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Abstract

In this paper, we are interested in researching and applying advanced NLP tech-
niques to enhance the performance of BERT (Bidirectional Encoder Representa-
tions from Transformers) on downstream tasks such as sentiment analysis, para-
phrase detection, and semantic textual analysis. We create a multi-task learning
model, focusing on three main optimization techniques: random batch scheduling,
data augmentation, and gradient surgery. We start by implementing a version of
BERT with AdamW optimizer to obtain baseline performance metrics on sentiment
analysis. We then build a more robust BERT with a multitask classifier, capable
of performing the three downstream tasks simultaneously, yielding strong results
which are also reflected on the project leaderboard. The authors describe a multi-
tude of experiments for model improvement, such as changes to the loss function
(such as cosine similarity), data augmentation, and hyperparameter optimization.
Though many of the experiments provide slight improvements to performance,
we find that the most effective changes were experimenting with methods of si-
multaneously training on the three tasks. In particular, the most effective models
utilize interleaving batches from different data sets and random batch scheduling
to achieve the authors’ best performance on the project leaderboards.

Mentor: Archit Sharma

1 Introduction

Large language models (LLMs) have made significant advancements in the field of Natural Language
Processing (NLP). The ongoing ChatGPT revolution has its origins in part in BERT. BERT showcased
the novel ability to pretrain on large data with bidirectional representations, able to condition on left-
and right- contexts. This has been shown to have performed extraordinarily well on a multitude of NLP
benchmarks in the seminal BERT paper [1]. However, in this paper we aim to tackle the interesting
and challenging problem of optimizing BERT for multi-task learning; specifically, on the downstream
tasks of sentiment analysis, paraphrase detection, and semantic textual similarity. This problem is
interesting due to the efficiency and performance improvements possible through multi-task learning.
Training a single model to perform multiple tasks can make use of shared representations, improving
generalizability and reducing computational costs. However, some challenges that are present include
balancing learning across tasks and managing conflicting gradients. Additionally, we want strong
performance across all three downstream tasks, not just one specific task; fine-tuning BERT for
multiple tasks requires careful tackling of task-specific nuances and clever optimization strategies.

We start with implementing a baseline BERT model, which is pretrained and fine-tuned for sentiment
analysis. Then, we explore three main optimization strategies to address the challenges in multi-task
learning for BERT: gradient surgery to mitigate conflicting gradients, data augmentation to make our
training data more robust and model more generalizable, and random batch scheduling to balance the
training process and not be too reliant on any one data. Through our experimentation, we find that
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these techniques significantly improve the performance of our multitask classifier, as indicated by our
performance on the CS 224N leaderboard. Specifically, we were able to achieve minor improvements
to our BERT model’s performance via changes to the loss function (e.g., cosine similarity) as well
as hyperparameter tuning, and major performance improvements via interleaving batches from the
different data sets and random batch scheduling.

2 Related Work

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [1]

This groundbreaking paper on BERT (Bidirectional Encoder Representations from Transformers)
serves as the foundation and motivation for our project. The authors introduce a novel transformer
model that conditions on both leftward and rightward contexts. During pre-training, BERT uses a
masked language model and fine-tuning, leading to great improvements on downstream tasks. In the
paper, BERT performed extremely well on NLP benchmarks such as GLUE, SquAD, and MultiNLI.
A limitation of this paper is that, while BERT excels on various benchmarks, its performance in
multi-task learning scenarios involves much more complexities that need to be implemented, which
serves as the motivation for our project.

BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
[2]

In this paper, the authors explore a multi-task learning approach using a single BERT model
with additional task-specific parameters. They focus on improving performance on natural
language understanding (NLU) tasks, by introducing Projected Attention Layers (PALs) to
effectively adapt BERT for multiple downstream tasks. They achieve strong performance on the
Recognizing Textual Entailment (RTE) dataset and the GLUE benchmark, while using much fewer
parameters. We can utilize the techniques explored in this paper to cleverly sample batches in a
probabilistically-proportional manner.

Gradient Surgery for Multi-Task Learning [3]

The authors present a novel approach, which they call “Gradient Surgery," to address the problem
of conflicting gradients in the context of multi-task learning. The aim is to improve the learning
process by aligning gradient directions cross-task. In doing this, our model can achieve improved
overall performance in multi-task learning settings. The authors apply this technique to several
multi-task learning benchmarks and achieve strong performance, demonstrating the improvements
offered by gradient surgery. We are motivated to apply the greedy heuristic outlined in this paper,
which although they present greater complexities in our model, show great promise in performance
on multi-task learning.

Is Cosine-Similarity of Embeddings Really About Similarity? [4]

In this paper, Steck et al. discuss problems with regularization and methodology that explain the
dampening in effectiveness of Cosine-Similarity as an analytical approach to measure similarity
between two objects. In our experiments deploying Cosine-Similarity in inference and in training
through CosineEmbeddingLoss(), we observe similar results pointing to needed future exploration
in regularization to render our implementation of Cosine-Similarity useful to the paraphrase detection
task.

3 Approach

To serve as our baseline models, we have implemented bert.py, classifier.py, optimizer.py,
and multitask_classifier.py and submitted our results to the leaderboard. We will refer to the
original BERT paper, which describes the transformer model we are using for our baselines [1]. We
use multi-headed attention with dropout for our BERT implementation [5]. For our optimizer.py,
we implemented the AdamW algorithm, as described in the CS224N default project handout [6].

For the multitask_classifier.py, we chose to call the BERT model for the forward function
and implement a simple set of neural networks that would appropriately transform the output of
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BERT into logits needed for the downstream tasks. For the paraphrase and similarity tasks, we
decided to concatenate the two input_ids, separated by a tensor of [SEP] tokens, and similarly
concatenated the two attention_mask’s with a tensor of 1’s before passing the two arguments
through the forward function and the dropout and last-linear-layers to obtain the logits as described
above. This feed-forward method remained unchanged for most of the top results we saw in our
experiments.

Additionally, we experimented with cosine similarity for the paraphrase task. Here, the idea was
to obtain two embeddings outputted through BERT that were then fed through linear layers. The
two outputted vectors for the sentences in each paired sample were then fed through a cosine
similarity to quantify the proximity and similarity of each of the embeddings. This score was then
intended to be used as an objective function through PyTorch’s CosineEmbeddingLoss function,
and on inference for evaluation and test as an intermediary step before filtering by an arbitrary
threshold=0.5 to identify two pairs of sentences as having high probability of being paraphrased
[7]. The CosineEmbeddingLoss creates a criterion that measure the loss given two input tensors
x1, x2 and a Tensor label y with values 1 or −1, with equation given as follows:

loss(x, y) =
{
1− cos(x1, x2), if y = 1

max(0, cos(x1, x2)− margin), if y = −1
. (1)

An important element in improving the overall multitask performance for our BERT multitask
classifier was our implementation of the joint fine-tuning on the three separate tasks. For our project
milestone submission, we did not modify the default implementation of the training process, so the
BERT model was fine-tuned exclusively on the SST dataset and thus exhibited very poor performance
on the paraphrase and STS tasks. We first implemented our batch scheduler to iterate through the all
batches in the order of SST, Quora, and SemEval but we found the training process tedious as the
Quora dataset has over 35000 batches with a batch_size of 8. We decided to truncate the Quora
dataset to 10% of its original size to expedite training by a magnitude of 5 times faster, with the full
training of each of our experiments taking around 3 hours running on the full-model with a the
default 10 epochs.

We further improved the quality of our multitask training by incorporating random scheduling for
the batches. The naive multitask training process we had implemented as previously discussed
sequentially iterated through the dataloaders for the datasets in order. The random scheduling as
discussed in Stickland et al.’s paper on “BERT and PALs" samples batches from task i with probability
proportional to Ni, where Ni is the number of samples in the training dataset for task i [2]. The
goal was to reduce any bias towards any dataset in particular and backpropgate across each task in
a normalized fashion as we step the optimizer for each batch loaded from any dataloader. Without
the random scheduler, we might see for instance that when we trained our multitask classifer on the
Quora dataset with 35000 batches that our AdamW optimizer had already been stepped ≈ 360000
leading to weaker gradient descent on the objective function for the STS task on the SemEval dataset
as it was the last dataset to be trained on for each epoch.

The combination of the above design decisions resulted in an overall rank on the dev leaderboard
of 58, just above the median score for class submissions. In order to differentiate our model from
the other implementations, we decided to halt optimizations on the paraphrase detection and STS
task in favor of boosting the overall sentiment classification accuracy. To do so, two approaches we
considered were gradient surgery and data augmentation. The former approach was a greedy solution
following the methodology outlined in the gradient surgey paper by Yu et al. that would adjust the
gradients obtained from the backpropogation in the paraphrase and STS batches by projecting them
onto the gradients obtained from the last SST batch’s gradients [3]. Because we implemented a
random scheduler for batches, this the most recent gradients from the last SST batch were cached and
updated as a new batch was processed.

Our final optimization approach included augmenting the existing training data with the goal of
ensembling two models in evaluation on the sst dataset for boosted performance. We leveraged the
OpenAI API to carry out data augmentation with the prompt:

“Rephrase the sentences words with synonyms so the sentences retain the same
meaning. Do not replace the proper nouns and movie titles wrapped “. Do

3



not wrap output in quotation marks"

Note that the above script was ran exclusively on the training dataset. The result was a parallel
SST dataset with rephrased sentences that retained an approximately identical semantic rating to
their analogous sample in the original dataset. The goal here was to create augmented data with an
autonomous script that required no extra labelling and did not possible infringe on samples present in
the dev and test dataset. A model trained on the concatenation of the two datasets, or the ensemble of
two models trained separately on each dataset would hopefully allow for more robust and accurate
inference.

4 Experiments

4.1 Data

We are utilizing the following datasets for our tasks – Sentiment Analysis: SST1 [8] and CFIMDB
datasets, Paraphrase Detection: Quora 2 dataset, Semantic Textual Analysis: SemEval [9] dataset.

Note that CFIMDB was only used for the movie reviews task for the minBERT checkpoint. We found
that overall, the trend with our experiments and the statistics from the top leaderboard submissions to
indicate that the sentiment classification task for the SST dataset to be bottleneck in maximizing the
overall score. To help maximize the performance of the models on this dataset, we considered data
augmentation and gradient surgery as the primary methods to address this weakness in our models.

4.2 Evaluation method

For our evaluation method, we are using the accuracy calculated for the Sentiment Classification
and Paraphrase Detection and the overall Semantic Textual Similarity Correlation score as they are
calculated for project leaderboard submissions. We also use the calculation for the overall score
SST+PARA+ STS+1
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3 during model evaluation to save the model checkpoint that was the best overall
multitask performer according to this metric.

As a baseline, we first ran an experiment using the given baseline with the provided hyperparameters.
In particular, this meant that we used the following: learning rate of 1e-5, hidden layer size of 768,
on 10 epochs, training on the full model. The last two layers for each task was just a 2-layer deep
neural network.

Next, we tried to change the hyperparameters, such as the learning rate or the number of epochs. For
example, the second run used hyperparameters: learning rate of 1e-4, 10 epochs. These first two
experiments were ran with the BERT model frozen and showed us that either our last-linear-layers
were not robust enough to express the dependencies needed to perform the downstream tasks or that
the BERT pre-trained model we were using was just not trained good enough for the task. For the
next two experiments (3 and 4), we tried unfreezing the BERT model and by training the full-model,
keeping the rest of the architecture the same. We repeated the above experiments with different
learning rates of 1e-5 and 1e-6 with 10 and 20 epochs respectively.

Quantitative Results of Experiments (Milestone)
Experiment Number Overall Score Sentiment

Classification
Accuracy

Paraphrase
Detection
Accuracy

Semantic Tex-
tual Similarity
Correlation

Experiment 1 (lr =
1e− 5, 10 epochs)

0.527 0.382 0.632 0.132

Experiment 2 (lr =
1e− 4, 10 epochs)

(unsubmitted) 0.395 0.632 0.132

Experiment 3 (lr =
1e− 5, 10 epochs)

0.545 0.525 0.564 0.09

Experiment 4 (lr =
1e− 6, 20 epochs)

(unsubmitted) 0.500 0.472 0.080

1https://nlp.stanford.edu/sentiment/treebank.html
2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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In general, we found that training the full-model yielded better overall dev accuracy during training
however we lost representation as evidenced by the STS correlation scores. These results for the
project milestone indicated that pretraining was a dire objective to address the mediocre Paraphrase
Detection and STS scores as these were not yet included in the training loop at the time. Following
our implementation of the random scheduler, we saw better results for both Paraphrase Detection
and STS. For all experiments after the milestone (i.e. for all experiments that we henceforth discuss),
we use our implementation of joint fine-tuning on the three separate tasks, as discussed in Section 3
above.

4.2.1 Experiment 5: Last-linear-layer 1e-5 lr

4.2.2 Experiment 6: Full model 1e-5 lr

4.2.3 Experiment 7: Last-linear-layer 1e-5 lr Modified STS loss functions (MSE)

4.2.4 Experiment 8: Full-Model 1e-5 lr Modified STS loss functions (MSE)

Quantitative Results of Experiments
Experiment Number Overall Score Sentiment

Classification
Accuracy

Paraphrase
Detection
Accuracy

Semantic Tex-
tual Similarity
Correlation

Experiment 5 (lr =
1e− 5, 10 epochs)

0.580 0.387 0.633 0.442

Experiment 6 (lr =
1e− 5, 10 epochs)

0.635 0.449 0.624 0.665

Experiment 7 (lr =
1e− 5, 10 epochs)

0.507 0.308 0.553 0.317

Experiment 8 (lr =
1e− 5, 10 epochs)

0.753 0.500 0.836 0.843

Here, we noted that as a proof of concept, training the Last-linear-layer was effective in demonstrating
that artifacts we implemented were properly training. Next, we experimented with transforming the
output layer of the STS dataset to make the output of the last linear layers more interpretable and
relevant to the dataset we were working with that had scores ranging from [0.0, 5.0]. We regularized
the output by applying a SigmoidMultiplyBy5() layer that translated the logit output of the last
linear layer with dimension 1 into the desired interpretable score. These changes we felt were
appropriate to keep for the remaining tests moving forward.

4.2.5 Experiment 9: Sigmoid() · 5

4.2.6 Experiment 10: Sigmoid() · 5,batch_size = 16

Quantitative Results of Experiments
Experiment Number Overall Score Sentiment

Classification
Accuracy

Paraphrase
Detection
Accuracy

Semantic Tex-
tual Similarity
Correlation

Experiment 9 (lr =
1e− 5, 10 epochs)

0.762 0.509 0.851 0.852

Experiment 10 (lr =
1e− 5, 10 epochs)

0.766 0.535 0.857 0.813

The results of these experiments suggested that our current implementation had the potential to crack
the top 20 of the leaderboard with an overall high score of 0.77, given enough training epochs and
appropriate hyperparameters. Note that we also were still using only 10% of the Quora dataset
possibly limiting the potential of the paraphrase detection accuracy we were observing. While
we were curious about hyperparameter sweep with modifying parameters such as hidden_size,
dropout_prob, batch_size, we felt that these experiments would not be fruitful towards overall
improvements in the design and architecture of our model in the long run. We decided it would be
more interesting to explore significant changes going forward, namely cosine similarity, gradient
surgery, and eventually data augmentation.
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4.2.7 Experiment 11: Cosine Similarity

The next modification we implemented was the utilization of cosine similarity. To do so, we modified
our last linear layers to output logits for each pair of sentences, which would then be fed through
the CosineEmbeddingLoss with the targets taken from the labels for each pair. On inference, this
meant that the embedding pair would once again be extracted then the cosine operation would be
applied to the logits giving us similarity score from which we could determine if the sentences were
similar enough to have been paraphrased. We felt this change overall was not very significant to
the overall training process so we did not pursue it further as a permanent change to our model’s
objective and inference functions moving forward.

4.2.8 Experiment 12: Gradient Surgery

The experiments after reverting the cosine similarity implementation focused specifically on opti-
mizing the sentiment classification accuracy. For this task, we needed to output logits for each class
that would induce a probability distribution P whose argmax

c
P (x = c) would indicate the class on

inference. Gradient surgery’s intent was to remove the interference other gradients from other tasks
have on updating the model’s parameters that would stray them further away from the optimum of
those of the conflicting task. We considered both the paraphrase and STS tasks as conflicting with the
sentiment classification task, and performed gradient surgery on the paraphrase and STS gradients
to ease the conflicts with those from the SST batches. We felt that this was especially appropriate
because the paraphrase and STS passed the concatenation of pairs of sentences separated by a [SEP]
token which had loose relations if any to the SST task which passed a single sentence through BERT.

Quantitative Results of Experiments
Experiment Number Overall Score Sentiment

Classification
Accuracy

Paraphrase
Detection
Accuracy

Semantic Tex-
tual Similarity
Correlation

Experiment 11 (lr =
1e− 5, 10 epochs)

0.703 0.505 0.684 0.838

Experiment 12 (lr =
1e− 5, 10 epochs)

0.745 0.469 0.852 0.832

For experiments 11 and 12, we early stopped when we determined by the accuracy measurements
on the dev set that it was clear that the intent of the implementations of cosine similarity or gradient
surgery were not improving the accuracy on the SST dataset.

4.2.9 Experiment 13: Data augmentation

For our final experiment, we reran our top model configured using the architecture from experiments 9
and 10 that produced the highest overall score on the new SST dataset. This dataset is a concatenation
of the original and augmented dataset we generated using synonyms and rephrasings of the original
sentences in the dataset to retain the same semantic meanings. The result is 2 times the training
examples for the SST task and a greater representation of SST batches sampled by the random
scheduler that brings the proportion of batches from SST from 0.20 to 0.33.

Quantitative Results of Experiments: Milestone
Experiment Number Overall Score Sentiment

Classification
Accuracy

Paraphrase
Detection
Accuracy

Semantic Tex-
tual Similarity
Correlation

Experiment 13 (lr =
1e− 5, 10 epochs)

0.752 0.500 0.853 0.808

4.3 Final Leaderboard Submission Experimental details

With our multitask_classifier.py, we implemented batch scheduling in our training algo-
rithm in order to improve training time. Specifically, while working with the Quora dataset
for our paraphrase task, we concatenate all the batches for each of sst_train_dataloader,
sts_train_dataloader, para_train_dataloader. Next, we reduce the Quora dataset to 10%
of its original size, and apply a random shuffling on our batches. We then run our paraphrase predic-
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tion on the resultant batches. This reduces training time approximately by a factor of 7 to around 17
minutes per epoch for a total approximate training time of 3 hours for each run with a default batch
size of 8.

For our sentiment classification task, predicted labels were chosen as the class corresponding to the
argmax of the probability distribution induced by the 5 logits outputted by the last linear layer of
the sentiment model, and the loss was evaluated against the true class using the cross entropy loss
function.

For the paraphrase task, predicted paraphrasing truth was calculated using the raw logits, one per
sample, outputted from the last linear layer. The logits were then evaluated with the ground truths
using the cross entropy loss function.

For the semantic textual similarity task, the concatenation of the two sentences with a separator token
was passed through BERT, whose output was then passed through a sigmoid function and scaled to
the [0.0, 5.0] scale. The predicted scores were evaluated against the true scores using the MSE loss
function.

The learning rate was configured to 1e− 5 with a batch_size of 16.

Gradient surgery and cosine similarity and data augmentation were not included in our top submission.

4.4 Final Results

Final Results: Test Leaderboard
Experiment Number Overall Score Sentiment

Classification
Accuracy

Paraphrase
Detection
Accuracy

Semantic Tex-
tual Similarity
Correlation

Experiment 10 (lr =
1e− 5, 10 epochs)

0.765 0.525 0.849 0.838

The results on the test set match almost exactly what we observed with this model’s performance on
the dev set. They match our expectations of that model in the context of the other experiments we ran,
and the consistency is explained by our selection metric for saving model checkpoints matching the
scoring formula. The test results are an indication that our current implementation of the multitask
classifier is able to adequately generalize to unseen data.

5 Analysis

Our implementation of the multitask classifier excels at the paraphrase and semantic textual similarity
tasks specifically, with mediocre performance in sentiment classification accuracy. In general, for
a discrete multiclass classification task like SST, it’s sometimes difficult for models to pinpoint the
exact class and a better metric to measure the performance of the model can be top-k accuracy, or
the accuracy of whether the true class was in the top k probabilities induced by the softmax function
applied to the outputted logits of the model. However here, the goal of optimizing for SST is to
have a perfect top-1 model which can be difficult depending on the quality of the dataset as we have
realized.

In this project, we explored many different ways of tackling the multitask paradigm including
scheduling, data augmentation, and gradient surgery. For the purposes of maximizing leaderboard
score, it appeared that using none of these approaches was the best option which is counter-intuitive
to what we expected when we developed our hypotheses on how these methodologies would impact
the final results. While we were able to confirm from an academic standpoint that the algorithms and
formulas we implemented were working correctly, more finesse to see better results. For instance,
while cosine similarity was proving useful for the paraphrase detection task, the gradients obtained
from backpropogation in our implementation were significantly lower in magnitude compared to those
obtained in the other tasks which led to a very slow convergence of the paraphrase task compared to
the others making it unfeasible to deploy in future versions of models we were developing. This could
have been corrected by adding regularization terms to the gradients or adjusting the step function of
the optimizer to more heavily weight the gradients from the paraphrase task in its update so that we
could see an even convergence of all three tasks as the multitask classifier was trained. However, this
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design decision would introduce another parameter in our hyperparameter search making it more
difficult than it already was to search for the optimal hyperparameters.

6 Conclusion

The main findings of our work is that multitask fine-tuning and random batch scheduling were by far
the most influential improvements to the multitask classifier. This aligns with our initial hypothesis
early on in the project that data, actually fine-tuning for each task, and sampling would be the most
important aspects to successfully developing a robust multitask model. Regarding data, we really
wanted to use a Large Language Model as a generator that would allow us to explore the General
Adversarial Network paradigm and potentially deploy DPO on the LLM to fine-tune its output for
the data we would ultimately feed to our multi-task classifier for fine-tuning. However, there was an
unavoidable gray-area with possibly infringing on the dev and test data that we could not guarantee
because we don’t know how the model’s we were considering using were trained. This means that it
was very possible that if we prompted an LLM to generate more samples for the SST dataset that
some of these samples would be heavily correlated with the samples that would appear in the test
dataset that we could not necessarily control without sophisticated pruning that ultimately wouldn’t
be worthwhile pursuing as an experiment in this project. We settled on exploring data augmentation
as another avenue to obtain a more robust model through this new training set we generated that we
could verify was within the guidelines of the Honor Code.

One clear downside of the experiments we performed in this project was the lack of runs on each
configuration. While we covered a lot of design decisions and techniques to bolster our model’s
performance, due to the average training time being significantly long we weren’t able to adequately
evaluate the effect each decision had on the overall model. Ideally, we would have multiple runs for
each experiment where we could report the average and top statistics for each task, and furthermore
ideally the number of epochs would be in the 20-30 range to cover more ground in the search for the
optimal weights. However, performing 5 runs for an experiment at 30 epochs would take over 45
hours and this was not feasible with the 13 reported experiments we included in this report. There
was also not a naive or obvious way to early-stop because our best runs did not follow desired
approximately monotonic improvements in reported dev accuracy.

Regarding future work, there is plenty of potential to run sophisticated hyperparameter sweep
on the model configurations we have implemented and without a doubt there is a configuration
of hyperparameters we didn’t select that would’ve yielded a better raw overall score. Regarding
implementation, we left the BERT and optimizer implementations untouched. There is definitely
potential for a smarter optimizer, especially since we shared it across tasks, that better steps in a
multitask setting.

While not all the ideas we implemented were necessarily successful permanent additions to the overall
multitask classifier, their exploration helped us isolate the unavoidable systematic problems we were
facing when it comes to designing and training a deep learning model in data and generalization.

7 Ethics Statement

One ethical concern surrounding this project is that NLP models (such as sentiment analysis algo-
rithms) can reflect human biases from the datasets they are trained on. This challenge, discussed
very often throughout the past quarter, can manifest through phenomena such as gender bias or racial
bias in NLP models. For example, a model may evaluate a difference in sentiment between words
like “man” and “woman”. Leaving such biases unchecked in our research can perpetuate a trend of
discrimination or prejudice (in a wide variety of contexts), and is thus an issue that deserves to be
properly addressed. One possible method of mitigating such bias is by tagging/labelling/augmenting
the training datasets with information about similar words (i.e. words that we want to be treated
similarly, without bias separating them). This could be done for every form of bias that we are
concerned about. This is an especially concerning issue for our project because we are using BERT,
which has become an incredibly widespread model for any tasks in the neighborhood of this project’s
focus; even besides semantic classification, paraphrase detection, and STS, there are many other use
cases within the realm of token-level or sentence-level NLP tasks. One prominent example could be
to augment browser search to better match the user. Since we are using such a popular architecture,
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it is dangerous to leave bias (and other ethical issues) unchecked. In particular, we run the risk
of contributing to a precedent where the research community ignores bias and other ethical issues,
putting it off for another day. It is imperative that, as researchers, we remain conscious of such trends
and concerns as we conduct our research.

Other similar concerns (that are commonly found in many NLP models) include the lack of ex-
plainability for NLP models; the lack of clarity on how our system works on the inside may pose a
serious challenge. This is especially true in sensitive applications like hate speech (one could imagine
wanting to do a semantic analysis on hate speech, for example) or other text with discriminatory
microaggressions (for example, sentiment analysis on phrases like “you’re attractive for an Asian
person” can become ambiguous). The solution to this is to implement models that are designed to
be more explainable; though we are no experts on this topic, one method to make a model “explain”
itself is to use a gradient method. For example, we could implement a method to analyze the change
in sentiment or decision class based on the tokens in the input example, which would then highlight
which words had the largest impact. If we were to implement this mitigation strategy, we could also
utilize the attention mechanism in BERT to explain itself (it would be helpful to show the connections
between heads and attention layers). As we get closer to achieving our goal of creating a perfect
model for the three tasks described in this project, it becomes increasingly important to keep these
general concerns in mind. The better a model is, the more incentive users have to blindly trust it; but
this is all the more reason why we continue to consider how to justify a model’s decision to call two
sentences similar, or to analyze text a certain way, or anything of that sort. In this case, we are the
only ones who can keep our models in check, and it will only become more important as our models
become more sophisticated.

Ethical concerns could also be raised by our usage of Google Cloud and OpenAI’s API. Regarding the
former, carbon emissions are almost unavoidable with the expenditure of energy locally and virtually
over the cloud. There are actions we could have taken to be more conscious of carbon emissions
which include testing fully remotely with tmux so locally our laptops would be conserving energy,
and also our choice to use a GPU that was not necessarily configured to output low carbon emissions.
Because Google’s Cloud platform informs users of the carbon emissions they may generate, ethically
we arguably overstepped this boundary by overlooking this statistic in our virtual machine setup.
Additionally, for performing data augmentation we utilized OpenAI’s API to execute a script that
would paraphrase and perform synonym replacement on the data included in the dataset. Here, we
could’ve possibly overstepped boundaries related to proper usage of this dataset by not specifically
checking the terms and conditions of the data we were using. Furthermore, we also utilized a large
language model to perform this augmentation which has its own set of concerns with ethical usage.
Ways of mitigating this potential ethical concern would be to explicitly confirm whether what we are
doing lies within terms and conditions both outlined by the dataset providers and OpenAI, and if not,
finding other open-source ways to perform this step.
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