
RubricEval: A Scalable Human-LLM Evaluation
Framework for Open-Ended Tasks

Stanford CS224N Custom Project

Vineel Bhat
Department of Computer Science

Stanford University
vineel@stanford.edu

Abstract

Evaluating open-ended language is particularly challenging due to the unreliability
of closed-ended solutions and the high cost of human evaluation. While a suite
of LLM-based evaluators have made progress on this problem, they lack nuance
and interpretability. To this end, we propose RubricEval, a human-LLM evaluation
framework that scores instructions using instruction-level rubrics and provides
interpretable summary feedback to model developers. We find that model rankings
from RubricEval scores are highly correlated with human preferences from Chatbot
Arena (ρ = 0.98) using scores from 13 models across 11 categories and 392
instructions. RubricEval rankings remain concordant with rankings produced via
human evaluation on the same instruction set, but at the criteria level, we find that
RubricEval scores are generally slightly lower than ones from human annotators but
have moderate agreement (κQW = 0.37). We implemented two mechanisms for
feedback generation, and found LLM-generated feedback to be broadly informative
and helpful. Overall, RubricEval represents an important step towards developing
more accurate and interpretable LLM evaluators for open-ended tasks.

1 Key Information

• Mentor: Yann Dubois

2 Introduction

Evaluations are a critical piece in the process of developing language models (LMs). In particular,
they provide a metric to gauge the performance of a LM. Metrics traditionally used for for closed-
ended tasks include BLEU [1] and BERTScore [2], which work by comparing outputs to a reference
answer or set of reference answers. However, they aren’t effective at evaluating LMs because the
space of acceptable LM responses is massive. What makes an instruction-following language model
response good is nuanced, which makes evaluation challenging.

While human expert evaluation is considered the gold standard, it is not scalable given the monetary
and time costs of hiring experts and conducting manual evaluation. Crowdsourced human evaluation
(e.g., Chatbot Arena [3]) provides a cheaper silver standard method, but it is still often infeasible.

This has led to a recent push toward developing reference-free automatic evaluators using large
language models (LLMs). Prompting LLMs is significantly faster and cheaper than gathering human
evaluations, and since they can operate without a reference answer, they don’t run into the issue that
metrics like BLEU and BERTScore face. Recent studies have shown that LLMs work surprisingly
well as evaluators, and correlation with human preferences is high. Notable recent methods for LLM
evaluation include the likes of MT-Bench [3], AlpacaEval [4], WildBench [5], and HELM Instruct [6],
all of which use either a version of GPT-4 or multiple LLMs as evaluators.

Stanford CS224N Natural Language Processing with Deep Learning



However, all of these evaluators are lacking in some areas. We contend that there are five important
aspects an evaluator should hit (three of which we agree with and take from the HELM Instruct
paper): open-ended, multidimensional, absolute, varying criteria, and feedback. We expand on each
of these below, explain how existing methods satisfy a maximum of three aspects, and explain how
our proposed method, RubricEval, satisfies all five (Table 1).

Table 1: Comparison of different evaluation methods.

Eval Method Open-Ended Multidimensional Absolute Varying Criteria Feedback

BLEU ✓

BERTScore ✓

Chatbot Arena ✓ Implicit

MT-Bench ✓ Implicit

AlpacaEval ✓ Implicit

WildBench ✓ Explicit

HELM Instruct ✓ ✓ ✓

RubricEval ✓ ✓ ✓ Explicit ✓

Open-Ended: The responses of chat models are open-ended in nature, and a small set of reference
answers often can’t capture all acceptable responses. This is a key limitation of reference-based
evaluators like BLEU and BERTScore.

Multidimensional: Responses can be good and bad in different ways, which isn’t captured by "head
to head" evaluators like Chatbot Arena and AlpacaEval that simply decide if one response is better
than another generally.

Absolute: Evaluators like Chatbot Arena and AlpacaEval use win rates based on pairwise comparisons.
This means that we don’t know how good a model is in absolute terms. For example, a model may
have a low win rate against GPT-4o but still be formidable, and the highest win rate model may not
be perfect despite topping the leaderboard.

Varying Criteria: The criteria for what makes a good response is different for each instruction. While
HELM Instruct is open-ended, multidimensional, and absolute, it uses the same set of scoring criteria
for each instruction, missing nuances at the instruction level. Most pairwise comparison evaluators
may implicitly consider varying criteria for each instruction, but these criteria are not explicitly laid
out (WildBench is a notable exception).

Feedback: To the best of our knowledge, no current language model evaluation system provides
textual feedback on a model’s overall strengths and weaknesses with respect to some set of
instructions. However, we believe that such feedback would be highly valuable for model developers.
Evaluation is a key piece of iterative model development, and textual feedback could provide insight
on what exactly needs to be improved rather than solely a score which is hard to interpret.

To satisfy all five aspects, we propose RubricEval, a human-LLM evaluation system which harnesses
instruction-specific rubrics. RubricEval uses an LLM to evaluate responses, making it open-ended.
RubricEval scores models on a scale from 1 to 4 and uses detailed rubrics to score multiple factors,
making it multidimensional and absolute. RubricEval’s rubrics are instruction-specific, using a set of
criteria generated by humans for each instruction, giving it varying criteria. Finally, RubricEval
includes a summarizer that distils instruction-specific information into helpful textual feedback.

Our key contributions can be summarized as the following:

1. Incorporating instruction-specific criteria into an evaluation system that is also multidimen-
sional and absolute, making the evaluator more accurate

2. Implementing a mechanism for such an evaluation system to provide interpretable textual
feedback, improving the framework’s practical utility

2



3 Methodology

3.1 Architecture

RubricEval’s architecture takes inspiration from assignment grading in a class setting. In a class,
assignments and their grading criteria are generally created by the professor, while the teaching
assistants are the ones that apply this to grade all the submissions from students. This stems from
the fact that the professor is an expert in their field, and so they are best equipped to create the
assignments and decide how they should be graded. Since the professor’s time is usually highly
valued, the time consuming job of doing the actual grading across all submissions is given to teaching
assistants, who can apply provided grading criteria with less expertise and whose time is generally
considered cheaper. RubricEval employs a similar dynamic to this in order to evaluate language
model responses (the assignment submissions). A human expert (the professor) generates instructions
and specific criteria about what is needed in a good response for each instruction; then, an LLM
evaluator (the teaching assistant), which is cheaper and faster than the human expert, generates a
detailed rubric from each instruction’s criteria and uses this to evaluate the responses of different
models (Figure 1). We use GPT-4o as our LLM evaluator given its state of the art performance.

Figure 1: RubricEval flow chart. Expert-generated instructions and instruction specific criteria are
used to generate a detailed rubric for each instruction, which is used by the evaluator (GPT-4o) along
with the response of the model being evaluated to generate an absolute score and textual feedback.

An example of instruction-specific criteria and a detailed rubric are shown in Supplementary Figure 1
and Supplementary Figure 2, respectively.

3.2 Scoring

For a set of instructions, the LLM evaluator generates a score from 1 to 4 for each of the rubric
criteria of each instruction, where 4 represents "excellent", 3 represents "good", 2 represents "fair",
and 1 represents "poor." To get instruction-level scores, we uniformly average the criteria scores
for each instruction, and to get overall model scores, we uniformly average the instruction scores
across all instructions. We use uniform averages due to their simplicity, though we note that there
are other approaches, notably having the evaluator generate criteria weights and using a weighted
average for instruction-level scores, and/or having the evaluator generate instruction weights and
using a weighted average for model scores.

3.3 Summarizer

After scores and feedback have been generated for model completions using instruction-level rubrics,
the final step of the RubricEval pipeline is a summarizer, which takes instruction-level feedback and
coalesces it into a concise report.

We considered two different approaches for implementing such a summarizer:

1. Hierarchical Unstructured Summarizer: The hierarchical unstructured summarizer uses
a summary of category summaries architecture to summarize instruction-level feedback
(Supplementary Figure 3). Specifically, an LLM summarizer (GPT-4o) details the strengths
and weaknesses of the model in each of n categories that are provided. Then, the LLM

3



summarizer generates the overall strengths and weaknesses of the model by summarizing
the category summaries. While this architecture is two layers in theory, a third layer is
sometimes used if the feedback in a category exceeds the summarizing model’s context
limits (e.g., 128,000 tokens for GPT-4o) or a pre-defined context limit (a lower limit may be
desirable as past work has shown that performance degrades for content in the middle of
long prompts [7]). In our analysis we use a category total token limit of 32,000 tokens to
reduce performance degradation. If instruction-level feedback in a category exceeds 32,000
tokens, we split it up into smaller chunks of instructions and set the category summary to be
the summary of the summaries of these chunks.

2. Two-Step Structured Summarizer: The two-step structured summarizer instead summarizes
instruction-level feedback by generating a set of criteria that would be important for overall
evaluation, then filling in summary feedback blurbs for each of these criteria (Supplementary
Figure 4). Again, a third step might be needed if all instruction-level feedback exceeds
32,000 tokens. In this case, we split up the instruction-level feedback into chunks and use
the two-step structured summarizer on these chunks, then use an LLM to combine these
chunks while still retaining the same number of overall evaluation criteria.

3.4 Dataset and Models

For the purposes of benchmarking, we utilize a set of approximately 1,000 instructions from Wild-
Bench which was made publicly available. From this, 392 of the hardest instructions were chosen
via a pairwise comparison method that was previously implemented by Yangjun Ruan. Using the
WildBench dataset has three primary benefits: 1) it contains a manually curated selection of instruc-
tions from real users, 2) each instruction comes with user-defined criteria of what they’re looking for,
which we can make use of directly in our framework as the instruction-specific criteria, and 3) the
instructions are well spread out across 11 categories, which is useful for benchmarking and fits well
with the hierarchical summarizer in our framework.

We provide summary statistics for the processed WildBench dataset we use in Supplementary Figure
5 and Supplementary Figure 6, which show instruction counts by category and the total token count
of instruction-level feedback by category, respectively. Example instructions from the processed
WildBench dataset are shown in Supplementary Figure 7.

We then benchmark the following 13 models using RubricEval: GPT-4 Omni, GPT-4 Turbo, GPT-3.5
Turbo, Gemini 1.5 Pro, Gemini 1.5 Flash, Gemini 1.0 Pro, Gemma 7B, Gemma 2B, Claude 3 Opus,
Claude 3 Sonnet, Claude 3 Haiku, Llama 3 70B, and Llama 3 8B. Completions were generated
directly via OpenAI, Google, and Anthropic’s APIs for their respective proprietary models, while
completions for the Gemma and Llama models were generated via Together AI’s API.

3.5 Validation

To evaluate the scoring and textual feedback from RubricEval, we use two baselines.

First, we compare model rankings based on RubricEval scores to Chatbot Arena ELO rankings based
on human preferences, which is considered a silver standard.

Second, we perform human validation across the entire RubricEval pipeline. To do so, we sampled
54 instructions from the processed WildBench dataset (18 in each of math, reasoning, and creative
writing) as well as their associated rubrics. We then manually completed 3 items: 1) annotated the
number, list, and cause of clearly questionable rubric criteria and clearly missing criteria for each of
the 54 rubrics, 2) scored three models (GPT-4 Turbo, Claude 3 Sonnet, and Gemini 1.0 Pro) across all
54 instructions using each instruction’s rubric, and 3) created summary feedback for each of the three
models across each of the three categories and overall. This amounted to 1,146 human annotations in
total (324 for the rubrics, 810 for scoring, and 12 for the summaries).

4



4 Results

4.1 Scoring Results

We use RubricEval to score 13 large language models across 11 categories and 392 instructions.
Aggregated results at the model-level are shown visually in Figure 2 and in tabular format in
Supplementary Figure 8. Notably, the ranking of these models based on RubricEval scores correlates
very highly with the ranking of the same models using Chatbot Arena ELO ratings (spearman
ρ = 0.98). A comparison of these rankings is presented in Supplementary Figure 9. The main
discordance is in the ranking of Claude 3 Opus (which is ranked relatively lower by RubricEval
compared to Chatbot Arena). RubricEval’s correlation of ρ = 0.98 with human preferences ties
length-corrected AlpacaEval’s record 0.98 correlation, while being higher than regular AlpacaEval
(ρ = 0.94), MT-Bench (ρ = 0.94), and MMLU (ρ = 0.87). While we caution that RubricEval’s
correlation of 0.98 is based on just 13 models and that this figure could change when a larger number
of models are evaluated, this highlights RubricEval’s scoring strength.

Figure 2: Visual representation of RubricEval scores for 13 models, where 1 represents "poor" and 4
represents "excellent." 95% confidence intervals were calculated via 10,000 bootstrapping iterations.

RubricEval scores for all 13 models stratified by category are presented in Supplementary Figure 10.

4.2 Scoring Validation

While Chatbot Arena rankings are often used as a proxy of human preferences, they weren’t
generated using the same set of instructions as RubricEval’s rankings. For this reason, we perform
human validation: for a subset of 54 WildBench instructions in 3 categories (18 in Math, Reasoning,
and Creative Writing) and across 3 models (GPT-4 Turbo, Claude 3 Sonnet, and Gemini 1.0 Pro), we
compare human scores, that we annotated, with LLM scores using Quadratic Weighted Cohen’s
Kappa, which measures inter-annotator agreement. Specifically,

κQW = 1−
∑

i,j Wi,j ·Oi,j∑
i,j Wi,j · Ei,j

,

5



where Wi,j represents a weight matrix (such that annotator score differences are penalized quadrat-
ically, meaning a score difference of 2 is penalized four times as much as a score difference of 1),
Oi,j represents a matrix of the observed frequencies of the two annotators’ joint scores, and Ei,j

represents a matrix of expected frequencies.

Overall, across 810 human score annotations (combining all three models), κQA between human and
LLM criteria scores was 0.37, highlighting that there is moderate agreement between these scores. A
visual comparison between human and LLM scores is presented in Figure 3, showing that the LLM
evaluator generally gives lower scores compared to a human evaluator.

Figure 3: Visual comparison of LLM scores (x-axis) and human scores (y-axis). The distribution
highlights that human scores are higher than LLM scores (e.g., more human 3s for LLM 2s).

Interestingly, we find that variance in LLM scores (0.83) is higher than variance in human scores
(0.58), contradicting previous studies such as HELM Instruct and AlpacaFarm [8]. This is likely due
to having a single human annotator, which is less noisy than having multiple human annotators as
was the case in both HELM Instruct and AlpacaFarm.

Given the noise in scores at the criteria level, we were also interested in the overall rankings of the
three models across all 54 instructions using human and LLM scores. Table 2 shows that human
and LLM rankings for the three models we validated (GPT-4 Turbo, Claude 3 Sonnet, and Gemini
1.0 Pro) are identical. Additionally, while the LLM gave lower scores than the human for Claude 3
Sonnet and Gemini 1.0 Pro, it gave a higher score than the human for GPT-4 Turbo, corroborating
the self-bias reported in the AlpacaFarm paper (note that while the LLM evaluator is GPT-4o, it may
be considered similar enough given it’s an improved multimodal version of GPT-4 Turbo).

Finally, qualitatively, we noticed that the evaluator sometimes misses calculation issues (e.g., with
math and brainteasers) and structural issues (e.g., response doesn’t include x number of words or
isn’t formatted as specified), the former of which we saw is a limitation of GPT-4o as an evaluator (it
doesn’t always calculate correctly itself) and the latter of which is a known limitation of LLMs.

6



Table 2: Model-level human scores and LLM scores for GPT-4 Turbo, Claude 3 Sonnet, and Gemini
1.0 Pro across a subset of 54 instructions.

Model Human Score LLM Score

GPT-4 Turbo 3.24 3.33

Claude 3 Sonnet 3.04 2.84

Gemini 1.0 Pro 2.81 2.53

4.3 Feedback Results

Overall summary feedback for select models using the hierarchical unstructured summarizer is
shown in Supplementary Figure 11, overall summary feedback for select models using the two-step
structured summarizer is shown in Supplementary Figure 12, and overall human reference summary
feedback is shown in Supplementary Figure 13.

4.4 Feedback Validation

To validate summary feedback, we compare LLM-generated feedback with reference human-
generated feedback, and generate a concordance score from 1 to 4 using a separate evaluator,
where as before, 4 represents "excellent", 3 represents "good", 2 represents "fair", and 1 represents
"poor." Overall feedback concordance scores for the hierarchical and two-step summarizers across
the three models we used for validation are shown in Table 3 and Table 4, respectively.

Table 3: Concordance scores between overall LLM (hierarchical) and human feedback.

GPT-4 Turbo Claude 3 Sonnet Gemini 1.0 Pro

2 2 2

Table 4: Concordance scores between overall LLM (two-step) and human feedback.

GPT-4 Turbo Claude 3 Sonnet Gemini 1.0 Pro

2 2 2

LLM-based evaluation highlights that concordance between model and human summaries is fair,
though we caution that quantitative evaluation in this context is not a perfect measure given there are a
range of acceptable summaries which may not match the reference summary very well. Qualitatively,
we find that summaries from both the hierarchical and two-step summarizers are informative and
helpful, with the hierarchical summarizer being particularly informative due to its additional nuance
and better incorporation of various categories.

4.5 Rubric Validation

Rubric validation was performed by considering human annotations for questionable or missing
rubric criteria for each of the 54 rubrics in the validation set. Overall, we found that 1 rubric had a
questionable criterion, which was a result of poor human-generated criterion, and that 1 rubric had a
missing criterion, which was a result of multiple queries being in the same prompt. The low number
of rubric issues during validation highlights that this part of the pipeline is particularly robust.

7



5 Conclusion

We present RubricEval, an evaluation framework that satisfies all five of the important aspects of
automatic evaluators we presented earlier: open-ended, multidimensional, absolute, varying criteria,
and feedback. The method has an impressive correlation of 0.98 with Chatbot Arena using scores
from 13 models across 392 instructions. At the same time, RubricEval provides helpful feedback on
the strengths and weaknesses of the models it evaluates, making it highly interpretable.

5.1 Limitations

Using an LLM evaluator comes with the challenge of bias. Known biases of LLM evaluators include
preferences towards longer outputs [9], a model’s own output [3], and the presence of lists [8], which
we don’t account for or attempt to correct. Separately, unlike approaches like AlpacaEval, RubricEval
requires human generated criteria for the creation of evaluation rubrics. While costly evaluation is
handled by an LLM, one-time instruction and criteria generation by human experts may still be costly
for some. The current RubricEval framework allows for evaluation without these human components,
instead having an LLM generate them, but we note that this may lead to lower performance. Finally,
we caution that the RubricEval LLM evaluator can sometimes incorrectly calculate math or miss
structural instructions leading to incorrect evaluation, due to the current state of LLM performance,
and that while LLM-generated summary feedback is helpful, fast, and cheap, it is not always as
nuanced as human-generated summary feedback.

5.2 Future Work

Future work may seek to use the RubricEval framework to evaluate a larger plethora of models and
transform it into an easy to use evaluation package for the NLP community. Separately, future work
could improve the framework by incorporating weighted averages (either at the instruction or criteria
level) into the scoring process, as detailed in Methods, and by tuning prompts in the pipeline for
better results. Finally, as detailed in Limitations, using LLM-generated instructions and criteria could
lower costs, but will likely also degrade performance; future work may quantify how much of a
difference this makes and whether it’s feasible.

6 Ethics Statement

One ethical challenge relevant to this project is the potential for bias in expert-generated instructions
and criteria. Since the RubricEval framework relies on instructions and criteria from human experts,
there is a risk that these pieces, specifically the criteria, might inadvertently reflect the biases of
the experts in aspects such as cultural, gender, and ideology. One potential way to mitigate this
would be to make sure expert-generated information has gone through multiple experts with diverse
backgrounds and views. Another ethical challenge is evaluation gameability. Due to known biases in
LLM-based evaluators, such as length and presence of lists, a malicious actor could game the system
so that their model receives a high score on a public leaderboard. One potential way to mitigate this
would be to account for biases that are gameable using a simple yet robust generalized linear model
approach similar to that used in length corrected AlpacaEval.

7 Contributions and Acknowledgements

RubricEval’s LLM rubric generator and LLM evaluator were implemented in previous quarters by
Yann Dubois, Josselin Somerville Roberts, and Yangjun Ruan. My primary contributions included
fixing bugs in the pipeline in order to run it end-to-end, making prompt modifications to the LLM
evaluator to increase performance, implementing two versions of the LLM summarizer, performing
inference and benchmarking across a range of models, performing human validation across the
pipeline, quantitative/qualitative analysis, and creating plots and text.

We thank Yann Dubois for helpful and insightful conversations, as well as Percy Liang for proposing
the two-step structured summarizer architecture.

8



References
[1] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic

evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, page 311–318, USA, 2002. Association for Computational
Linguistics.

[2] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert, 2020.

[3] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

[4] Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. AlpacaEval: An Automatic Evaluator of Instruction-
following Models.

[5] Bill Yuchen Lin, Khyathi Chandu, Faeze Brahman, Yuntian Deng, Abhilasha Ravichander,
Valentina Pyatkin, Ronan Le Bras, and Yejin Choi. Wildbench: Benchmarking llms with
challenging tasks from real users in the wild, 2024.

[6] Yian Zhang, Yifan Mai, Josselin Somerville Roberts, Rishi Bommasani, Yann Dubois, and Percy
Liang. Helm instruct: A multidimensional instruction following evaluation framework with
absolute ratings, February 2024.

[7] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023.

[8] Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback, 2024.

[9] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators, 2024.

9



A Appendix

Supplementary Figure 1

Supplementary Figure 1: Example human-generated criteria for an instruction.

10



Supplementary Figure 2

Supplementary Figure 2: Example LLM-generated rubric for an instruction.

11



Supplementary Figure 3

Supplementary Figure 3: Visual representation of the hierarchical unstructured summarizer
architecture. Instruction-level feedback is first summarized by category, and then the summaries of
each category of instructions are summarized into a single overall summary.

12



Supplementary Figure 4

Supplementary Figure 4: Visual representation of the two-step unstructured summarizer architecture.
A fixed number of evaluation criteria are determined from instruction-level feedback, then a summary
blurb is generated for each criteria.

13



Supplementary Figure 5

Supplementary Figure 5: Number of instructions by category in the processed WildBench dataset.

14



Supplementary Figure 6

Supplementary Figure 6: Total token counts of feedback by category. Across the 11 categories in
the WildBench dataset, we map how many tokens would be needed to incorporate the feedback
information that would be fed into the summarizer. This information includes the prompts, rubrics,
scores, and evaluator feedback for each instruction related to the category.

15



Supplementary Figure 7

Supplementary Figure 7: Example instructions from the processed WildBench dataset.

16



Supplementary Figure 8

Rank Model Score

1 GPT-4 Omni 3.18

2 GPT-4 Turbo 3.10

2 Gemini 1.5 Pro 3.06

2 Gemini 1.5 Flash 2.98

2 Llama 3 70B 2.90

3 Claude 3 Opus 2.86

4 Claude 3 Sonnet 2.79

6 Claude 3 Haiku 2.73

2 Llama 3 8B 2.56

5 Gemini 1.0 Pro 2.56

7 GPT-3.5 Turbo 2.52

7 Gemma 7B 2.14

7 Gemma 2B 1.74

Supplementary Figure 8: RubricEval scores for 13 models. We use RubricEval to score 13 popular
models on a scale from 1 to 4, where 1 represents "poor" while 4 represents "excellent." Notably, the
ranking of these models using RubricEval scores correlates well with Chatbot Arena (ρ = 0.98).

17



Supplementary Figure 9

Rank RubricEval Chatbot Arena

1 GPT-4 Omni GPT-4 Omni

2 GPT-4 Turbo Gemini 1.5 Pro

2 Gemini 1.5 Pro GPT-4 Turbo

2 Gemini 1.5 Flash Claude 3 Opus

2 Llama 3 70B Gemini 1.5 Flash

3 Claude 3 Opus Llama 3 70B

4 Claude 3 Sonnet Claude 3 Sonnet

6 Claude 3 Haiku Claude 3 Haiku

2 Llama 3 8B Llama 3 8B

5 Gemini 1.0 Pro Gemini 1.0 Pro

7 GPT-3.5 Turbo GPT-3.5 Turbo

7 Gemma 7B Gemma 7B

7 Gemma 2B Gemma 2B

Supplementary Figure 9: Comparison of RubricEval rankings (based on overall model-level scores)
and Chatbot Arena ELO rankings for 13 models.

18



Supplemental Figure 10

Supplementary Figure 10: RubricEval scores by model and category. Each model was evaluated
across instructions from 11 categories: information seeking, coding & debugging, planning, creative
writing, brainstorming, editing, reasoning, math, data analysis, advice seeking, and role playing. This
plot breaks down the overall model scores into their components (note that overall scores are simple
uniform averages of these category scores).

19



Supplemental Figure 11

Supplementary Figure 11: Select overall LLM summaries using the hierarchical unstructured
summarizer for the following three models: GPT-4 Omni, Claude 3 Haiku, and Llame 3 8B.

20



Supplemental Figure 12

Supplementary Figure 12: Overall LLM summary using the two-step summarizer for GPT-3.5 Turbo.

21



Supplemental Figure 13

Supplementary Figure 13: Human-generated overall summary feedback for three validation models.

22


	Key Information
	Introduction
	Methodology
	Architecture
	Scoring
	Summarizer
	Dataset and Models
	Validation

	Results
	Scoring Results
	Scoring Validation
	Feedback Results
	Feedback Validation
	Rubric Validation

	Conclusion
	Limitations
	Future Work

	Ethics Statement
	Contributions and Acknowledgements
	Appendix

