr (Dev)
Weight Decay: 0.3, Dropout: 0.5 0.732 0.512 0.803 0.760
Weight Decay: 0.3, Dropout: 0.3 0.730 0.456 0.829 0.810

Table 7: Experiments with Hyperparameters on SBERT + SMART Architecture + STS MSE Loss

6 Conclusion

In this work, we investigated the challenge of balancing versatility and specialization in multi-
task learning using a BERT-based architecture. Our primary focus was on three tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity. Through a series of experiments, we
introduced several advanced techniques, including S-BERT, PCGrad, Cosine Similarity, and SMART
regularization, alongside hyperparameter tuning.

Our results demonstrated that the S-BERT architecture, coupled with STS-cosine-similarity and SST-
specific layers, significantly outperformed the baseline model, particularly in paraphrase detection
and semantic textual similarity tasks. Hyperparameter tuning further enhanced the performance, with
optimal configurations leading to substantial gains. Interestingly, while PCGrad was expected to
mitigate the conflicting gradient issue inherent in multi-task learning, it did not yield the expected im-
provements and, in some cases, resulted in decreased performance. Similarly, SMART regularization
did little to address the issue of overfitting.

These findings suggest that simple architectural adjustments and meticulous hyperparameter tuning
can substantially enhance multi-task learning performance, and techniques like PCGrad and SMART
regularization may only lead to modest improvements with this foundation in place.
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Overall, our study underscores the importance of iterative experimentation and careful evaluation
in multi-task learning. As language models continue to scale in complexity and scope, balancing
versatility and specialization remains a crucial challenge, and our findings contribute valuable insights
towards achieving this balance.

7 Limitations and Future Work

Moving forward, our highest priority would be addressing the overfitting seen on SST, which was
not sufficiently corrected with SMART regularization or increasing the dropout probability. As
mentioned earlier, we would want to consider additional data generation, possibly using a tool like
GPT-4, or implementing masking on the original dataset.

After addressing overfitting, we would want to enhance our ability to handle conflicting gradients.
We believe PCGrad may have been limited in its approach due to the memory issues we encountered,
limiting our batch size and the possible number of epochs run. To address the memory issues we
encountered with PCGrad, we will explore strategies such as gradient checkpointing and memory-
efficient implementations of gradient projection. Gradient checkpointing reduces memory usage by
saving only certain layers’ activations during the forward pass and recomputing them during the
backward pass. This technique allows us to handle larger models and batch sizes without running out
of memory. By focusing on these areas, we aim to improve upon our baseline to develop a robust and
scalable multi-task learning model.

8 Ethical Considerations

In addressing tasks like sentiment analysis and semantic textual similarity, we are dealing with
complex and culturally sensitive language data.

Given the reliance on datasets such as the Quora dataset, Stanford Sentiment Treebank, and STS 2012
and 2013 datasets, there is an inherent risk of bias, particularly against underrepresented dialects such
as African-American Vernacular English (AAVE). More specifically, in the SEM 2013 paper from
Diab, Gonzales-Agirre, and Guo, a dataset called Europeana was used for cultural heritage items.
While this might be sufficient if use of the model was limited to Europe, the lack of training data
could impair model performance across different linguistic and racial groups, a concern supported by
Hofmann et al. [14]. This is particularly pertinent to our paper, as even if our model can generalize
across tasks, if it cannot perform well across linguistic groups due to a lack of representation in
training data, it is not right to call it a truly versatile model.

Some ways to address this are using fairness metrics for dialectic diversity (e.g., multi-group fairness)
and augmenting the corpus to include a broader set of texts, such as those from AAVE to enhance
to representativity of the model (e.g., use an African American cultural heritage dataset for STS).
Lastly, as is the case in all NLP research, it is important to rigorously test for the amplification of
biases (disparities in how the model handles content related to different genders, ethnicities, or other
characteristics) and maintain transparency in our methods to facilitate external audits.
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