
PROCEED: Performance Routing Optimization for
Cost-Efficient and Effective Deployment

Stanford CS224N Custom Project

Lichu Acuña
Department of Mathematics

Department of Computer Science
Stanford University

acuna@stanford.edu

Odin Farkas
Department of Computer Science

Stanford University
omfarkas@stanford.edu

Abstract

The rapid proliferation of Large Language Models (LLMs) necessitates the devel-
opment of efficient routing systems to optimize model selection while balancing
performance and computational cost. Current proprietary LLM routers restrict
access to efficient routing technologies, particularly disadvantaging sectors lacking
substantial computational resources. To address this, we present an open-source
routing framework that predicts LLM performance based on query inputs to de-
termine the most suitable model, thereby minimizing computational overhead
while preserving output quality. Utilizing the RouterBench dataset, we leveraged
lightweight machine learning models—fastText and DistilBERT—and reformu-
lated the routing problem from classification to regression. These models were
chosen for their computational efficiency, a necessary prerequisite for a router to
be practical. Our experimental results indicate that both models can distinguish
between easy and hard prompts, demonstrating a basic understanding of prompt
complexity. Despite challenges in predicting more intricate differences in prompt
difficulty, the approach demonstrates great promise for the creation of a predic-
tive solution for LLM routing, with potential for improved accuracy using larger
datasets in the future.

1 Key Information

• TA mentor: Yann Dubois

• External collaborators: No

• Sharing project: No

• Team Contributions: Both team members attended weekly meetings with Yann and fre-
quently discussed project direction. Odin led background research and creation of imple-
mentation strategies. Lichu led implementation and experiment execution.

2 Introduction

The escalating adoption of Large Language Models (LLMs) across diverse sectors presents a com-
pelling challenge: optimizing the selection of these models in a landscape burgeoning with options.
While the allure of deploying the latest, most robust models persists, practical applications often reveal
that smaller, less resource-intensive LLMs can suffice, bringing forth significant cost efficiencies.
This realization underscores the necessity for intelligent routing systems that not only match the
query with the most efficient model but also mitigate the substantial financial impacts associated with
high-end models. Recent routing methods, such as LLM cascading, while resourceful, sequentially
activate an array of models from the least to the most expensive until they meet a predetermined

Stanford CS224N Natural Language Processing with Deep Learning



output quality. This non-predictive approach, as detailed in works like FrugalGPT (Chen et al., 2023)
[1], can lead to excessive computational resource usage without guaranteeing optimal results.

Innovatively, our project pivots from traditional methods by introducing a routing framework that
leverages historical data to predict the quality of each LLM output without their actual deployment.
Utilizing the RouterBench dataset [2], our approach involves fine-tuning lightweight models to predict
the performance levels of LLMs based solely on incoming queries. This strategic shift enhances
model selection precision and significantly reduces operational overhead by eliminating the need
to test multiple models. Developing a predictive model that accurately forecasts LLM performance
presents significant challenges due to the complexity of modeling the nuanced capabilities of diverse
LLMs. However, the practical importance of such a model cannot be overstated, as it promises to
significantly enhance efficiency in the deployment of LLMs, particularly in large-scale environments.

3 Related Work

Routing In the realm of LLM routing, strategies diverge between enhancing single models and
selecting among multiple models without executing each. Techniques like Mixture-of-Experts (MoE)
optimize a single model’s performance through internal routing to specialized ’experts,’ but these are
often limited to specific models. Additionally, strategies such as LLM synthesis and non-predictive
routing utilize ensemble techniques or direct selection from multiple models’ outputs to enhance
overall performance without initial predictive assessment. In contrast, predictive routing strategies,
exemplified by "Large Language Model Routing with Benchmark Datasets" (Shnitzer et al, 2023)
[3], represent a significant advancement. By leveraging historical performance data to predict the
optimal model for a given query, these strategies significantly reduce computational overhead and
enhance efficiency by obviating the need to generate responses from all models, making them an
optimal choice for scalable and effective LLM deployment.

Router Standardization The "ROUTERBENCH: A Benchmark for Multi-LLM Routing System"
paper (Hu, Bieker, et al., 2024) [4], addresses the challenge of selecting the most cost-effective large
language model (LLM) for specific queries amidst the burgeoning array of LLMs. It introduces
the RouterBench dataset, a vast compilation of 405,000 inference outcomes from 11 models across
varied tasks, providing a robust platform for both training and benchmarking routing algorithms.
This dataset is noted for its diversity, encompassing tasks ranging from commonsense reasoning to
mathematical problem-solving, hoping to provide a holistic standard for routing akin to ImageNet’s
impact on computer vision. Complementing the dataset, the paper presents a novel mathematical
framework to evaluate routers by mapping their cost-effectiveness and performance on a c-q plane.
This pioneering work establishes a standardized benchmark for router assessment, encouraging
advancements in the development of LLM routing algorithms.

Alternative Router Implementations A recent approach to a the predictive routing challenge is
explored in the "Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing" paper (Ding et
al., 2024) [5].Contrasting with the predictive model proposed in the RouterBench paper, which
anticipates the performance of each potential LLM to route queries accordingly, the Hybrid LLM
paper advocates a more streamlined strategy. This approach simplifies the prediction to determining
the necessity of using a small versus a large model for each task, thus reducing the decision-making
process to a choice between two model categories. The authors report that this methodology achieves
a 40% reduction in costs without compromising the quality of outcomes, providing a significant
enhancement in routing efficiency.

Open Source LLM routing is an emerging field, and many of the solutions, such as those developed
by industry leader Martian [6], are proprietary. This situation underscores a significant gap in the
development of open-source LLM routing tools.

4 Approach

We approach the routing problem differently from most previous efforts. Instead of developing a
single small model that takes a prompt as input and outputs the best LLM to query to optimize
performance and cost for that prompt, we build a small model for each LLM. Each of these models
takes the prompt as input and outputs the predicted quality score for the response that would be
generated by that specific LLM.

2



In a production environment, the app using our router would query the model for each of the available
LLMs to get predicted quality scores q1, · · · , qn. A simple deterministic formula would then take
these predicted scores into account, along with some preference parameters like the cost/quality
trade-off, to choose which LLM to query. For instance, such a formula could have preference
parameters wperformance and wcost and look like wperformance · qi − wcost · ci. This calculation would be
performed for each LLM, and the one with the highest score would be used.

In essence, we do not build a routing model but rather multiple quality prediction models and then
use their outputs to construct a routing algorithm. We choose this approach because:

1. Ease of Integration and Removal of LLMs: It simplifies the process of integrating new
LLMs into or removing existing LLMs from our routing algorithm. In the single-model
approach, the entire model would need to be retrained each time a new LLM is added or
removed from the possible options. With our approach, we only need to train a new quality
prediction model for any new LLMs added.

2. Flexibility in Preference Parameters: It allows for easier modification of the preference
parameters for each program using our routing algorithm. In the single-model approach,
the entire model would have to be retrained for each different set of preference, such as the
cost/quality trade-off parameters shown above. In our approach, these preference parameters
are only used in the deterministic formula applied after running the quality prediction
models. Thus, a single instance of these models can serve all possible set of preferences
parameters.

Models We built two different architectures for our quality prediction models.

On the one hand, we use fastText[7] embeddings for our baseline model. FastText embeddings utilize
subword information to construct lightweight word embeddings and have also demonstrated good
results in embedding entire sentences by averaging the embeddings of each word within them. Our
baseline quality prediction model computes the embedding of the prompt and run it through a small
neural network with a sigmoid activation at the end, outputting a value between 0 and 1 to predict the
quality score of the language model for the given prompt.

Our second model is a fine-tuned extension of DistilBERT[8]. DistilBERT is a lighter version of
BERT, with 40% fewer parameters, running 60% faster while preserving 95% of BERT’s performance
as measured on the GLUE language understanding benchmark. Our model uses DistilBERT up to
its last layer, also followed by a small neural network with a sigmoid activation at the end, which
outputs a value between 0 and 1. We experimented with training the model using both frozen and
unfrozen BERT parameters.

5 Experiments

5.1 Data

The RouterBench dataset is a comprehensive collection designed to support the development and
evaluation of routing algorithms for Large Language Models (LLMs). It consists of 36,498 English
prompts that cover a wide range of AI-relevant tasks and domains, each associated with responses
from various supported LLMs, along with a discrete score for each response, quantifying its quality
on a predetermined scale. Notable benchmarks within this dataset include Hellaswag (Zellers et
al., 2019), which challenges models to complete realistic, commonsense scenarios requiring an
understanding of everyday activities, and MBPP (Austin et al., 2021), which evaluates code synthesis
capabilities through Python programming problems. Additionally, the dataset includes a variety
of other tasks ranging from conversational benchmarks to complex mathematical problem-solving,
further illustrating its capability to provide diverse and rigorous tests for routing algorithms, spanning
multiple cognitive and linguistic challenges.

The scoring system in the RouterBench dataset uses discrete values (0, 0.25, 0.5, 0.75, 1), providing
a clear, quantitative framework for evaluating the outputs of LLMs. While this quantitative approach
is beneficial for straightforward comparisons and systematic analysis, it is important to recognize
that the discrete nature of the scoring may not capture the full nuance of model outputs, potentially
oversimplifying the complexities of LLM performance.

3



5.1.1 Removal of Multiple-Choice Prompts

From the 36,498 English prompts in the RouterBench dataset, 27,684 are multiple-choice prompts
where the target answer is a single character (usually "A", "B", "C", or "D"). Predicting the quality
of a LLM’s response to such queries is extremely challenging, as it requires the lightweight model
to effectively possess the same knowledge base as the LLM. During initial experimentation, we
observed that this negatively impacted the learning of our quality prediction models. For instance,
for the GPT-3.5 LLM, the average predicted score by the fine-tuned DistilBERT model for prompts
whose responses were scored 0 in RouterBench was 0.5327, while for those scored 1, it was 0.5944.
This indicates that the model could barely differentiate between them. Taking this into account, and
considering that multiple-choice questions are not representative of the typical prompts that LLMs
usually receive, we decided to remove these queries from the dataset. This leaves us with 8,814
prompts in our dataset, which is a relatively small number but sufficient to train a model. Given the
dataset’s size, we decided to split it into a training set comprising 90% of the dataset and a test set
comprising the remaining 10%.

5.1.2 Continuous metric scores

Given the discrete nature of the scores provided by RouterBench, we explored the possibility of
integrating a continuous metric to evaluate the quality of the language model’s responses. This
aimed to differentiate between correct answers by assessing their quality more precisely. While
RouterBench assigns a score of 1.0 to any correct response regardless of its quality, a continuous
metric could provide a nuanced evaluation, assigning higher scores to higher quality responses.

Figure 1: RouterBench Score vs DeBERTa RM Score

To address this challenge, we utilized Microsoft’s DeBERTaV3’s reward model [9], which was trained
during post-training using their Direct Preference Optimization (DPO) strategy [10]. This model is
available on HuggingFace through OpenAssistant [11], and to assess its quality we applied it to all
responses from GPT-3.5 within the RouterBench dataset.

The scores from DeBERTaV3’s reward model, however, showed low correlation with RouterBench
scores, with a correlation coefficient of only ρ = 0.0542. The following plot illustrates the comparison
between the two sets of scores (note that DeBERTaV3’s reward model scores are not confined to the
[0, 1] interval), showcasing their discrepancies. It can be seen in the plot that DeBERTaV3’s reward
model assigns only slightly higher scores to responses rated 1 by RouterBench compared to those
rated 0, which is undesirable.

Considering that RouterBench scores were assigned in a more controlled and deterministic manner,
we regard them as more significant than those assigned by the reward model. Consequently, we
decided to use the discrete RouterBench scores for our quality prediction models, instead of the
scores generated by DeBERTaV3 reward model.

4



5.1.3 Dataset Balancing

With these changes, our dataset is composed of:

• 408 prompts with a score of 0.
• 1322 prompts with a score of 0.25.
• 1737 prompts with a score of 0.5.
• 4619 prompts with a score of 0.75.
• 726 prompts with a score of 1.

As we can see, the dataset is heavily imbalanced toward the higher scores. To address this, we
perform oversampling in the training set. This involves duplicating rows so that there is an equal
number of rows for each score. As a result, the training set consists of 3,735 rows for each of the five
score classes.

5.2 Evaluation method

The changes introduced to our dataset and model, specifically the shift from a single-model paradigm
to our one-model-per-LLM paradigm, make it challenging to compare our results with those from
RouterBench, the only existing benchmark for routing algorithms in the literature. RouterBench
introduces and uses a metric called Average Improvement in Quality (AIQ) to assess router perfor-
mance. However, due to the aforementioned changes in our architecture, it is impossible to calculate
this metric in our models and so directly compare our router with theirs. Given the nascent stage of
this research area, we are compelled to develop our own evaluation method for our routing algorithm.

First, we examine the loss of our quality prediction model, which uses the Mean Squared Error (MSE)
loss. However, to gain a better and more intuitive understanding of what our models are predicting,
and leveraging the discrete nature of our dataset, we look at the average predicted score by our model
for prompts whose responses received a specific score in the RouterBench dataset. This analysis
provides us with five numbers: the average predicted score for the 0 class, 0.25 class, 0.5 class,
0.75 class, and 1 class. We particularly focus on the average predicted quality for the 0 class being
significantly different from the average predicted quality for the 1 class, as these two are the most
distinct. A considerable distance between these averages indicates that our models are effectively
predicting the difficulty of a given prompt. To visualize these results, we plot the comparison between
RouterBench and our predicted values in a box plot, similar to what we did in Figure 1.

5.3 Experimental details

Both the fastText-based model and the DistilBERT-based model were trained using the Mean Squared
Error (MSE) loss function.

We conducted a grid search to find the optimal architecture for our fastText and DistilBERT models.
The hyperparameters we searched over during our grid search included:

1. Number of neurons per layer: 16, 32 or 64, 128, 256.
2. Number of layers: 1, 2, 3, 4 or 5.
3. Learning rate: 0.0001, 0.001, 0.01 or 0.1
4. Number of epochs: 1, 2, 5, 10 or 20.
5. Batch size: 32, 64, 128, 256.

Note that the hyperparameters related to the architecture of the model (1 and 2) affect what runs after
the fastText embeddings or the DistilBERT model.

5.3.1 fastText-Based Model

While fastText allows for training embeddings on your own data, we decided to use the pre-trained
English word vectors [12] since they were trained on a significantly larger dataset and are therefore
richer. These embeddings are of dimension 300, but we used fastText’s native functionality to reduce
them to 50 dimensions to make our model lighter.

The grid search resulted in the following optimal architecture for the fastText-based model:

5



1. Number of neurons per layer: 64
2. Number of layers: 1
3. Learning rate: 0.001
4. Number of epochs: 10
5. Batch size: 64

As a note, we also experimented with incorporating the length of the prompt as an input to our neural
network, in addition to the 50-dimensional sentence embedding. To our surprise, however, this did
not provide any improvement in the loss of our model. For any hyperparameter configuration, the
results were essentially the same as when the length of the prompt was not included in the input.

5.3.2 DistilBERT-Based Model

We train the DistilBERT-based model with the DistilBERT weights frozen.

The grid search resulted in the following optimal architecture for the DistilBERT-based model:

1. Number of neurons per layer: 16
2. Number of layers: 1
3. Learning rate: 0.01
4. Number of epochs: 1
5. Batch size: 128

Refer to Figure 4 in the Appendix for the loss plot of this model’s training.

Training with unfrozen DistilBERT weights was also considered. We experimented with re-training
the model with unfrozen DistilBERT weights and a smaller learning rate of 0.005 after finishing the
first pass of training with frozen DistilBERT weights. However, this did not lead to any decrease
in the loss. We believe this is due to the relatively large size of DistilBERT compared to the small
size of our data set. We decided, consequently, to keep the DistilBERT weights frozen, given that
they are the result of training over multiple orders of magnitude more data and therefore are rich in
knowledge. Refer to Figure 5 in the Appendix to see the evolution of the loss when training with
unfrozen weights after training with frozen weights.

5.4 Results

While we train the quality prediction model for all LLMs, the results reported here are specifically
for training on the scores using the GPT-3.5 model. These results are generally consistent across the
different LLMs.

Using the hyper-parameter configurations described in the previous section, we obtained the following
results:

fastText-Based DistilBERT-Based
Training loss 0.0916 0.1029
Test loss 0.0601 0.0587
Avg. score for 0-rated prompts from test set 0.3834 0.4472
Avg. score for 0.25-rated prompts from test set 0.4945 0.5545
Avg. score for 0.5-rated prompts from test set 0.4952 0.5539
Avg. score for 0.75-rated prompts from test set 0.4927 0.5538
Avg. score for 1-rated prompts from test set 0.6278 0.7195

We observe that the difference between the average scores for 0-rated prompts and 1-rated prompts is
0.24 for the fastText-based model and 0.28 for the DistilBERT-based model. This indicates that both
models can effectively distinguish between easy and hard prompts. Additionally, the DistilBERT-
based model achieves a better loss than the fastText-based model, although the difference is not
substantial. While we expected a more significant performance difference between the fastText-based
and DistilBERT-based models, this could be due to the fact that the DistilBERT-based model was
trained with its weights frozen, essentially making DistilBERT a powerful sentence encoder. With

6



more extensive and diverse data, the DistilBERT weights could be unfrozen during training, potentially
improving the performance of the DistilBERT-based quality predictor model and increasing the gap
between it and the fastText-based model.

The fact that the training loss is lower than the test loss can likely be attributed to the oversampling
done to balance the data, which was only performed in the training set. We did not observe this
phenomenon before balancing the dataset.

The following box plots show the relationship between scores provided by RouterBench and those
predicted by our models.

Figure 2: RouterBench Score vs fastText Predicted Score

Figure 3: RouterBench Score vs DistilBERT Predicted Score

6 Analysis

Our quality prediction model has shown that it can distinguish between easy and hard prompts,
reflecting some degree of understanding of prompt complexity. However, it encounters challenges
in discerning nuanced differences in similar prompt difficulties and tends to be overly optimistic,

7



often predicting higher performance scores than those actually observed, even after oversampling
the smaller classes. This optimistic bias indicates that while the model grasps the general quality
of responses, it struggles to accurately predict the precise level of performance, particularly in
distinguishing subtle differences in quality among high-scoring outputs. The limited training set,
comprised of less than 10,000 entries from the RouterBench dataset, likely contributes to this
discrepancy, suggesting that a more expansive dataset could potentially enhance prediction accuracy.

We also observe how fastText and DistilBERT perform relatively similarly. Our interpretation for this
is that they reach . In future work, a bigger dataset could not only contribute better generalization,
but also allow the DistilBERT model to be trained with unfrozen weights, which we were unable to
do due to the size of our dataset.

While the model shows promise, there is a clear need for accuracy enhancements to meet the
practical demands of LLM routing. Initial thoughts suggested that larger models might improve
performance, however empirical evidence from our experiments suggests otherwise. This finding
aligns with necessary constraints of our project, as deploying significantly larger models would
contravene our goal of maintaining a lightweight, efficient routing system. The need for lightweight
models in routing stems from the necessity for quick and efficient performance evaluations, which is
critical in operational environments where speed and resource efficiency are paramount. Our findings
underscore a fundamental tension in predictive routing: the desire for lightweight, fast models that can
quickly provide routing decisions conflicts with the goal of achieving the highest possible prediction
accuracy. This tension highlights the intricate balance required in designing routing systems for large
language models, emphasizing why deploying larger pretrained models is not an ideal solution.

7 Conclusion

Our project successfully establishes the viability of a predictive routing framework that dynamically
selects language models based on performance metrics in real-time. Both the fastText and DistilBERT-
based models demonstrated proficiency in differentiating between easy and hard prompts, showcasing
a solid foundational understanding of prompt complexity. Although the models exhibited optimistic
biases, predicting higher performance scores than observed, these biases underscore areas ripe for
further refinement. Particularly, the DistilBERT-based model showed promising results even with
frozen weights, indicating potential for enhanced performance with larger datasets and fine-tuning.
This framework not only provides an efficient alternative to proprietary LLM routing solutions but
also sets the stage for future developments aimed at improving prediction accuracy and computational
efficiency. Our approach paves the way for democratizing access to advanced LLM deployment
strategies, with future iterations likely to deliver even more robust and precise routing capabilities.

The effectiveness of our routing solution is highly dependent on the diversity and scope of the Router-
Bench dataset, which, despite its breadth, remains relatively limited in size. This reliance potentially
restricts the generalizability of our models across broader real-world applications. Furthermore, our
commitment to maintaining a lightweight routing system, essential for rapid and efficient model
selection, inherently places constraints on the accuracy and depth of predictions our models can offer.
These limitations underline the challenges of balancing performance with practical deployment needs
in LLM routing.

While training on a larger dataset is an obvious future direction, another key area of focus is
expanding our modular routing solution composed of multiple independent quality prediction models
with the integration of new LLMs, such as GPT-4o and beyond. Future enhancements could focus
on expanding the range of models supported and refining the integration process to maintain ease
of use and adaptability. Additionally, the development of an API for deploying our routing models
in production environments represents a crucial step towards practical application, enabling users
to leverage our routing system seamlessly in real-time applications. These advancements would
further the capability of our routing framework, making advanced LLM routing more accessible and
customizable to user needs.

PROCEED.

8



8 Ethics Statement

Our project faces ethical challenges and societal risks in the areas of bias in model selection and
alignment of routing decisions with user expectations concerning data sensitivity. The risk of bias
emerges if the routing algorithm fails to properly account for the cultural or demographic specifics
embedded within queries, potentially leading queries to models ill-equipped for their nuances, thus
perpetuating biases or yielding culturally inappropriate responses. Additionally, if routing decisions
neglect the context or sensitivity of queries, especially those containing sensitive information like
health data or personal advice, it could lead to breaches of user trust and privacy concerns.

To counteract these risks, we could enhance the RouterBench dataset’s utility through a detailed
analysis and careful adjustment of our model selection criteria. Recognizing the dataset’s limited
demographic and cultural representation, we could to develop a context-aware routing protocol
capable of intelligently interpreting the subtleties within each query. This could involve integrating
external metadata that adds cultural or demographic indicators to each query, aiding in more accurate
model selection. Regarding the misalignment with user expectations, we propose establishing strict
compliance checks and security protocols to ensure all models within the routing system adhere
to robust standards of data confidentiality and user privacy. Complementing this with transparent
communication about how user data is handled and which models are used for processing their
queries will enhance trust and align our practices with user privacy expectations, thus fostering a
responsible deployment of this technology.

References
[1] Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: How to use large language models

while reducing cost and improving performance. 2023.

[2] Martian AI. RouterBench Dataset. https://huggingface.co/datasets/withmartian/
routerbench, 2024.

[3] Tal Shnitzer, Anthony Ou, et al. Large language model routing with benchmark datasets. 2023.

[4] Qitian Jason Hu et al. Routerbench: A benchmark for multi-llm routing system. ICLR AGI
Workshop, 2024.

[5] Dujian Dinga, Ankur Mallick, et al. Hybrid llm: Cost-efficient and quality-aware query routing.
2024.

[6] Martian AI. Martian model router. https://withmartian.com/products/model-router.

[7] Facebook AI Research. fasttext: English word vectors. https://fasttext.cc/docs/en/
english-vectors.html/.

[8] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. https://arxiv.org/pdf/1910.01108, 2019.

[9] Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-
style pre-training with gradient-disentangled embedding sharing. 2021.

[10] Rafael Rafailov, Archit Sharma, et al. Direct preference optimization: Your language model is
secretly a reward model. 2023.

[11] Hugging Face. Openassistant reward model - deberta v3 large v2. https://huggingface.
co/OpenAssistant/reward-model-deberta-v3-large-v2/tree/main.

[12] Facebook AI Research. Word vectors for 157 languages. https://fasttext.cc/docs/en/
crawl-vectors.html, 2021.

9

https://huggingface.co/datasets/withmartian/routerbench
https://huggingface.co/datasets/withmartian/routerbench
https://withmartian.com/products/model-router
https://fasttext.cc/docs/en/english-vectors.html/
https://fasttext.cc/docs/en/english-vectors.html/
https://arxiv.org/pdf/1910.01108
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2/tree/main
https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2/tree/main
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html


A Appendix

Figure 4: Loss vs Batches Processed for the DistilBERT-based model

Figure 5: Loss vs Batches Processed for the post-training with unfrozen weights

10


	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Removal of Multiple-Choice Prompts
	Continuous metric scores
	Dataset Balancing

	Evaluation method
	Experimental details
	fastText-Based Model
	DistilBERT-Based Model

	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix

