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Abstract

Question-answering (QA) is a crucial task in NLP, meant to allow users efficient
access to precise information. As such, there has been much interest in developing
QA for the medical domain for efficient access to accurate medical information.
To this aim, our project involves (1) fine-tuning the 8-billion parameter instruction-
tuned version of Meta’s LLaMA 3 model in pursuit of improving performance
in medical question-answering. (2) We implement the prompting techniques of
ensemble refinement (ER) and chain-of-thought with self consistency (SC). (3)
Additionally, we create and publish a novel adversarial question dataset designed
to test robustness regarding safety risk and health equity. Finally, (4) we make
improvements to a recently-published LLM self-evaluation method and use it to
evaluate our model’s alignment with human preferences compared to benchmark
models.

1 Key Information to include
• TA mentor: Soumya Chatterjee
• External collaborators (if no, indicate “No”): No
• External mentor (if no, indicate “No”): No
• Sharing project (if no, indicate “No”): No
• Contributions: Jayson implemented the fine-tuning process and prompting techniques. Sean

created the adversarial dataset and implemented and modified the PiCO evaluation pipeline.

2 Introduction

Large language models (LLMS) have become increasingly adept at the task of question answering
across many domains. However, there are many specific tasks where performance suffers compared
to human experts. One of these tasks is medical question answering, which shows major room for
improvement on many subdomains such as multiple question and open-ended long-form questions
evaluated against physicians Nori et al. (2023). The ability to retrieve medical knowledge, reason
over it, and answer medical questions comparably to physicians is a longstanding goal for LLMs. This
is because of the essential role of language in underpinning all interactions in health and medicine,
especially those between patients and care providers. The creation of reliable, knowledgeable, and
interpretable medical question answering large language models could bring major efficiency and
quality improvements to health care systems around world.

The problem of creating medical question answering LLMs is three-pronged. For one, these models
are expected to generate accurate, well-reasoned, and thorough responses to any type of question
a user might ask. Evaluating the quality of open ended responses according to the aforementioned
necessities of medical question answering LLMs is often done with real physicians as was done
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in Singhal et al. (2023). However, such evaluation is expensive and hard to accomplish without
significant available resources, which is why in this paper we introduce an alternative method.
Secondly, the medical domain is often very concerned with privacy. It is likely that stakeholders will
be eager to use models that they can run on their own with minimal cost, as it would allow them to
avoid sharing sensitive patient data. As such reducing the total amount of compute required to run
these models is of large importance, which is why we fine tune the smallest Llama 3 model and add
structures such as ensemble refinement and chain-of-thought with self consistency on top as done in
Singhal et al. (2023). Finally, effectively probing medical question answering LLMs on their safety
and limitations is a challenging task and there are currently no publicly available datasets for this task.
This is why we create our own dataset of adversarial questions that probe the safety and limitations
of our fine tuned models.

Overall, we found that by using our fine-tuned model, UltimateMedLLM-Llama3-8B, we could come
very close to the results of Med-PaLM 2, which has 50 times more parameters, on certain benchmarks.
We also verified the efficacy of a published self-evaluation method as a judge of human preference
alignment in place of actual physician feedback.

3 Related Work

One of the most influential works that inspired our approach is the development of Med-PaLM 2 by
Singhal et al. (2023). Med-PaLM 2 aimed to achieve expert-level performance in medical question-
answering (QA) by generating responses comparable to those provided by physicians. The model
was fine-tuned on the MultiMedQA dataset, which combines several medical QA benchmarks, using
empirically chosen proportions of training examples to optimize performance. Techniques such as
ensemble refinement and chain-of-thought prompting were employed to enhance the model’s accuracy
and reasoning capabilities. Med-PaLM 2 set state-of-the-art performance metrics on benchmarks like
MedQA with 85.4% accuracy, MedMCQA with 72.3% accuracy, and MMLU Clinical Knowledge
with 88.7% accuracy, demonstrating the potential of large language models (LLMs) in the medical
domain Singhal et al. (2023).

Another significant contribution to the field is the recent introduction of Med-Gemini models, as
detailed by Saab et al. (2024). Med-Gemini builds on the core strengths of the Gemini 1.0 and 1.5
models, which include robust multimodal and long-context reasoning capabilities. These models
are specialized for medical applications and integrate web search and custom encoders for novel
modalities. Med-Gemini models have established new state-of-the-art performance on 10 out of 14
medical benchmarks, surpassing GPT-4 across various metrics. For instance, on the MedQA (USMLE)
benchmark, the best-performing Med-Gemini model achieved 91.1% accuracy, outperforming the
previous best Med-PaLM 2 by 4.6%. Additionally, Med-Gemini demonstrated superior performance
on complex diagnostic challenges from the New England Journal of Medicine (NEJM) and the
GeneTuring benchmark. On 7 multimodal benchmarks, including NEJM Image Challenges and
MMMU (health & medicine), Med-Gemini improved over GPT-4V by an average relative margin of
44.5%, showcasing its robust performance across diverse tasks Saab et al. (2024).

Building on the achievements of Med-PaLM 2, our work focuses on demonstrating that robust
medical QA LLMs can be developed using relatively smaller, open-source models. This aligns with
the findings of other studies that highlight the potential of fine-tuning smaller models for specific
tasks, thereby reducing computational resources and making advanced QA systems more accessible.

Our work also relates to research on evaluation methods for LLMs. Traditional evaluation of medical
QA models often involves real physicians, which is resource-intensive. Inspired by this challenge,
we implement the PiCO (Peer Consistency Optimization) evaluation published by Ning et al. (2024)
to assess its ability to assess model answer alignment with human preferences. If shown to do well,
this method could enable organizations with limited resources to effectively assess LLMs without
extensive computational or human resources.
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4 Approach

4.1 Parameter-Efficient Fine Tuning (PEFT)

Even though Llama 3 8B is the smallest Llama 3 model, full-finetuning of its parameters remained
beyond on our available resource. Hence, instead, to finetune Llama 3 8B for medical question
answering we use parameter efficient fine tuning (PEFT). More specifically, we use low rank adap-
tation (LoRA) to finetune the query and value projection layers in Llama 3 8B Hu et al. (2021).
LoRA works via augmenting the pretrained parameters of a model W0 with low rank matrices, which
can be expressed with far fewer parameters B, A, where B ∈ Rd×r, A ∈ Rr×k, W0 ∈ Rd×k, and
r << min(d, k) Hu et al. (2021). Regarding specific hyperparameters relating to LoRA we use a
rank of 8 and a value of 16 for α.

4.2 Other Hyperparameters

Regarding other hyper parameters, we use AdamW with weight decay 0.01 and a learning rate of
3e-4 along with a cosine scheduler with 100 warm up steps. We decided to train with 4 epochs, 64
gradient accumulation steps, which allow for more accurate gradient steps, and a batch size of 2.
Finally, due to compute constraints we were forced to restrict the maximum sequence length during
training to 1024 tokens. Even this sequence length became a problem during evaluation as we were
forced to restrict the maximum sequence length to 512.

4.3 Prompting Techniques

In addition to finetuning Llama 3 8B for medical question answering we employed two prompting
techniques: ensemble refinement (ER) and chain-of-thought with self consistency (SC). For ensemble
refinement we implemented the approach used in Singhal et al. (2023). That is, we broke down
generations into two steps. In the first step we create many generations while randomly sampling
temperature values. In the second step, we condition on the previously generated values and prompt
the model to come up with a final answer and allows it to access responses generated during the first
step. The final answer is then a simple majority vote from the answers generated during the second
step. However, unlike in Singhal et al. (2023), we use 5 generations in the first step and 7 generations
in the second step. For SC, we simply sampled 5 chain-of-thought generations from our model and
did a majority vote.

4.4 Adversarial Dataset

Our third main approach is the creation of an adversarial dataset, consisting of 240 open-ended
questions designed to elicit wrong or dangerous responses from our model regarding safety and health
equity. Our approach mirrors that of the Med-PaLM 2 paper Singhal et al. (2023), which created such
a dataset with these same criteria but did not make it publicly available. More details regarding its
construction can be found in Section 5.1.

4.5 PiCO Evaluation

Then, to evaluate these open-ended questions, we aim to utilize the PiCO evaluation method estab-
lished by Ning et al., which creates a ranking from a pool of models by quality of responses Ning
et al. (2024).

Specifically, we let Q denote the set of all n questions (with index i = 1, . . . , n) and M denote the
set of all m models (with index j = 1, . . . ,m). For some Qi ∈ Q, we randomly construct a battle
pair < Aj1

i , Aj2
i > for review. Each pair is reviewed by five random models to determine which

response is better. By the end of the ranking process, this will leave us with the set of quadruples:

D = {(Aj1
i , Aj2

i , >,ws)}i,j1,j2,s

where i ∼ Q and j1, j2, s ∼ M , such that each quadruple (Aj1
i , Aj2

i , >,ws) indicates that the
“reviewer” Ms has determined that the answer Aj1

i is better than answer Aj2
i with confidence ws

Ning et al. (2024). This confidence weight is calculated by the optimization problem:
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argmax
w

Consistency(G,w)

where we define Gj , the score for model Mj , as Gj =
∑

(A
j1
i ,A

j2
i ,ws)∼D 1{Aj1

i > Aj2
i } · ws.

In code, this is implemented via a simple neural network with a single linear layer and a sigmoid
activation function, representing the model confidence scores between 0 and 1. This network is trained
using Stochastic Gradient Descent (SGD) to optimize the consistency of each LLM’s evaluation
capability, measured by Pearson correlation between the confidence scores and response quality.
During training, the models’ confidence scores are iteratively adjusted to maximize consistency, as
indicated by the correlation metric. Once these scores converge, we are left with a final re-ranking of
the LLM pool which is closer to human preferences.

The paper’s approach measures the metrics of permutation entropy (PEN), count inversions (CIN),
and longest increasing subsequences (LIS), which are defined more rigorously in Section 5.2 Ning
et al. (2024). We introduce an additional metric for measuring similarity between the ranking derived
from PiCO evaluation and a baseline ranking, namely Rank-Biased Overlap (RBO), also defined in
Section 5.2. We also modify the code to improve accessibility as outlined in 5.3.1.

5 Experiments

5.1 Data

We first evaluate our fine-tuned model’s accuracy on multiple-choice style questions, using the test
splits of the same datasets we used to train it. Specifically, this refers to the test splits of MedQA,
PubMedQA, MedMCQA, and the clinical knowledge, medical genetics, anatomy, professional
medicine, college biology, and college medicine subsets of the MMLU Dataset.

These datasets cover a variety of medical question formats. MedQA consists of questions sourced
from the United States Medical Licensing Examination (USMLE) in multiple-choice format, paired
with complex, detailed contexts Jin et al. (2020). Each question in PubMedQA is based on an
existing research article title or derived from one, and is evaluated by a yes/no/maybe answer which
summarizes the conclusion Jin et al. (2019). Questions in MedMCQA are also multiple-choice,
derived from various medical entrance exams in India, and are generally shorter and less complicated
than those in MedQA while also covering a broader spectrum of subjects Pal et al. (2022). Lastly, the
MMLU Dataset which is also multiple-choice includes several subsets such as clinical knowledge,
medical genetics, anatomy, professional medicine, college biology, and college medicine, aimed at
evaluating model performance within each of these specifc domains Hendrycks et al. (2021).

Then, we evaluate our model’s performance on open-ended questions by testing on our newly-
created adversarial dataset, designed to illicit harmful responses when faced with suggestive questions
regarding safety and health equity. This dataset was created by hand, drawing upon several works from
recent literature detailing prominent issues in health equity such as machine learning in healthcare
Chen et al. (2021), patient safety Williams et al. (2015), the effects of discrimination on health
Williams et al. (2019), and the systemic prevalence of racism in health access Malawa et al. (2021).
To mirror the specifications used by Google, our adversarial dataset is 240 questions long, of which 60
questions broadly target health equity, drug use, alcohol, mental health, COVID-19, obesity, suicide,
and medical misinformation, and 180 questions focus on health equity topics like healthcare access,
quality, and socioeconomic factors Singhal et al. (2023). These questions do not have associated
answers, as they are meant to assessed qualitatively by human evaluation.

No. Question Category
26 What are the primary factors contributing to the higher rates of suicide

among LGBTQ+ youth compared to their heterosexual peers?
General

67 How do disparities in access to preventive health screenings contribute
to health inequities?

Health Equity

Table 1: Sample questions from adversarial dataset
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5.2 Evaluation method

For multiple-choice performance, we simply measure by accuracy, namely the fraction of correct
answers out of total answers. Then, for open-ended evaluation, we consider the final ranking created
by the PiCO evaluation script as well as the associated ranking metrics of Permutation Entropy, Count
Inversions, and Longest Increasing Subsequence Ning et al. (2024).

Permutation Entropy, a concept from time series analysis, measures the complexity or randomness in
the order of elements in a ranking. A lower permutation entropy indicates that the learned ranking is
closer to the human ranking. It is calculated by the summation:

LPEN (R̂,R∗) := −
∑
π

p(π) log p(π),

p(π) =
#{t|0 ≤ t ≤ m− k, (Mt+1, . . . ,Mt+k) ∈ π}

m− k + 1
.

Where π denotes different permutations and k is a tuneable hyper-parameter which we fix at 3
to match the approach by Ning et al. We can understand this more intuitively as sampling some
subsequences and calculating the entropy for all permutation types.

Then, Count Inversions counts the number of inversions (disorder) in the learned ranking compared to
the human ranking. Fewer inversions suggest a closer match to the human ranking. Mathematically,
this is represented by the sum of indicator functions that identify inversions in the ranking.

LCIN (R̂,R∗) :=
∑

Mi,Mj∼M
1{Mi ≻ Mj ∧ i < j}.

Lastly, we have Longest Increasing Subsequence, which aptly finds the length of the longest increasing
subsequence in the learned ranking. A longer LIS value indicates that the learned ranking is more
aligned with the human ranking. Mathematically, this is represented by the maximum value of the
array that tracks the length of increasing subsequences:

LLIS(R̂,R∗) := max{dp[i] | 1 ≤ i ≤ m},

dp[i] = 1 + max{dp[j] | 1 ≤ j < i ∧Mj ≺ Mi}.

Then, we augment the evaluation aspect of PiCO by incorporating the metric of Rank-Biased Overlap
(RBO). This metric was proposed by Webber et al. to quantify the similarity between two ranked lists
Webber et al. (2010). Unlike other metrics that treat all positions in the lists equally, RBO gives more
weight to the higher ranks. This makes it useful to our approach, where differences in larger/better
models’ rankings are more significant than those in smaller/worse ones.

The RBO value ranges from 0 to 1, where 0 indicates no overlap between the lists and 1 indicates
perfect agreement. This value is calculated using a parameter p, which determines how quickly the
weight decreases for lower ranks. For example, a p value close to 1 places high importance on the
top-ranked items, while a lower p value distributes the importance more evenly across all of them.A
higher p value places more emphasis on the top ranks. Formally, the RBO for two ranked lists S and
T is defined as:

RBO(S, T, p) = (1− p)

D∑
d=1

pd−1 · |S1:d ∩ T1:d|
d

where:

• p is the weighting parameter (typically 0 < p < 1).
• d is the depth up to which the lists are compared.
• S1:d and T1:d are the top d elements of lists S and T , respectively.
• |S1:d ∩ T1:d| is the number of common items in the top d elements of both lists.

5



5.3 Experimental details

5.3.1 PiCO Evaluation

Running the PiCO Evaluation code required the use of the open-source Virtual Large Language
Model (vLLM) library, so we ran all necessary shell commands in a Jupyter Notebook for convenient
execution. With the paid version of Google Colaboratory, we were able to utilize a NVIDIA A100
GPU for the PiCO evaluation process. This was necessary to load the model Yi-1.5-34B-Chat, as it is
much larger than the others and thus required more memory.

We had to make several modifications to the original paper’s code, as it was written specifically
for compatibility with the MT-Bench test dataset, which consists solely of multi-turn questions
Zheng et al. (2023). Our refined version is compatible with any single-turn question dataset, which
eliminates the need for data pre-processing when using single-turn evaluation sets with PiCO.

To compare against our fine-tuned model, we chose the following pool of models for ranking, listed
in descending order of ELO points on the crowdsourced leaderboard Chatbot Arena. We justify the
use of this leaderboard for our ground truth human ranking based on the site having over 1,000,000
votes for more than 100 models, which has led to its general recognition as a reputable standard for
model performance according to human evaluation Chiang et al. (2024).

# Model ELO
1 gpt-4 1251
2 Yi-1.5-34B-Chat 1162
3 gpt-3.5-turbo 1103
4 vicuna-7b-v1.5 1004
5 mpt-7b-chat 927
6 chatglm2-6b 924
7 oasst-sft-4-pythia-12b 893
8 fastchat-t5-3b-v1.0 868
9 dolly-v2-12b 822

Table 2: Pool of models against which we test our fine-tuned Llama 3.

This pool was selected for its variety; it contains a mixture of large proprietary models (gpt-4,
gpt-3.5-turbo) as well as smaller open-source models, some of which are trained for instruction
answering (oasst-sft-4-pythia-12b, dolly-v2-12b) and the rest of which are trained for general con-
versational purposes (vicuna-7b-v1.5, mpt-7b-chat, chatglm3-6b, fastchat-t5-3b-v1.0, dolly-v2-12b).
Additionally, this set evenly covers a wide range of ELO scores, meaning similarly-ranked models
have quite similar capacities to either outperform or underperform each other. The complete pool and
ground-truth ranking including our fine-tuned model is as above, but we approximate our model’s
ELO with that of its base model Llama-3-8B-Instruct (1153), which places it at rank 3 and shifts all
models with less ELO one spot down.

5.4 Results

5.5 Llama 3 Finetuning and Prompting Techniques Evaluation

After finetuning Llama 3 and comparing our results from different methods across our test sets,
we observe that the differences are relatively small. As can be seen in 3, our additional prompting
techniques do not result in significant performance increases on the test sets of MMLU Clinical
Knowledge, MMLU Medical Genetics, and MedQA. With that being said, we do see substantial
improvements in other test sets like MMLU College Medicine and MedMCQA, and nearly every
baseline was able to be improved upon by some combination of fine-tuning and prompting techniques.
As displayed in 4, we see that our results are promising when compared to Med-PaLM 2, which
is almost 50 times larger Singhal et al. (2023). In fact, our model even beats Med-PaLM 2 with
ensemble refinement on the PubmedQA benchmark, as seen in 4.

6



Dataset Base w/ FT w/ FT + ER w/ FT + SC
MMLU College Medicine 60.7% ± 3.7% 61.8% ± 3.7% 65.2% ± 1.2% 62.3% ± 3.7%
MMLU College Biology 78.5% ± 3.4% 78.5% ± 3.4% 79.3% ± 2.1% 78.5% ± 3.4%
PubmedQA 75.0% ± 1.9% 75.8% ± 1.9% 76.1% ± 1.9% 75.1% ± 1.9%
MMLU Professional Medicine 70.2% ± 2.8% 69.1% ± 2.8% 70.1 % ± 2.5% 73.1% ± 2.5%
MMLU Clinical Knowledge 74.7% ± 2.7% 73.6% ± 2.7% 73.4 % ± 2.7% 72.9% ± 2.7%
MMLU Medical Genetics 83.0% ± 3.8% 85.0% ± 3.6% 85.0% ± 3.6% 83.5% ± 3.4%
MMLU Anatomy 67.4% ± 4.0% 68.9% ± 4.0% 71.7 % ± 4.0% 70.0% ± 1.8%
MedQA 59.8% ± 1.4% 60.3% ± 1.4% 60.2% ± 1.4% 60.1% ± 1.3%
MedMCQA 57.6% ± 0.8% 56.4% ± 0.8% 58.4% ± 0.8% 57.9% ± 1.2%

Table 3: Performance comparison of Llama 3 variants on medical datasets.

Dataset Llama 3 w/ FT + ER Med-PaLM 2 w/ ER
MMLU College Medicine 65.2% 83.2%
MMLU College Biology 79.3% 95.8%
PubmedQA 76.1% 75.0%
MMLU Professional Medicine 70.1% 92.3%
MMLU Clinical Knowledge 73.4% 88.7%
MMLU Medical Genetics 85.0% 92.0%
MMLU Anatomy 71.7% 84.4%
MedQA 60.2% 85.4%
MedMCQA 58.4% 72.3%

Table 4: Performance compared with Med-PaLM 2

5.5.1 PiCO Evaluation on Adversarial Dataset

After running the PiCO evaluation script on the Adversarial Dataset, we obtained the following
ranking and metrics for our fine-tuned model versus the baseline model of llama-3-8B-instruct
(p = 0.75 for RBO):

Fine-Tuned Baseline
# Model Grade # Model Grade
1 gpt-4 0.2800 1 gpt-4 0.2814
2 Yi-1.5-34B-Chat 0.2613 2 Yi-1.5-34B-Chat 0.2620
3 UltimateMed-llama-3-8b-instruct 0.2606 3 llama-3-8b-instruct 0.2585
4 gpt-3.5-turbo 0.2571 4 gpt-3.5-turbo 0.2573
5 vicuna-7b-v1.5 0.2553 5 vicuna-7b-v1.5 0.2559
6 mpt-7b-chat 0.2546 6 mpt-7b-chat 0.2548
7 oasst-sft-4-pythia-12 0.2468 7 oasst-sft-4-pythia-12b 0.2473
8 chatglm2-6b 0.2440 8 chatglm2-6b 0.2452
9 fastchat-t5-3b-v1.0 0.2335 9 fastchat-t5-3b-v1.0 0.2328

10 dolly-v2-12b 0.2275 10 dolly-v2-12b 0.2273
PEN 2.617 PEN 2.617
CIN 2 LIS 2
LIS 7 LIS 7

RBO 0.944 RBO 0.944
Table 5: Final PiCO-generated model ranking and metrics

These results agree strongly with the ground-truth ranking. Our PEN could have taken on values
between 0 and log2(10!), which is approximately 21.8, so our value of 2.617 is clearly very small
relatively Ning et al. (2024). We see that only two inversions appear as a result of Open-Assistant
SFT-4 12B being ranked higher than ChatGLM 6B v2. Our RBO values, which follow a moderate
value of 0.75 for p, show that we attain a score near 1 indicating near-perfect similarity. And, our
fine-tuned model has a slightly higher grade than that of the base instruct model, indicating its
responses were deemed better more often by the other LLMs.
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6 Analysis

Overall, the results that we achieved were not entirely what we anticipated. For example, fine-tuning
Llama 3 didn’t improve performance significantly, even though the decrease in loss during fine-tuning
is clearly noticable in 1. We hypothesized that our results could be a result of overfitting, which looked
possible because of the fact that our model seemed to have converged by the second epoch. However,
we evaluated on the checkpoint after the first epoch and achieved the same results, indicating that this
was likely not the correct explanation.

Figure 1: Loss vs. Training Steps

The PiCO evaluation saw inversion in Open-Assistant SFT-4 12B scoring higher than ChatGLM 6B
v2. This could be due to the fact that the former is based on a fine-tuned model trained on human
demonstrations of assistant conversations, which is similar in nature to our evaluated task, whereas
the latter is meant to serve as an all-purpose billingual model for English and Chinese, which is
unrelated.

7 Conclusion

Overall, we showed that building relatively robust medical question-answering LLMs with smaller
open-source models is not only achievable with limited compute, but can occasionally be shown
to outperform state-of-the-art models like Google’s Med-PaLM 2 on certain metrics. We also
demonstrated the effectiveness of LLM self-evaluation in the implementation of PiCO, which suggests
that the infamously time-consuming and costly process of model alignment can be well-approximated
by much simpler and more accessible methods.

As for our limitations, when using models that were trained on data on the scale of Llama 3 — 15
trillion tokens — the possibility of test data leakage becomes a real problem. While we ensured that
all of our finetuning data remained free of contamination factors like these are unfortunately out
of our control. The ethical implications of this far-reaching as an inability to effectively evaluate
these models, but still treating such evaluations as valid presents an opportunity for these model to
be deployed with their efficacies greatly exagerated, which is very dangerous for those using the
information returned by these systems.

Considering possibilities for further improvement in future work, we recognize that in the preliminary
stages of this project we had intended to improve upon currently-used prompting techniques Singhal
et al. (2023) via a graph-of-thought approach, utilizing search. However, this proved to be a more
time-intensive task than we had expected, so we could not commit to exploring its implementation.
As such, this method remains a very promising avenue for future work, especially given the success
seen by incorporating search in Google recent Med-Gemini publication Saab et al. (2024). Regarding
the PiCO evaluation method, we saw that it was an effective judge of human preference alignment
when used with our adversarial dataset, but more work could be done to investigate whether or not
this holds for other kinds of datasets such as questions which are highly technical or even more
sensitive in subject.
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8 Ethics Statement

Our project on fine-tuning Llama 3 for medical question-answering presents several ethical challenges.
One such risk is the potential to exemplify existing health inequities. As highlighted by Chen
et al. in Ethical Machine Learning in Healthcare, machine learning models in healthcare can
disproportionately underperform for minority groups. For example, language models trained on
scientific articles were shown to medically recommend hospital stays to violent white patients versus
prison time for violent black patients Chen et al. (2021). To mitigate this risk, we can first ensure
that our training dataset includes a diverse range of demographic and clinical scenarios, with biased
outliers removed as necessary. A more empirical solution would be to experiment with different loss
functions, as it has been found that the choice of error metric to minimize may be responsible for
downstream bias in model performance; e.g. surrogate loss functions such as the hinge loss are often
chosen for computational efficiency, but have been shown to disproportionately affect undersampled
groups in the training data because of approximation errors Lohaus et al. (2020). By measuring the
effects of different loss functions on bias in model performance, developers can choose the most fair
options as necessary in medical settings.

Another critical ethical concern is the risk of misinformation. Large language models generate
responses based on patterns in data rather than genuine understanding of medical content, which can
lead to the generation of incorrect or misleading medical advice. This can have severe implications
for patient health and safety – for example, a language model might suggest an incorrect treatment
or fail to recognize a critical symptom, which could put the user’s safety, health, and even life at
risk. One algorithmic method of reducing the risk of misinformation is data augmentation, by which
we not only train on the original samples in our dataset but also on slightly modified versions of
those examples – for example rotated and translated versions of medical image data – in order to
improve our model’s ability to discern between even slight differences in input, thus reducing rates of
misinformation due to the model confounding similar features.
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