
BERT on Multitask Training: Bimodality, Ensemble,
Round-robin, Text-encoding, and More

Stanford CS224N Default Project

Jiaxiang Ma
Stanford University
mjx@stanford.edu

Yuchen Deng
Stanford University

yuchen12@stanford.edu

Abstract

In this project, we implement the key components of the Bidirectional Encoder
Representations from Transformers (BERT) and exploit the strength of the pre-
trained BERT model to improve three downstream tasks, sentiment analysis (SA),
paraphrase detection (PD), and semantic textual similarity (STS). Specifically, we
implement text pair encoding for PD and STS, and train the model in a bimodal
fashion: 3 tasks on 1 shared BERT module with shuffled round-robin training, and
3 tasks on 3 dedicated BERT modules with sequential training. We also tune the
hyperparameters and add SMART regularization for better performance. Finally,
we put 6 best models from both architectures as an ensemble to make predictions
on the 3 tasks. Our best model reaches an overall score of 0.797 on the dev dataset
and 0.796 on the test dataset. As of the project deadline, we rank first and second
on the test and dev leaderboard respectively.

1 Key Information to include

• Mentor: Arvind Mahankali

• External Collaborators (if you have any) or sharing project: no

• Contribution: Both implement minBERT independently. As for the extension, Jiaxiang
implements architecture modification, text pair encoding, and hyperparameter tuning, and
Yuchen implements round-robin training, SMART regularization, and ensemble. Both
contribute equally to research, discussion, and writing.

2 Introduction

The Bidirectional Encoder Representations from Transformers (BERT) from Devlin et al. (2019)
is regarded as a big milestone in the NLP development. As a large pretrained model, BERT can
provide high quality sentence embeddings for a wide variety of NLP tasks. With little modification in
architecture and further finetuning, BERT can be adapted to a specific task. However, in a multitask
background, task-specific finetuning on a single BERT module may not be as effective because of
different task requirements, conflicting gradients among tasks, etc.

In this project, we explore the different ways of improving multitask performance using BERT.
We first implement a minimalist version of the BERT model, including the Transformer module in
Vaswani et al. (2017), text embeddings in Devlin et al. (2019), and Adam optimizer in Kingma and
Ba (2015). Then we implement a multitask classifier model using BERT and train our model on
three downstream tasks: sentiment analysis (SA), paraphrase detection (PD), and semantic textual
similarity (STS). SA classifies the polarity of a sentence. PD detects if two sentences are restatements
of each other. STS measures the degree of similarity between two sentences. We attempt the following
methods: replicating a BERT module for each task, encoding text in pairs as described in Devlin
et al. (2019), applying a shuffled round-robin training procedure on three tasks, adding SMART

Stanford CS224N Natural Language Processing with Deep Learning



regularization from Jiang et al. (2019), tuning hyperparameter, and putting together an ensemble to
further improve the multitask classifier with BERT as the backbone. Our final model ranks first on
the test dataset and second on the dev dataset as of the deadline of the project.

For the rest of the report, Section 3 is the related work that we get inspiration from for multitask
training, Section 4 details all the approaches we adopt to improve multitask performance, and Section
5 and 6 include all quantitative and qualitative results of our training process. Section 7 concludes
our project with future work.

3 Related Work

Devlin et al. (2019) first proposes Bidirectional Encoder Representations from Transformers (BERT),
which has proven to be one of the earliest pretrained large language models that could be further
finetuned for a variety of downstream NLP tasks. BERT can generate high quality sentence embed-
dings by training deep bidirectional representations based on multi-layer bidirectional Transformer
encoder proposed by Vaswani et al. (2017). We implement the key components of BERT and build
a minimalist implementation of the BERT model (minBERT) to load the pretrained parameters of
BERT and integrate BERT into a multitask classifier finetuned for downstream tasks. Devlin et al.
(2019) also describes a new way of encoding text pairs for downstream tasks such as paraphrasing and
question answering, which is to concatenate the text pairs and then feed it into BERT as a single input
so that the cross attention between two sentences can be better exploited. This encoding approach is
not implemented in minBERT and we are inspired to adopt this approach to improve the performance
of PD and STS.

When fine-tuning the pretrained model on the downstream tasks, due to the limited training data for
the downstream tasks and the high complexity of pretrained model, the aggressive finetuning may
cause the model to overfit the training data and not generalize well to unseen data. Jiang et al. (2019)
proposes SMART framework that includes a Smoothness-inducing Adversarial Regularization and
Bregman Proximal Point Optimization method to attain better generalization. The regularization
penalizes the drastic change in the model output when a perturbation is applied on the input, and
enforces the smoothness of the model. We integrate the SMART regularization in SA and STS
training to improve the model generalization and performance.

4 Approach

4.1 Baseline

The baseline model consists of one shared BERT module connected to three task heads. The input
of the baseline model is one sentence for SA or two sentences for PD and STS. For each input
sentence, the BERT module produce a sentence embedding, which is the hidden state of the [CLS]
token prepended to the token representation of the input sentence. The sentence embedding will
then be fed into the task head. For SA, the classifier head includes a dropout layer and a linear layer
with a 768× 5 weight matrix. The 5 scalars represent the logits for 5 classes in SA. The prediction
is computed by applying softmax to get the probability for each class and select the mostly likely
one. We use cross entropy loss to minimize the probability of false classifications. For PD, the
trainable head concatenates the two sentence embeddings after dropout and applies a linear layer with
a 1536× 1 weight matrix on the concatenated embedding to obtain a scalar. The prediction is then
computed by passing the scalar to sigmoid function to get the probability. The binary cross entropy
loss is used to minimize the probability for false prediction. For STS, we use the same linear layer
with a 768 × 768 weight matrix to project the two sentence embeddings after dropout separately,
compute cosine similarity of projected embeddings, and scale the score to [0,5] as prediction. The
mean-squared-error(MSE) loss is used to minimize the error between predicted scores and real scores.
We set a dropout probability of 0.3, a learning rate of 1e−5, a batch size of 32 and finetune the model
on SA, STS, and PD sequentially. For each task, we train 10 epochs on the full model.

4.2 Multitask training

After we train the baseline model, we notice that multitask training tends to have conflict gradients
among different tasks, so as the performance of the task being trained on improves, the other two

2



tasks see a performance drop. Besides, the model suffers from severe forgetfulness due to sequential
training, i.e. the model prefers the last tasks being trained. To address these issues, we implement
two strategies for multitask training: 1. train a 3-BERT model with 3 sub BERT modules for each
downstream task sequentially, 2. train a 1-BERT model shared among three downstream tasks with a
shuffled and sampled round-robin schedule.

4.2.1 3-BERT architecture

We propose a new model architecture called 3-BERT, as opposed to the 1-BERT baseline model.
3-BERT architecture has 3 replicas of BERT module, each independently generating sentence
embeddings for one task only. Therefore, when the 3-BERT model is finetuned on a specific task,
only the BERT module assigned to the task and the task head will be updated and parameters
dedicated to other tasks will not be negatively impacted. Since the 3 sub-networks are independent,
we keep the same sequential training order as used in the baseline model.

4.2.2 Round-robin

When training the 1-BERT model with 3 downstream tasks, we implement a shuffled and sampled
round-robin strategy. First, we notice that the dataset for PD is 33 times the size of the dataset
for SA and 47 times the size of the dataset for STS. If we train every tasks for 10 epochs, the
model will prefer PD because PD has the largest training data. However, if we just downsample
the PD dataset, we will waste a lot of useful data for PD training. Therefore, we decide to sample
the data to balance the multitask training. All the datasets are split into batches with a size of
32, and the task data size is defined as the max number of batches for this task, which equals
number of batches per epoch×number of epochs. We train 10 epochs for SA and STS, and 3 epochs
for PD. During each iteration, we sample a batch from three tasks with a probability proportional to
the task data size and train the model in a round-robin schedule so that the model keeps learning from
all downstream tasks. The training completes when all tasks reach their defined task data size.

4.3 Text pair encoding

Two of the downstream tasks, PD and STS, involve text pairs. The most intuitive way of encoding
the text pairs is to independently encode the two texts, similar to Parikh et al. (2016). Specifically, we
feed the two texts into BERT separately to get two text embeddings, and then feed the embeddings
into the same neural network to compare the output and decide how similar the text pairs are or
whether the text pairs are paraphrases. Despite that, Figure 1 shows another way of encoding the text
pairs from Devlin et al. (2019). The text pairs are concatenated with two [SEP] tokens as delimiters
and a [CLS] token at the beginning to represent the whole text embedding. The concatenated text is
the only input to BERT, and the bidirectional cross attention between two texts can be fully exploited
by this new text encoding. Furthermore, since the pretrained parameters of BERT are trained on the
next sentence prediction task with the same text encoding approach, we decide to use the same text
encoding for finetuning in order to make more use of the inter-sentence relationship learned from the
pretrained tasks and stored in the loaded weights.

To adapt to the new encoding, the classifier heads for PD and STS have to change accordingly. The
output sentence embedding will go through a linear layer with a 768× 32 weight matrix and another
linear layer with a 32 × 1 weight matrix to generate a scalar value for the two tasks respectively.
There is one more step for STS, which is the sigmoid function is applied on the scalar value, and the
output value is scaled to [0, 5]. The loss functions are the same as in the baseline.

We implement the text pair encoding with the tokenizer library in Mahankali (2024) to encode the
sentence pair in the desired form and add the segment embeddings during training as in Figure 1.

4.4 SMART regularization

During training, we notice that the train accuracy keeps increasing, while the dev accuracy fluctuate
in the later epochs, which indicates that the model may overfit on the training data. Therefore, we
integrate the SMART regularization in SA and STS based on the results in Table 2. The SMART
method adds a smoothness-inducing adversarial regularizer on the original loss, and solves the

3



Figure 1: The BERT embedding layer from Devlin et al. (2019).

optimization for:
min
θ

F(θ) = L(θ) + λsRs(θ), (1)

where λs is a tuning parameter as SMART loss weight, Rs is the smoothness-inducing adversarial
regularizer, defined as:

Rs(θ) =
1

n

n∑
i=1

max
∥x̃i−xi∥p≤ϵ

ℓs (f (x̃i; θ) , f (xi; θ)) , (2)

where ϵ is a tuning parameter as the perturbation threshold , xi is the input embedding from the
first embedding layer, and x̃i is a perturbed embedding. For classification tasks, ℓs is chosen as the
symmetrized KL-divergence; for regression tasks, ℓs is chosen as the squared loss. To solve the
minimization problem, we use the Adam optimizer instead of Bregman Proximal Point Optimization
mentioned in the paper.

We integrate the smart-pytorch library from Schneider (2022) for the implementation of SMART
regularization in the training. For SA and PD, we compute a KL-divergence loss between the output
predicted labels from the initial token embedding and perturbed token embedding, add it to the
original loss, and use Adam optimizer to minimize it. For STS, we compute an MSE-loss between the
predicted similarity scores from initial token embedding and perturbed embeddings, and add it to the
original loss for minimization. For experiments, we use perturbation count = 1, λs = 1 and ϵ=1e-5.

4.5 Hyperparameter tuning

We tune the hyperparameters during the training phase. Specifically, we tune the weight for SMART
regularization, the dropout rate for each task, the learning rate, and the weight decay for the learning
rate. After hyperparameter search, we find that only the dropout rate has a non-negligible affect on
the performance based on our architecture setting. The best dropout rates are 0.2, 0.1, and 0.1 for SA,
PD, and STS respectively, while the default dropout rate before tuning is 0.3 for all three tasks.

4.6 Ensemble

After we apply the approaches above, we get a collection of models of the 3-BERT architecture and
the 1-BERT architecture. These models have comparative performance on PD, while some models
do better on SA and the others on STS. Therefore, we ensemble these models to further improve the
performance. Specifically, we select the mode of predictions from all models to generate the final
prediction for SA and PD, and calculate the mean of predictions from all models to generate the final
prediction for STS. We choose 3 3-BERT models and 3 1-BERT models with the best performances
that differ only in the dropout rate or the randomization seed.

5 Experiments

5.1 Data

We use the following datasets from Mahankali (2024) for experiments:

4



1. Stanford Sentiment Treebank dataset, which consists of movie reviews annotated with
sentiment scores. It has been divided into train (8,544 examples), dev (1,101 examples), and
test (2,210 examples). Each movie review has a label of negative (0), somewhat negative
(1), neutral (2), somewhat positive (3), or positive(4).

2. CFIMDB dataset, which consists of movie reviews annotated with binary sentiment label. It
has been divided into train (1,701 examples), dev (245 examples), and test (488 examples).
Each movie review has a binary label of negative (0) or positive (1).

3. Quora Dataset which consists of sentence-pairs with paraphrase labels. It has been divided
into train (283,010 examples), dev (40,429 examples), test (80,859 examples). Each sentence
pair has a binary label of whether different questions are paraphrases of each other.

4. SemEval STS Benchmark Dataset, consisting of sentence-pairs with similarity scores. It has
been divided into train (6,040 examples), dev (863 examples), and test (1,725 examples).
The sentence pairs are rated on a scale from 0 (not at all related) to 5 (same meaning) to
reflect the similarity between the two sentences.

5.2 Evaluation method

For SA and PD tasks, we evaluate the prediction accuracy between true predictions and all predictions.
For STS task, we evaluate the Pearson correlation coefficients between predicted similarity scores
and true scores. The overall accuracy score is computed as Acc(SA)+Acc(PD)+0.5·Corr(STS)+0.5

3 .

5.3 Experimental details

In all the experiments, we load pre-trained weights in BERT layer and finetune the full model
including BERT layers and classifier heads using a batch size = 32, and Adam optimizer with
learning rate = 1e-5 and (β1, β2) = (0.9, 0.999). For the baseline, we train the full model with
three tasks sequentially each for 10 epochs with a dropout rate = 0.3. To study the effects of each
individual training method or configuration on the performance, we run a set of single task training
experiments, with different choices of text-pair encoding, whether turning on SMART regularization,
and different dropout rates. Then, we train the full model with all the tasks combining the methods
and configurations that improve the performance most. We train two types of models: 3-BERT and
1-BERT, as described in Section 4.2. The 3-BERT models are trained on SA, STS, and PD tasks
sequentially, each for 10 epochs. The 1-BERT models are trained in the round-robin schedule, using
max epochs of 10 epochs on SST and SemEval dataset, and 3 epochs on Quora dataset. By changing
the seeds and dropout rates, we train 3 1-BERT and 3 3-BERT models. We ensemble these 3-BERT
and 1-BERT models to generate the final predictions for 3 tasks. All 3-BERT models are trained on
an NVIDIA GeForce RTX 4090 for 3 hours and all 1-BERT models are trained on an NVIDIA RTX
A6000 for 6 hours.

5.4 Results

5.4.1 Baseline

The training curves of the baseline model are shown in Figure 2, and the performance of the baseline
is shown in Table 4. We can see that when we train the full model on three tasks sequentially, the
improvement on one task leads to the degradation on the other two tasks. Therefore, we have two
directions to resolve the conflicting gradients, i.e. training 3 BERT modules on 3 tasks respectively,
and training 1 BERT module on 3 tasks in a round-robin fashion.

5.4.2 Text pair encoding

Table 1 shows the performance of using text pair encoding against encoding two texts independently
in PD and STS on top of the baseline model. For tasks that involve two sentences, text pair encoding
turns out to be effective.

5



Figure 2: The training loss, train accuracy and dev accuracy trends for the baseline model.

Encoding Methods PD STS
Independent Text Encoding 0.721 0.487

Text Pair Encoding 0.889 0.813
Table 1: Performance of different encoding methods on PD and STS dev data.

5.4.3 SMART regularization

Table 2 shows the performance with and without SMART regularization when we train 1-BERT and
the classifier head on each single task. PD is trained with 1

20 of the Quora dataset in this ablation test.
We find that SMART regularization improves SA and STS as opposed of PD.

SMART SA PD STS
× 0.501 0.836 0.857
✓ 0.516 0.813 0.863

Table 2: Performance of adding SMART regularization for each task.

5.4.4 Dropout rate

Table 3 shows the performance of single task training with different dropout rates and the same
settings text pair encoding, and SMART regularization in 3-BERT architecture. We find out that a
dropout rate of 0.3 is not always the best for different tasks under our setting.

Dropout Rate SA PD STS
0.0 0.524 0.908 0.879
0.1 0.531 0.908 0.880
0.2 0.537 0.902 0.878
0.3 0.527 0.903 0.877

Table 3: Performance of different dropout rates.

5.4.5 Model comparison

Table 4 compares the models with different training methods and configurations on the dev dataset.
We find that using text-pair encoding on PD and STS task, adding SMART regularization on SA and
STS tasks, and using fine-tuned dropout rate is the best configuration.

Table 5 shows the performance of 6 individual models (3 3-BERT and 3 1-BERT) and their ensemble.
The only difference among the 3 3-BERT models is the dropout rate used during training and
randomization. The same difference applies to the 3 1-BERT models. For each task, the ensemble
model is comparable or even better than the best individual model. For the overall score, the ensemble
model exceeds all the individual model.

Table 6 shows the performance of our best ensemble model on the dev and test leaderboard. As of the
project deadline, our model ranks second on the dev data and first on the test data.

6



Model Overall Score SA Accuracy PD Accuracy STS Correlation
Baseline 0.627 0.416 0.721 0.487

Baseline + TPE 0.717 0.356 0.889 0.813
3-BERT 0.686 0.528 0.813 0.432

3-BERT + TPE 0.783 0.514 0.903 0.862
3-BERT + TPE + SMART 0.788 0.527 0.903 0.871

3-BERT + TPE + SMART + DF 0.790 0.527 0.907 0.871
RR + TPE 0.784 0.513 0.905 0.868

RR + TPE + SMART 0.787 0.523 0.901 0.873
RR + TPE + SMART + DF 0.788 0.513 0.905 0.893

Table 4: The model comparison with different training methods and configurations. TPE = Text Pair
Encoding, SMART = SMART Regularization, DF = Dropout Finetuning, RR = Round-robin.

Model Overall Score SA Accuracy PD Accuracy STS Correlation
3-BERT + TPE + SMART + DF (0) 0.792 0.537 0.903 0.873
3-BERT + TPE + SMART + DF (1) 0.790 0.527 0.907 0.871
3-BERT + TPE + SMART + DF (2) 0.789 0.533 0.901 0.868

RR + TPE + SMART + DF (0) 0.788 0.513 0.905 0.893
RR + TPE + SMART + DF (1) 0.787 0.514 0.903 0.885
RR + TPE + SMART + DF (2) 0.789 0.519 0.904 0.885

Ensemble 0.797 0.531 0.915 0.889
Table 5: Ensembling model from 3 3-BERT models and 3 1-BERT models.

Leaderboard Overall Score SA Accuracy PD Accuracy STS Correlation
Dev 0.797 0.531 0.915 0.889
Test 0.796 0.529 0.914 0.887

Table 6: The best results on the dev and test leaderboard.

6 Analysis

6.1 Text pair encoding

Text pair encoding brings the most evident improvement to PD and STS. The underlying principle is
that we make full use of the pretraining procedure and the architecture of BERT. BERT is pretrained
on next sentence prediction, which also involves two sentence pairs, so the loaded parameters of
BERT learns the pattern of [CLS] + Sentence 1 + [SEP] + Sentence 2 + [SEP] well and the relationship
between sentences is better extracted by cross sentence attention mechanism as opposed to feeding
the two sentences separately into BERT.

6.2 3-BERT

Dedicating 3 BERT modules to 3 tasks respectively is a straightforward solution to conflicting
gradients among tasks and thus can improve the performance as the results in Table 4. However, one
BERT base module has 1.1B parameters, and 3 BERT modules triples the size of the model. The
generalization capability of the model also gets worse, because each new task needs a new BERT
module together with a new task head.

6.3 Round-robin

Using the shuffled round-robin training schedule, the model keeps learning from all downstream
tasks in turn, which resolves the issue of forgetting the early tasks as in our baseline sequential
setting. The sampling also enables us to handle datasets with varying sizes and make the training fair
for each task by running different epochs based on the varying sizes. With this, we can utilize the
complete data in the large dataset and not cycle the small datasets many times. However, since the 3
tasks are still sharing the same BERT module, the best 1-BERT model with round-robin schedule is

7



still slightly worse than the best 3-BERT model, which completely avoids conflicting gradients in
multitask training.

6.4 SMART regularization

Using SMART regularization effectively improves the performance on SA and STS. In our experi-
ments, we observe that the dev score for SA task fluctuates between epochs, and this trend on SA
is more obvious than on the other two tasks. Adding SMART loss alleviates the issue as SMART
regularization smoothes the change in the model output from a perturbation in input embedding.

6.5 Qualitative evaluation

For SA and PD classification tasks, we compute the confusion matrices between the predicted labels
and true labels in Figure 3. For SA, the sentiment class of "somewhat negative" and "somewhat
positive" are well predicted with an accuracy score of 0.81 and 0.76. For other sentiment classes,
"negative" tends to be predicted as "somewhat negative", "positive" tends to be predicted as "posi-
tive" or "somewhat positive", and "neutral" tends to be predicted as either "somewhat negative" or
"somewhat positive". The false cases tend to predict a class with the neighboring class. The best SA
score is much lower than best PD score, and we think it’s related to finer granularity labels for SA.
The PD labels are in two polarity, and PD is a binary classification task. The SA labels are more
fine-grained, and SA classification requires the model to output the sentiment degree.

For STS, we generate a scatter plot from the true similarity scores and the predicted scores in Figure
4. The line in red is the perfect fit that exactly match the truth. The prediction results scatters around
the true values, while they still exhibit a linear correlation in that most points are close to the red line.

Figure 3: The confusion matrix for SA and PD. In both matrices, element Mij represents for true
label j, the percent of samples predicted as label j.

7 Conclusion

We explore different methods to improve the BERT model performance on multiple downstream
tasks, including sentiment analysis (SA), paraphrase detection (PD), and semantic textual similarity
(STS). We observe the gradient conflicts and forgetting issue when training three tasks sequentially,
so we propose two other strategies for multitask training: the first is to combine three sub models
each for a downstream task, the second is to train single model with multiple tasks in a round-robin
schedule. For the sentence pair datasets, we find that text-pair encoding effectively captures the
relationship between sentences using the strong representation power of the BERT module, and thus
greatly improves PD and STS performance. The SMART regularization penalizes the model change
from input perturbation, encourages the model smoothness, and brings effective improvements to SA
and STS. We further tune the hyperparameters, including dropout rate, weight for SMART loss, and
weight decay, and find out that dropout rate matters more in our setting. Finally, we ensemble the
best models using the techniques mentioned above for our final predictions on the 3 tasks and get the
best overall score of the test dataset on the leaderboard.

As for future work, we find that SA is hard in terms of distinguishing subtle differences between
neighboring sentiment class. Having more training data for sentiment analysis may help improve

8



Figure 4: The scatter plot for true scores and predicted scores in STS.

the sentence embeddings and SA. There are also methods such as using mean pooling on token
embeddings instead of [CLS] embedding as the sentence embedding. We will try these methods if
time permits.

8 Ethics Statement

There are several ethical challenges and possible negative societal risks that we could think of in our
project:

1. All the dataset that we use are in English, which means only English speakers can understand
and exploit our model for the downstream tasks. However, the training data from the English
speaking world may have some bias. For instance, for the movie review dataset, the reactions
are mostly representing the people who speak English, and their attitudes may vary a lot
from other countries who don’t speak English a lot, such as China, France, Japan, etc. Also,
if there are movie reviews in other languages, they might already be excluded from the
dataset, and thus lead to a potential bias for sentiment analysis.

2. The dataset is mostly from sources like online movie review, news, online question-
answering, and other Internet activities. The corpus is less representative of people are
less exposed or interactive with those media. Specifically, the Quora dataset is collected
from Quora users, who usually share personality of being interested in asking questions
to learn new things, and answering questions to spread knowledge. The user profile may
not include people who tend to look for solutions from books. The Quora user has to be
more than 13 years old, so it automatically excludes children from the dataset. The uneven
distribution of the user profile in personality and age in Quora dataset leads to a potential
bias for paraphrase detection task.

We may mitigate the risks mentioned above in the following ways:

1. The training dataset can come from more languages. There are multiple ways to utilize other
languages. One way is before we start training the model on the dataset, we can unify the
language by translating the other languages to English in order to keep the data from people
who speak other languages in the loop. Another way is to use the multilingual-BERT model
that supports more than 100 languages to process the multilingual dataset.

2. Use more diverse dataset for task training, for example, we can add PAWS-Wiki (Paraphrase
Adversaries from Word Scrambling) dataset in training paraphrase detection task.

9



References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. In Annual Meeting of the Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Arvind Mahankali. 2024. Cs224n-spring2024-dfp-student-handout: Starter code
for default final project, spring 2024. https://github.com/amahankali10/
CS224N-Spring2024-DFP-Student-Handout.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255, Austin, Texas. Association for Computational
Linguistics.

Flavio Schneider. 2022. Smart pytorch. https://github.com/archinetai/smart-pytorch.
Accessed: 2024-06-06.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

10

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://api.semanticscholar.org/CorpusID:207847598
https://api.semanticscholar.org/CorpusID:207847598
http://arxiv.org/abs/1412.6980
https://github.com/amahankali10/CS224N-Spring2024-DFP-Student-Handout
https://github.com/amahankali10/CS224N-Spring2024-DFP-Student-Handout
https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/D16-1244
https://github.com/archinetai/smart-pytorch
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	Multitask training
	3-BERT architecture
	Round-robin

	Text pair encoding
	SMART regularization
	Hyperparameter tuning
	Ensemble

	Experiments
	Data
	Evaluation method
	Experimental details
	Results
	Baseline
	Text pair encoding
	SMART regularization
	Dropout rate
	Model comparison


	Analysis
	Text pair encoding
	3-BERT
	Round-robin
	SMART regularization
	Qualitative evaluation

	Conclusion
	Ethics Statement

