BERT and Multitask Learning

Stanford CS224N Default Project

Sureen Heer Collin Jung
Department of Computer Science Department of Computer Science
Stanford University Stanford University
sureen@stanford.edu collinj2@stanford.edu

Adrian Molofsky

Department of Computer Science
Stanford University
molofsky@stanford.edu

Abstract

Transformer models play a crucial role in detecting and understanding the contex-
tual relationships between words, enabling them to answer complex queries, predict
text, analyze sentiment, and summarize large corpus of text. BERT (Bidirectional
Encoder Representations from Transformers), a deep learning model developed by
Google and reliant on a transformer architecture, is highly performant and efficient
at tackling a wide range of natural language processing (NLP) tasks, including
question answering, analyzing sentiment, and language translation. We propose
evaluating the performance and accuracy of minBERT a smaller, less complex
version of the original BERT model on a broad range of NLP tasks. We aim to fine
tune the performance of minBERT by applying pretraining, gradient surgery, cosine
similarity, and other techniques. We intend to use sentiment analysis, se- mantic
similarity and paraphrase detection datasets to evaluate our multitask minBERT
model and compare it against the baseline minBERT model. By applying different
optimizations and training methods on a wide spectrum of tasks, we hope to assess
the impact of each optimization and ex- pose the performance improvements of
multiple optimization techniques in tandem. Moreover, we want to understand how
we can train smaller transformer models in resource constrained environments to
preform optimally and take advantage of their smaller size which will help with
the development of more powerful, minimal transformer architectures capable of

processing and comprehending complex human language.

1 Key Information to include

* TA mentor: Johnny Chang
¢ External collaborators (if no, indicate “No”’): No
¢ External mentor (if no, indicate “No”"): No

* Sharing project (if no, indicate “No”): No

Team contributions:

 Sureen: Implemented all of the baseline minBERT model, cosine similarity extension, and

contrastive learning extension. Helped write the final report and milestone.

* Adrian: Gradient surgery, project proposal, project milestone, final report

e Collin implementations: Baseline multitask model trained on

single

task,

predict_sentiment function, predict_paraphrase function, predict_similarity

Stanford CS224N Natural Language Processing with Deep Learning

function, Mean pooling, process_batch function with loss calculation for pretrain-
ing/finetuning, task-specific dataloaders for train_multitask, individual pretraining
for each task, multitask finetuning, round robin and annealed sampling scheduling for
finetuning, conducted hyperparameter testing. Helped write milestone, helped write final
paper, helped implement Cosine-Similarity Siamese structure, and unsuccessfully attempted
implementation of Projected Attention Layers.

2 Introduction

For humans, the idea of "multitasking" has quite a different definition than multitasking in the context
of language models. In our daily life, we perform actions simultaneously without much thought such
as reading body language, determining the real meaning behind people’s words, summarizing texts
and thoughts, and responding to people’s questions. For us, we see multitasking as the ability to
perform multiple unrelated tasks simultaneously to a successful degree. However, in the context of
language models, multitask has a different meaning. Early language models usually had limited
functionality, with early chatbots only being able to speak based on a context-free grammar or models
only being able to perform single tasks based on a series of rules. However, with the introduction of
the Bidirectional Encoder Representations from Transformers, or BERT, model, the potential of
language models to perform multiple tasks simultaneously became an attainable goal. Using a series
of classifier layers and pretraining/finetuning, BERT is able to be trained to complete multiple tasks.

For the scope of our project, we explored the potential of BERT in being able to perform
sentiment analysis, paraphrase detection, and semantic text similarity. First, we implement a base
BERT model that is able to output pooled embeddings. Then, using an array of implementations such
as annealed sampling, cosine-similarity loss, different pooling strategies, and more, we see how these
new methodologies can improve upon a minimal implementation of BERT.

3 Related Work

We implemented the baseline minBERT model using the details described in the Devlin et al.|(2019)
paper, and implemented the transformer architecture of minBERT using the equations described in
Vaswanti et al.|(2023)) and used the Adam optimization algorithm from Kingma and Ba|(2017). We
use the annealed sampling methodology as described in the Stickland and Murray| (2019) paper to
improve upon the existing round robin scheduling algorithm. We used the unsupervised contrastive
learning approach described in the |Gao et al.| (2022) paper, which takes as input a sentence and
predicts itself, with dropout as the noise between the sentences in the positive pair. The SimCSE
model has shown improvement on Semantic Textual Similarity (STS) tasks, which is why we employ
it as an extension to leverage its benefits. In addition, to improve performance on STS, we also use
employ cosine similarity finetuning as described in the Reimers and Gurevych|(2019) paper.

4 Approach

4.1 Baseline

For our baseline, we used our implementation of minBERT trained on the SST dataset. For sentiment
classification, we simply passed in the BERT embeddings into a dropout and classifier layer.
For paraphrase detection, we concatenated the two input ids with a [SEP] token before getting
the embeddings from the minBERT implementation. We then put these embeddings through a
separate dropout and classification layer. Similarly, for semantic text similarity, we concatenated
the inputs, used the minBERT embeddings with a dropout and classifier layer, then put the final
input into a RELU layer multiplied by 5 to account for the necessary outputs. See Figure 1 for visual
representations of our baseline architecture.

For sentiment analysis, we used cross entropy loss, for paraphrase similarity we used bi-
nary cross entropy loss, and for semantic text similarity, we used MSE loss. For our baseline
minBERT, we used [C' LS] pooling.

Classifier

|
1

Classifier

Dropout

-
1

Dropout

Pooling

-
:

Pooling
BERT

:
;

BERT
Concatenate
| with [SEP]
Sentence
Sentence A Sentence B
Paraphrase/

SST task sSTS

task

Figure 1: Architectures for each task

4.2 Pooling Strategy

Our baseline model utilized [C'LS] pooling, where the CLS embedding is used to represent the entire
sentence. For one of our improvements, we experimented with Mean Pooling in which the mean of
embeddings across the layer is taken and used. We hypothesized that this would improve performance
for multitask as it would be able to adapt better for each specific task.

4.3 Individual Pretraining

In order to allow our model to be better at each of the downstream tasks we utilized the SST dataset
for sentiment analysis, the Quora dataset for paraphrase detection, and the SemEval dataset for
semantic text similarity. We individually pretrained each classifier layer over 3 epochs. Because the
individual layers were not dependent on each other, we were able to pretrain each layer in parallel,
cycling through each task for every training epoch. This method resulted in a marked improvement
in performance. We wrote a function called process_batch which takes in a batch from training,
then applies the predict function based on the task. With the results from the prediction, we used the
respective loss function and stepped through the optimizer. Throughout the training, we saved the
best version of the classifier model. At the end of training, we loaded each of the best models for a
final evaluation.

4.4 Finetuning and scheduling

To further improve our model, we implemented finetuning, in which we unfroze all layers and allowed
the BERT parameters to be updated. For our first trial, we used the standard Round Robin scheduling
algorithm where each task was cycled through. However, we realized that with the uneven sizes
of the datasets (With the Quora dataset being several times larger), this may result in an uneven
distribution of training and subsequent task-level performance. Namely, the SST dataset had 8544
training examples and 1101 dev examples. The Quora dataset had 283010 training examples and
40429 dev examples. The SemEval dataset had 6040 training examples and 863 dev examples.

To mitigate this, we used a scheduling algorithm called "Annealed Sampling" as described in the
Stickland and Murray| (2019) paper. In this paper, the authors define the expression:

pi x N

where you choose a batch of examples from task ¢ with probability p; at each training step, and set p;
proportional to IN; or the number of training examples for task . The value of alpha is determined
with the following expression:

e—1

E-1
where e is the current epoch and F is the total number of epochs. Using these expressions, weight
each dataset with a probability, and have a sampler choose a task at random accordingly to train a
batch. This allows the training to favor larger datasets less heavily and provide a more equal training
opportunity across datasets.

a=1-0.8

4.5 Cosine Similarity

To improve performance on semantic textual similarity (STS) tasks, we implemented cosine similarity
during finetuning when evaluating on the SemEval task. We did this by first getting the pooled
embeddings of each sentence in the batch during the predict_similarity function. Then, we
computed the cosine similarity between these two embeddings and return this value to the batch
processing function. In our batch processing function, we scale this to fit the 0-5 scale the logits by
doing logits = 2.5 * (logits + 1), since cosine similarity returns a value between -1 and 1.
Finally, we use the MSE loss function for calculating the train loss.

4.6 Contrastive Learning

When the SIMSCE flag is turned on, we calculate the contrastive loss for each task. We employ
unsupervised SImCSE. When processing the batch, each sentence is passed through the minBERT
model twice, which dropout acting as the noise between the positve pair. Then, we calculate the
cosine similarity matrix and do matrix manipulations to calculate the contrastive loss according to the
loss described in the |Gao et al.|(2022) paper.

exp(sim(z;, z;)/7)
SN, (heiy exp(sim(zi,) /7)

for a mini-batch of IV sentences where z; and z; form a positive pair.

‘€i,j = —log (D

4.7 Hyperparameters

Although we did not go into in depth testing with hyperparameters, we were able to find values for
each argument that improved performance. For hidden dropout probability, we found that using a
value of 0.2 was better than the default of 0.3. For epochs, we used 3 epochs for pretraining and 10
epochs for finetuning. For batch size, we raised it to 128 for pretraining and 32 for finetuning (The
smaller size for finetuning was also due to the conda memory limitations).

4.8 Gradient Surgery
To improve training of our model, we incorporated gradient surgery, which divides and normalizes
the gradient based on the formula below:

9i - gj
_ g

1951
By doing so, we observed faster, smoother convergence that optimized the learning process and
improved the overall training outcomes for our model.

9i = gi

5 Experiments

This section contains the following.

5.1 Data

We used the datasets provided in the default project handout. Sentiment analysis: SST dataset.
Paraphrase detection: Quora dataset. Semantic Text Similarity: SemEval dataset.

5.2 [Evaluation method

We used the evaluation metrics as described in the default project handout. Sentiment classification:
Classification accuracy. Paragraph detection: Binary prediction accuracy. Semantic textual similarity:
Pearson correlation value.

5.3 Experimental details

For our optimizer, we used the AdamW model with the same learning rate as the training method
(1e-3 for pretraining, le-5 for finetuning). For our pretraining, we used a hidden dropout probability
of 0.2, a learning rate of le-3, trained over 3 epochs, and used a batch size of 128. For finetuning, we
used a hidden dropout probability of 0.2, a learning rate of 1e-5, finetuned over 10 epochs, and used a
batch size of 32.

5.4 Results

For our part 1 implementation of minBERT, we were able to achieve results that were generally better
than the reference accuracies (with the exception of the SST finetuned task).

Part 1 Accuracies

Model SST pretrain CFIMDB pretrain ~ SST finetune CFIMDB finetune
minBERT 0.409 0.788 0.513 0.971
Reference 0.390 0.780 0.515 0.966

For our part 2 results, we first recorded the accuracies and pearson correlation scores achieved on the
dev set. Our initial thoughts when running the baseline were that the paraphrase detection accuracy
was higher than the other two, but we attributed this to the difference in dataset. Naturally, as the
model is trained on more examples of paraphrase detection, it was able to do better.

Evaluation Accuracies on Dev set

Model SST acc Paraacc STS Pearson corr

(Baseline) BERT + CLS pooling
+ Single task training 0.360 0.632 -0.129

BERT + CLS pooling
+ Individual pretraining 0.346 0.694 0.400

BERT + Mean pooling
+ Individual pretraining 0.460 0.755 0.651

BERT + Mean pooling
+ Individual pretraining + finetuning
+ Contrastive Learning (1 epoch only) 0.415 0.753 0.327

BERT + Mean pooling
+ Individual pretraining + finetuning
+ Gradient Surgery 0.461 0.760 0.499

BERT + Mean pooling
+ Individual pretraining + finetuning
+ Cosine Similarity 0.496 0.795 0.698

Evaluation Accuracies on Test set

BERT + Mean pooling
+ Individual pretraining + finetuning (Round robin) 0.478 0.831 0.763

BERT + Mean pooling
+ Individual pretraining + finetuning (Annealed sampling) 0.521 0.803 0.857

We noticed that there was a vast increase in performance after implementing the Mean pooling.
Between the CLS pooling and the Mean pooling models, there was an increase from 0.346
to 0.460 for SST accuracy, an increase from 0.694 to 0.755 for paraphrase detection, and an
increase from 0.400 to 0.651 for the STS Pearson correlation score. We believe this means
that the CLS pooling may have made the model ignore pieces of information from the rest of
the pooled embeddings, at which the mean pooling would be able to combine the information
in a better way. This also reflects that using Mean pooling allowed our model to be more
generalizable across tasks. The two models that performed the best were the ones individually
pretrained and finetuned. The model with the best paraphrase detection accuracy was the model
finetuned using a Round robin scheduler. The model with the best performance for the other
two tasks was the model finetuned using the annealed sampling scheduler. This made sense to
us because the round robin sampling meant that the paraphrase detection dataset would get dis-
proportionately more attention, while in the annealed sampling, all three datasets would be more even.

Across all tasks, the task with the most improved score was for semantic text similarity.
The paraphrase detection tasks had the most consistent accuracy, likely due to its disproportionately
large dataset. The SST task had a steady increase across each additional approach we used.

6 Analysis

We compared our model at each step against the baseline and achieved significant performance
gains across multiple tasks. We approached the problem of improving the accuracy of our model
by applying pre-training, fine-tuning, and implementing a variety of pooling strategies. Significant
performance improvements came from implementing Mean Pooling, which outperformed CLS
Pooling, on the task of semantic text similarity, an indication that Mean Pooling may capture more
nuanced meaning than CLS Pooling. We also noticed through Annealed Sampling scheduling
how the proportionality of each task and the size of the dataset influenced the performance of our
model. Through carefully adjusting the model to fit the specific tasks, we were able to better balance
learning and effectively prevented overfitting removing bias from training. Finally, through applying
pre-training the model was better able to understand sentence structure and the specifics of each
task before fine-tuning, which contributed to the detailed improvements in task handling which
was absent from the baseline minBERT model. We significantly improved our model’s ability to
generalize well across datasets by including pre-training, whereas our fine-tuning approaches were
more valuable for further improving accuracy for specific tasks.

An interesting result we noticed was that gradient surgery reduced the training time, but
did not yield as positive results compared to other methods. Contrastive learning was only able to
be run for 1 epoch due to memory and time limits but it showed results comparable to the gradient
surgery model. Out of our dev results, we found that cosine similarity had the best performance but it
did not improve upon our models that did not use cosine similarity.

7 Conclusion

We successfully developed and optimized the performance of our minBERT model achieving higher
accuracy on a number of different tasks. Significant performance improvements on the SST dataset
came from implementing the baseline configurations with single-task training. Further enhancements
were achieved by pre-training, Mean Pooling, and Annealed Sampling scheduling. These techniques
improved our model’s ability to generalize and preform well on specific tasks, including sentiment
analysis, semantic similarity, and paraphrase detection. Incorporating pre-training was particularly
useful since it allowed our model to better understand the contextual relationships between words
and to outperform the baseline minBERT during task specific testing.

Our results highlight the advantage of training a lightweight model in a resource constrained environ-
ment to perform optimally and efficiently. The significant performance improvements in accuracy,
especially on sentiment analysis, showed the effectiveness of methods such as Mean Pooling and
Annealed sampling scheduling compared to the minBERT model. While our minBERT model did
perform well on sentiment analysis using significant lower computational resources and data, larger

models tend to outperform in this task and would be ideal for situations in which the amount of
compute is unconstrained.

Future work and improvements to our model, can come from incorporating larger and more diverse
data into the pre-training phase to improve the model’s ability to generalize and its understanding of
sentence structures. In addition, including the latest pooling strategies and scheduling approaches
might yield better accuracy and results during our task specific testing. Furthermore, we might include
other measurements to compare the performance benefits from our extensions and to understand the
specific advantages of applying one technique versus another.

Considering the harm a model like minBERT may cause, we might investigate how to ensure fairness
by detecting and removing biases from the training datasets. By doing so, we would need to ensure
the model is still retaining relevant information and not incorrectly classifying data, which would
require a robust bias qualification criterion.

8 [Ethics Statement

One ethical consideration regarding our project is the inherent bias that may be reflected in the
predictions due to biases in the training set. Especially for datasets that are sourced from users online
such as the Quora dataset, there may be implicit bias related to demographic information present. For
example, if the examples in the data refer to or imply that certain occupations or roles should be
performed by a certain gender, this may be reflected in the predictions made when asked about this
topic. Additionally, since we do not do any preprocessing related to the actual information present,
any biased examples may go unnoticed until manual evaluation afterwards. This issue is significant
in particular to our model because as a multitask model, it must be able to perform well across
a series of tasks, and if there is bias present, the predictions made by the model as a whole may
be inaccurate or biased. In order to mitigate this, we propose an additional layer of preprocessing
texts in which we mask or abstract away demographic information, such that it is not a factor in the
embeddings and subsequent outputs. By abstracting away the demographic information, we could
potentially remove the risk of predictions being made based on that data.

Another ethical consideration for our project is that none of the results are verified with ad-
ditional sources. Since our model directly outputs a prediction for any inputs given, the user cannot
see why the model gave the results that it did. This is an issue with our model because if someone
provides an input to the model and gets an inaccurate solution, the user would not be able to tell
whether the answer is a hallucination or accurate answer, and even if they were able to determine its
inaccuracy, it would be impossible to determine why the model answered the way it did. In order
to mitigate this issue from arising, we could implement a process similar to Retrieval-Augmented
Generation, which refers to past training examples and can provide them along with the prediction.
This means that the user could see the "source" of the solution and have a better idea of the accuracy
of the solution. Of course, this method also relies on the accuracy of the training data and could
potentially further exacerbate the issue by providing misleading source documents.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of|
deep bidirectional transformers for language understanding.

Tianyu Gao, Xingcheng Yao, and Danqgi Chen. 2022. Simcse: Simple contrastive learning of sentence
embeddings.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A method for stochastic optimization.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert+
networks.

Stickland and Murray. 2019. Bert and pals: Projected attention layers for efficient adaptation in
multi-task learning. In Association for Computational Linguistics (ACL).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. |Attention is all you need.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1706.03762

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	Pooling Strategy
	Individual Pretraining
	Finetuning and scheduling
	Cosine Similarity
	Contrastive Learning
	Hyperparameters
	Gradient Surgery

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement

