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Abstract

Our objective is to build a homework problem recommendation system which,
given an input by a user specifying the subject and topics involved, returns the top
matches of homework problems within our constructed database. We implement a
Rewriter-Retriever-Reranker model following standard principles of information
retrieval in machine learning, and evaluate the results using a novel evaluation
metric.
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2 Introduction

In recent years, information access has become one of the fundamental daily needs of human beings.
Whether individuals wish to search for new clothing or ask for directions to the nearest coffee shop,
most everyday tasks now require the need for efficient information retrieval. Consequently, multiple
information retrieval (IR) systems, such as search engines, have been developed to accommodate the
surge in information demand. From general queries to specific applications, these systems play a
crucial role in modern life. That being said, last quarter, one of our group members Ronny Junkins
built an information retrieval application to help with his studying process for his CS 229 Project.
In the educational setting, finding studying resources such as practice problems other than those
provided through the course can be often very difficult or time-consuming for students. As a result,
he designed an application that, when prompted with a query, searched for and returned the most
relevant practice problems from various datasets of questions. However, given the limited resources,
time, and information concerning natural language processing, the application still possessed lots
of room for improvement. Therefore, our team decided to improve the application’s capabilities by
re-implementing it using a Rewriter-Retriever-Reranker approach, alongside other natural language
processing techniques.

Originally, the CS 229 Project approach involved primarily unsupervised learning methods, including
the use of Sentence Bert to generate an embedding space for questions and queries followed by a type
of clustering such as k-means or hierarchical clustering. Quantitatively the method seemed to work,
but the project struggled significantly with evaluation, and developed no frame of reference for its
performance. All types of evaluation depended on labeled training set examples. While the methods
used were powerful, they were also relatively unrefined, and left significant room for improvement.
We use a version of this model as our baseline, and now attempt to develop models to exceede its
performance.
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We hypothesize that the Rewriter-Retriever-Reranker approach Zhu et al. (2024) will serve as a better
architecture for the application. In summary, the application takes in a query, rewrites it to better align
with the practice questions in the dataset, retrieves the most relevant questions, and re-ranks such
questions so that they are better ordered by relevancy to the original query. To train and implement
the Rewriter-Retriever-Reranker, we utilized the SciQ Dataset Welbl et al. (2017) to serve as our
bank of practice problems and additionally generated a synthetic dataset of plausible queries with
a Text-to-Text Transfer Transformer Raffel et al. (2023) and Meta’s Llama 3 8b Chat model Meta
(2024). Additionally, with the queries produced from docTTTTTquery, we rewrote them using Meta’s
Llama 3 8b Chat model as well with zero-shot prompt engineering: we also briefly used Gemini-flash
as a proof of concept for zero-shot learning in our reduced datasetTeam et al. (2024). Once we had
our queries synthesized and rephrased, we deployed our synthetic dataset to train and evaluate a
retriever model pretrained on the MS-MARCO Dataset Bajaj et al. (2018) from HuggingFace Reimers
and Gurevych (2019). Once the retriever had been trained and evaluated, we fed test data from the
SciQ Dataset into a reranker model also pretrained on the MS-MARCO and from HuggingFace to
determine whether or not re-ranking the relevancy of the documents against each other and the query
improved how the questions were provided to a user. From these experiments, we found that for
the smaller dataset generated by Gemini-Flash, the baseline model performed significantly better
than the other models. However, when we increase the size of the dataset and improve the quality
of the synthetic queries, we see significant improvement in Retriever-Reranker models while the
performance of the baseline model stagnates.

3 Related Work

In order to keep pace with the growing necessity for information retrieval (IR) systems, alongside
the ever-growing volume of data and user demands concerning such applications, it is imperative
that modifications and improvements are continually made towards information retrieval systems.
Especially with the rise of Large Language Models (LLMs), new opportunities to better the efficiency
of such IR systems have become more available. For instance, LLMs can aid in rewriting queries
so that they can be better fit to retrieve documents from the data source Zhu et al. (2024). For our
project, we decided our own version of a query rewriting using a LLM to improve our retriever’s
ability to select relevant practice problems.

Additionally, in order to develop IR applications for specific demands, highly specific data surrounding
the queries and the documents are necessary to implement an efficient and successful system.
However, the datasets to which users have access to are either too general for their intention or not
even available. Therefore, new models have been introduced to entirely synthesize datasets such
that these IR applications can have the highly specific information they need. For the sake of this
project, we chose to deployed Text-to-Text Transfer Transformer (T5) Raffel et al. (2023) as the
model to generate our synthetic dataset. Essentially, when finetuned on question answering prompts,
T5 can generate synthetic questions for specific documents so that a retriever model can be trained
and evaluated.

4 Approach

4.1 Baseline Approach

As a comparison metric, we took our original implementation from the CS229 Final Project framework
and simplified it somewhat, removing the unsupervised learning components. This model uses
Sentence-BERT (SBERT) Reimers and Gurevych (2019) to embed all questions and queries into an
embedding space and manually computes the pairwise distance between each query and each question
in the embedding space. It then returns the top k matches based on the highest cosine similarity.

4.2 Main Approach

4.2.1 Query Generation and Rewriting

Baseline Query Generator: An issue we will elaborate on further in the paper is that we are
working with a limited dataset in terms of size. We have 13,700 data points which is a relatively tiny
amount of data for NLP purposes, and ergo restricts the ability of our model’s trained T5 generator to
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fully understand language. To act as a baseline which is not contingent on the T5 generator’s access to
data we deployed an independent LLM to use as query generator. For this we deployed Meta’s Llama
3 8b Chat model Meta (2024). We used zero shot learning to extract the topic from each question in
our dataset, and then using a template and a rephrase request ("Can you find more questions about
<topic>?") to generate a query for the question. For this baseline we did not use a separate rephrase
step, as there is already an implicit rephrase built into our zero-shot prompt engineering. Below are
two examples of zero-shot generated queries.

Question: What remains a constant of radioactive substance over time?
Generated Query: Are there additional questions about Half-Life available?

Question: What do you call a structure composed of two or more types of tissues that work together
to do a specific task?
Generated Query: Can you locate additional questions related to the organ?
As you can see from the second example the results from Llama are not infallible and can have
incorrect grammar. However the baseline queries generally capture the correct topic and form a query
easily understood by humans.

As inspiration in desigining our main approach, we drew upon previous techniques from modern day
information retrieval systems and new opportunities for LLMs to improve such techniques Zhu et al.
(2024). One such way LLMs have been used to improve the quality and efficiency of IR systems is
through query rewriting. Suppose we have a query q for which we want to find the k most revelant
documents from dataset D. Utilizing an LLM, we can ask it to rewrite q such that the new query
q̂ has no vocabulary and spelling mistakes, consequently improving the retriever’s ability to find
relevant documents.

T5 Query Generator: Another idea that had been proposed for finding queries related to each
practice problem was to utilize the T5 model to generate synthetic queries based on each problem’s
answer and support for the answer. Simply put, the T5 model is a encoder-decoder model that
can perform a multitude of tasks, including translation and summarization, for which each task
is converted to a text-to-text format. That being said, for our intended purposes, we wanted to
experiment with using the T5 model for question answering. In order to do so, we attempted to
finetune the T5 model on the Stanford Question Answering Dataset (SQuAD) Rajpurkar et al. (2018)
where the input text had been formatted with prefixes "<answer>" and "<context>" such that the
input text looks like "<answer> answer of the question <context> context of the question" and
used to predict the original question asked. However, due to constraints in GPU RAM and the tedious
process of finetuning the model, our group decided that our baseline approach to generating queries
would be best.

4.2.2 Retriever

The objective of the Retriever is to find the k most relevant (closest) documents from D to our
query q. However, to compare the similarity of q to the documents in D, both q and D must be
represented in vector space using sentence embeddings. For our retriever, we utilize a Bi-Encoder the
pretrained msmarco-distilbert-base-v4 model for semantic search to encode q and questions from D
with SBERT embeddings and compute their distance from each other using cosine similarity Reimers
and Gurevych (2019). With these metrics, we collect the top k most relevant documents d1, . . . , dk,
and re-rank them using a re-ranker.

4.2.3 Reranker

Given the top k most relevant documents d1, . . . , dk, it is possible that the retriever may return
irrelevant documents. Thus, we employ a Reranker to overcome this by utilizing a pretrained ms-
marco-MiniLM-L-6-v2 Cross-Encoder, which takes in the query q and document di for i ∈ {1, . . . , k}
simultaneously and produces a score from 0 to 1 characterizing their similarity Reimers and Gurevych
(2019). With these scores, we reduce the original k documents to a smaller subset.
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5 Experiments

5.1 Data

We used the SciQ Welbl et al. (2017) dataset. This dataset consists of 14,000 crowd sourced science
questions. We then use large language models to generate two synthetic datasets, one small synthetic
dataset for testing purposes and one larger dataset for more comprehensive evaluation. To generate
the small dataset, which consists of 1,291 data points broken down into 1,083 training, 97 testing,
and 111 validation examples, we use a LLM, Gemini-flashTeam et al. (2024), to generate a query for
each data point in the dataset. A query is a synthesized request to find problems, meant to simulate
a real user request for practice questions from the dataset. The SciQ dataset provides answers to
all questions in the dataset. We use these answers as inputs to Gemini-flash and give it the task of
generating a reasonable user request that could have been seeking the question in the dataset with
this answer. An example data point in our dataset is below, of the form (synthetic query, question
from dataset, answer): ’Can you find more questions about skeletal structure?’, ’What are the
location where bones come together?’, ’joints’. Our hybrid dataset perfectly captures out task
because it allows the model to see the relationship between a query and a question that is relevant.
Lastly, utilizing the T5 model Raffel et al. (2023) finetuned on the SQuAD Dataset Rajpurkar et al.
(2018) as discussed in the Approach section, we took answers and supports from such answers to
generate questions concerning certain practice problems and treated those synthetic questions as our
queries.

5.2 Evaluation method

As our problem and setting are entirely unique, we must develop custom evaluation metrics to
determine the quality of results outputted by our model. That is, given a query and the top k results
outputted by the model, how do we quantify how satisfied a user would be with those results? We
develop multiple evaluation metrics, and assess each based on its consistency with the others.

The primary evaluation metric we deployed was precision of the top-k results as adjudicated by
an LLM judge. Due to the nature of our task (IR), it is impossible to have a ground truth top-k
documents for each of the infinite possible queries. Even if we were able to manually compute a
top-k ground truth, it would be subjective (there is no objective way to rank documents for a query
otherwise IR would not be a challenge), a single added document would force each top-k ground
truth to be re-evaluated, and there would be no way to evaluate new queries: e.g. when the model
is deployed or when working with the sensitive parts of the dataset which we should not directly
access(testing or validation splits). Ergo we required a more flexible measure that is robust to unseen
queries and documents. Thus we deployed an independent LLM model (known as a LLM judge)
to grade each top-k documents our model produces based on its precision. The LLM judge looks
at each of the top-k documents produced and gives each a binary score, 1 indicating the document
is relevant to the query and 0 when the opposite is true. The precision of the model is the average
score given: the closer precision is to 1 the higher the rate the model retrieves relevant documents
and the better our model. For our evaluation we used zero-shot learning using the pretrained weights
of Mistral-7B-Instruct-v0.3 model from Mistral AIJiang et al. (2023). Note that we intentionally
chose not to reuse Llama, as our baseline queries are made with Llama the model likely has bias
towards its own queries. This would cause the LLM judge to not evaluate all outputs in a consistent
manner. Mistral is a instruct model and thus it preforms excellently at succinctly following directions
without adding unnecessary noise(many chat-bots add additional tokens such as "Of course! or "I’d
love to help"). Mistral was trained on a a large amount data scraped from the web, giving the model
substantial general knowledge and understanding of relevance. Additionally, it is relatively light
weight at only 7 billion parameters allowing us to quickly and cost-effectively query the LLM judge.
Below are a positive and negative examples of the LLM judge’s evaluation.

Query: Are there additional questions about plant hormones?
Question: Phytochromes regulate many plant responses to what?
LLM Score: 1
Note this provide evidence that our LLM judge has a pretty high command over general information.
It is able to correctly identify that although phytochromes are essential for plant regulation they are
pigments and not hormones.
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Query: I’d like to explore more scientific concepts related to oxidants. Can you provide
me with additional problems or examples?
Question: What in science are very important so that we can compare experimental data from one
lab to another and make sure we all are talking about the same thing?
LLM Score: 0

We further employ two secondary evaluation metrics. The first is SacreBLEU, a variation of the
classical BLEU machine language translation metric. This metric essentially counts the exact word
and phrase matches between the inputted query and outputted results of the model. We employ this
metric because it is reasonable to assume that better results from the model will be on similar topics as
the query, and will on average have more word matches than results that are on entirely different topics.
For example, given the user query, ’Could you provide me with additional scientific questions
related to the vertebral column (backbone)?’, we expect more accurate results than inaccurate will
feature words such as ’vertebrae’ and ’backbone’. We of course expect that the SacreBLEU scores
will be much lower than typical machine translation BLEU scores as there a multitudes of questions
that are accurate results for a given query but that don’t use the exact wording of the query.

The last evaluation metric we consider is Cosine Precision at k = 5. This metric is calculated as
follows. Consider the test set, which is made up of (synthetic query, target document) pairs. We
assume that the target document is the best match for the synthetic query, and combine all target
documents in the test set into a small set of subset of documents. We input the query into the model,
evaluate on this subset of documents, and compute precision based on whether or not the target
document is in the top 5 results.

5.3 Experimental details

For fine-tuning on the small synthetic dataset, we use 3 epochs, 40 warmup steps, a learning rate of
2× 10−5, and evaluation every 10 steps. We assume that each document (question) in the original
training set should be close to the synthetic query we have generated for it, and hence use Multiple
Negatives Ranking Loss as our training objective. Training progress is tracked using the Cosine
Precision at k = 5 evaluation metric as described in Section 5.2 evaluated on the validation set.
Training time is less than 5 minutes.

For both the small synthetic dataset and the large synthetic dataset, the evaluation task is as follows.
The datasets are made up of (synthetic query, document) pairs. We combine all the documents in the
training set into a large "corpus" to simulate a large dataset of questions. Then, for each synthetic
query in the test set, we have each model return the top 5 results in the corpus matching the query.
These results are then passed to the LLM Judge and SacreBLEU as defined above.

For the small synthetic dataset, we evaluate the "msmarco-distilbert-base-v4" model with and without
finetuning, with and without the Cross Encoder, and with and without a fixed maximum sequence
length of 256 tokens to measure the effectiveness of these components of the model. We further
compare with "all-MiniLM-L6-v2", the default Sentence Transformer model, and AllenAI-SPECTER
Cohan et al. (2020) to see how our model does compared to these other pretrained models.

For the large synthetic dataset, we use the same hyperparameters as the small dataset but increase the
number of warmup steps to 437. Loss is the same and progress is tracked in the same way. Finetuning
takes approximately one hour to complete on this training set.

During experimentation on the large synthetic dataset, for the purposes of time and resources, we
only choose to evaluate the MSMarco model, as it was the highest performing on the smaller dataset.
We again evaluate with and without fine-tuning, and with and without the cross encoder and observe
performance.

5.4 Results

When our model and the others were evaluated on the small synthetic dataset, the baseline clearly
outperformed all others overall, see Figure 1. Fine-tuning had a very erratic impact on performance,
in some cases improving the performance, as with AllenAI-SPECTER, and in other cases worsening
performance, as with MSMarco. Reflecting this, the evalution on test set metric was also unpredictable.
We can see evidence for why this should be in Figure 4, Figure 5, and Figure 6, which depict how the
three different models performed on the evaluation set over the course of training. While it seems as
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if the MSMarco made some improvements, these improvements didn’t translate to the test set, and it
is clear in all models that performance was impacted in a very chaotic way by fine tuning. Adding
the cross encoder seemed to improve performance to a limited extent. The MSMarco model overall
outperformed the other models excluding the baseline.

On the large dataset, we see a dramatic change, see Figure 2. Excluding the baseline, all scores
with LLM Judge and SacreBLEU are significantly higher than on the smaller dataset. Fine tuning
the model and the addition of the cross encoder add significant improvements to the score when
compared with leaving these pieces out. We notice from Figure 7 that the loss while training on
the large synthetic dataset shows significant improvement when compared to pre-training levels,
while the performance on the evaluation dataset in Figure 8 similarly shows good improvement. The
performance of the baseline model is now quite comparable to our model.

In figure 3, we further confirm these findings by analyzing the performance of the models on the
test set before and after training. It seems that MSMarco benefits the most from fine-tuning on the
training dataset in both the case of the large dataset and the small dataset, while "all-MiniLM-L6-v2"
is shows a significant decrease in performance. It is expacted that all values are very low as this is a
very challenging task (see Section 5.2).

We furthermore see that our evaluation metrics LLM Judge and SacreBLEU Score show remarkably
good agreement when analyzing which models are providing significantly better results than others.
This is comforting because while the LLM Judge is much more powerful, it is also the more opaque
evaluation metric while SacreBLEU is very easy to understand. Hence, when the two models agree,
we can be confident that scores they are giving the model’s results are reasonable.

Figure 1: Evaluation of models on Small Synthetic Dataset

6 Analysis

For the following analysis I decided to focus on our best preforming experiment: our model finetuned
on all of the training dataset and using the cross encoder(46.9% LLM judge precision). Our model
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Figure 2: Evaluation of models on Large Synthetic Dataset

Figure 3: Pre and Post Fine tuning performance on Test Set

appears to heavily weigh similarity between the query and document over actual meaning: this is
likely an artifact of our relatively small training dataset pool. Below is an example.

Query: What other questions are there about Elevation?
Document Retrieved: Screws move objects to a higher elevation by increasing what?

Although both query and document contain the word "elevation", the LLM judge correctly judges the
document as irrelevant. The important distinction here is that the word "elevation" is not the key topic
when used in the context of a screw raising objects(the real topic is likely somewhere along the lines
of simple machines). The typical human would use the topic "elevation" to get more questions about
heights on the earth’s surface and not "elevating" objects. An example of conflation of structure is
below.

Query: What other questions are there about Elevation?
Document Retrieved: Altitude is height above what?

The words "elevation" and "altitude" are used in very similar structures, as both words are used to
describe position in the world and are typically surrounded by descriptors like above, below, high,
and low. Despite their similar use, the words are not synonymous. Altitude refers to height positions
in the atmosphere and elevation to heights on the surface(a hiker reaches an elevation and a plane
flies at an altitude). The model’s selection of the above document provides substantial evidence
that the model weighs similar structure and use heavily when it should be paying high attention
to the meaning of the words. Our model conflates word matches and similar structure with high
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Figure 4: MS Marco Performance on Evaluation Set during Training

Figure 5: all-MiniLM-L6-v2 Performance on Evaluation Set during Training
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Figure 6: AllenAI-SPECTER Performance on Evaluation Set during Training

Figure 7: MS Marco loss during fine-tuning on the large synthetic dataset
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Figure 8: MS Marco Performance on Evaluation Set during Training

relevance, which is an important behavior to move away from in the future. Although it makes sense
how our model could easily fall into the pitfall of over emphasizing structure and word matches.
Our model has a very limited knowledge base(small training set of 10,000 examples) and a small
number of parameters, thus it would be impossible for it to memorize any knowledge base without
extreme over fitting on the training set. Thus, because structure and word similarity can be computed
without having to memorize any knowledge it makes sense that our model so heavily emphasizes the
aforementioned qualities. To fix this in the future we can drastically expand our model’s size, giving
it the ability to memorize the meanings of key topics, as well as expanding our training set, exposing
our model to a wider range of concepts and meanings.

7 Conclusion

From our results we can surmise that the largest limiting factor in our model’s performance is dataset
size. Over the course of our research experiments we evaluated on a small subset of our data, roughly
1,300 examples, to serve as our project milestone before utilizing the full dataset, roughly 13,000
examples, for our final experimentation. From this ten fold increase in data we observed LLM
judge precision also scale from an average of 7.5% on our finetuned models to an average of 44.3%
precision on our finetuned models. That is around a 6 fold improvement for a ten fold increase in
data. Additionally, looking at our loss over training iterations graph we can clearly see that loss was
still decreasing with additional training. Today’s cutting edge models use trillions of training tokens
and a trillion or so parameters. Our model was trained on a little over a million tokens and utilizes a
few billion parameters, and the fact our best experiment achieved only 3% less precision than the
baseline with our extreme data, model size, and training times limitations is extremely promising.
Thus we reasonably expect that as we increase our dataset side our model’s performance will easily
eclipse that of the baseline. Additionally, comparing the outputs of our various evaluation metrics,
reveals that our novel metrics are consistent. There is a positive correlation between our LLM judge
precision and SacreBLEU providing evidence that they both are preforming a good job at evaluating
the quality of retrieved documents. This is positive news because each evaluation metric has its own
benefits and drawbacks depending on the nature of the query and documents it is evaluating. The
knowledge that either will give you comparable results will be critical in future research.
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8 Ethics Statement

The LLM judge we deployed was trained on a large amount of data scraped from the web. However,
Mistral AI has yet to disclose how said data was obtained. It is incredibly likely that the data was
taken without permission of the authors. Even though we did not directly take the work of individuals
without permission, the use of our API credits to pay for use of the model encourages the developers
of the model to continue to take data in the future. Secondly because we do not know how Mistral
acquired its data we cannot guarantee that their dataset was free from bias, data collected in mass from
the open internet has the propensity to contain deplorable content. Thirdly Mistral is un-moderated,
which makes it easier for us as there is less post processing involved, but also means there is no filter
between unsavory responses from Mistral and our model. This is heavily mitigated by us only asking
yes or no questions and rephrase requests, but it is still possible for bias to seep into our model from
Mistral. Additionally continuing on the topic of moderation, our model has no content moderation. If
a user enters a very toxic query(e.g. "Find more question about the benefits of eugenics on society")
our model will do its best to find documents that fulfils the users sentiment. Ideally our model should
reject the query on the basis of its toxic nature. The lack of moderation creates substantial risk for
what is known as an "echo chamber" in literature. If you enter a biased query it is likely that your
top-k documents retrieved will contain the same bias, and therefore reinforcing the users belief in
said bias. For the sake of society it is better that our model prioritizes retrieving an unbiased set of
questions pertaining to the topic rather thantrying to fulfil the query as best as possible.
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Paul Kishan Rubenstein, Ruoxin Sang, Dan Hurt, Gamaleldin Elsayed, Renshen Wang, Dave
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