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Abstract

Large language models (LLMs) like GPT-4 and GPT-4o are developing so quickly that it is
becoming more difficult to discern material created by AI from that produced by humans. In
order to efficiently recognize text generated by artificial intelligence, this research introduces
SENTINEL, a revolutionary heterogeneous ensemble architecture that integrates deep
learning models with traditional machine learning methods. Our contributions include of
an optimized ensemble architecture, a hybrid feature extraction approach, and the creation
of tailored preprocessing tools. In addition, we created a dynamic dataset with cutting-
edge LLMs to guarantee SENTINEL’s scalability. Experimental results demonstrate that
SENTINEL performs much better than the baseline on our curated dataset as well as the
original testing dataset from Kaggle. The integration of interpretability techniques enhances
the model’s transparency. SENTINEL represents a significant advancement in the detection
of AI-generated text, providing a robust solution to the challenges posed by the rapid
evolution of LLMs.

1 Introduction

Natural language processing has undergone a revolution attributed to the quick development of large language
models (LLMs) like GPT-4 and GPT-4o, which produce remarkably coherent and contextually relevant text
[1]. But this amazing development has also made it more difficult to discern text created by AI from that
written by humans [2]. These models’ ability to generate text that closely resembles the writing styles of
humans has sparked worries about potential misuse in various domains, including academic integrity[3], fake
news propagation[4], and social media manipulation [5]. Traditional methods for identifying text produced by
AI, such statistical analysis [6] and stylometric techniques [7], frequently fall short in capturing the intricate
linguistic patterns and subtle contextual cues seen in the output of cutting-edge LLMs [8]. Furthermore,
because these models are evolving so quickly, it is necessary to create detection frameworks that are flexible
and scalable in order to keep up with the rapidly changing field of natural language creation.

To address these challenges, we propose SENTINEL, short for Sophisticated ENsemble for Tracing and
Identifying Non-Authentic Language, a heterogeneous ensemble framework that integrates advanced machine
learning techniques with classical algorithms. This hybrid system aims to effectively distinguish between
human and machine-generated texts, leveraging the nuances presented by state-of-the-art LLMs like GPT-4
and GPT-4o. The key contributions of our work include: 1. A custom preprocessing pipeline that efficiently
handles various text formats and noise, ensuring optimal input for the subsequent stages of the framework; 2. A
hybrid feature extraction method that amalgamates deep contextual embeddings from state-of-the-art language
models with traditional n-gram features enables the capture of both high-level semantic information and
fine-grained linguistic patterns; 3. An optimized ensemble architecture that employs a soft voting mechanism,
adaptively weighting the contributions of individual models based on their performance and reliability; 4. A
comprehensive evaluation of SENTINEL on a newly created diverse range of datasets, including a dynamic
corpus of over 10,000 entries generated by state-of-the-art LLMs including GPT-4 and GPT-4o, demonstrated
its superior performance and adaptability compared to existing baselines.
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The experimental results show fundamental statistical gains in accuracy and F-1 score, as well as much better
experimental outcomes than the baseline state-of-the-art that we used. By providing a robust, adaptable, and
interpretable solution, our framework aims to safeguard the integrity of information across various domains
and ensure the responsible use of advanced language models.

2 Related Work

The rapid advancements in AI-generated text technologies have intensified the need for robust mechanisms
capable of distinguishing between human-written and machine-generated content. Early detection methods
relied heavily on statistical approaches and traditional machine learning models, such as the Multinomial
Naive Bayes (MNB) classifier [9]. These methods, while effective for simpler tasks, struggled to keep pace
with the increasing sophistication of AI-generated text due to their limited ability to understand complex
contextual nuances and capture the nuances of language [10].

Recognizing the limitations of conventional models, the focus of research shifted towards more advanced deep
learning techniques, particularly transformer-based models, which represent a significant evolution in the field.
Solaiman et al. [2] underscored the efficacy of models like RoBERTa [11] in identifying texts produced by
earlier generations of language models such as GPT-2. This pivotal research illuminated the profound capability
of deep learning models to discern complex language patterns that elude simpler algorithms. Expanding on
this groundwork, Uchendu et al. [12] and Zellers et al. [4] investigated the effectiveness of BERT [13] and
GROVER, respectively, in both generating and detecting synthetic texts. These studies not only highlighted
the dual utility of generative models but also showcased their potential in aiding the detection of AI-generated
content. Nevertheless, these advanced models frequently require substantial computational resources and
ongoing adjustments to remain effective against the rapidly evolving landscape of language technologies.

Amidst the limitations of single-model approaches, recent research has increasingly turned to ensemble
methods that amalgamate multiple analytical techniques to heighten detection accuracy. Zhang et al. [14]
explored the synergistic potential of combining gradient boosting machines with neural networks, advocating
for heterogeneous ensembles. Their findings demonstrated that integrating diverse models could enhance
the detection of various text characteristics, thereby improving overall system performance. Concurrently,
stylometric analysis has gained prominence as an effective method for distinguishing AI-generated texts. Fagni
et al. [7] highlighted how stylometric features could be leveraged alongside machine learning models to exploit
distinct authorial styles in distinguishing human authors from artificial entities.

As the complexity of AI-generated text detection models has increased, so too has the emphasis on model
interpretability and explainability. Wiegreffe et al. [15] emphasized the importance of developing models that
are not only effective but also provide clear insights into their operational mechanisms. This transparency
is crucial for fostering trust and enhancing the reliability of text detection systems. Despite the significant
advancements in this field, existing studies often lack robustness against the continuously evolving capabilities
of language models and fail to address the diversity of text types and contexts. Many approaches struggle
to account for the subtle nuances that newer language models can replicate, leading to higher rates of false
positives and false negatives [16]. Moreover, the majority of research has focused on English text, leaving the
performance of detection models on other languages largely unexplored.

Our research builds upon these insights by integrating state-of-the-art language models with classical machine
learning techniques within a unified ensemble framework. By combining deep learning, ensemble techniques,
and stylometric analysis, along with advanced preprocessing and feature extraction methods, our approach
offers a significant step forward in accurately identifying AI-generated text across diverse domains. The
incorporation of interpretability techniques further enhances the understanding of the model’s decision-making
process, contributing to the development of more transparent and trustworthy AI-generated text detection
systems.

3 Approach

SENTINEL employs a novel heterogeneous ensembling framework that synergistically combines the strengths
of advanced deep learning models, such as BERT [13] and RoBERTa [11], with the efficiency and scalability
of classical algorithms, including Multinomial Naive Bayes (MNB) [9], Stochastic Gradient Descent (SGD)
[17], LightGBM [18], and CatBoost [19]. Figure 1 provides an overview of our proposed method.

Baseline We compare our approach to a gold-winning baseline from a relevant Kaggle competition[20],
which demonstrated an accuracy of 0.83. The baseline model employs advanced deep learning techniques
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Figure 1: Overview of the Hybrid AI Text Detector method. Our proposed model architecture aims to fine-tune
pre-trained language models for machine-generated text classification tasks.

such as the DebertaV3Tokenizer and DebertaV3Preprocessor from the keras-nlp library for tokenization
and preprocessing, and utilizes the DebertaV3Classifier, a powerful deep learning architecture based on the
DeBERTa model. By comparing our proposed framework with this established baseline, we aim to demonstrate
the effectiveness and superiority of our approach in terms of accuracy, precision, and recall.

Data Preprocessing & Hybrid Feature Extraction (Original): We introduce a custom TextPreprocessor
class to handle text cleaning and normalization. The preprocessor offers different strategies, such as ’none’,
’light’, or more aggressive cleaning, to adapt to the specific requirements of the text data. The preprocessed
text is then tokenized using the RoBERTa tokenizer, which is well-suited for handling a wide range of text
types and styles. We propose a novel HybridFeatureExtractor that combines RoBERTa-generated embeddings
with TF-IDF n-grams, leveraging both deep contextual embeddings and traditional text features to enhance
the model’s ability to distinguish between human-written and AI-generated text across various domains. This
hybrid feature extraction approach is an original contribution of our work.

Ensemble of Classifiers & Optimization (Original) The architecture of our model is built around a
heterogeneous ensemble approach, combining the predictive power of several well-established machine
learning models:

• Pre-trained Language Models (PLMs): We include BERT[13] and RoBERTa[11] utilizing for gen-
erating deep contextual embeddings, these transformer-based models are crucial for understanding
the context and semantics embedded in texts, which helps differentiate AI-generated texts from
human-written texts.

• Classical Machine Learning Models: Multinomial Naive Bayes (MNB)[9], Stochastic Gradient
Descent (SGD)[17], LightGBM[18], and CatBoost[19]: These models are integrated to leverage their
strengths in handling different aspects of text data, enhancing the ensemble’s performance through
their individual and combined predictive power.

Our ensemble employs a soft voting mechanism, where predictions from each model are weighted based
on their performance and reliability. The weights for these models are optimized using a hyperparameter
tuning framework powered by Optuna[21], ensuring optimal performance. To demonstrate mathematically,
let M = m1,m2, . . . ,mn be the set of n classifiers in the ensemble.For a given input x, each classifier mi

predicts a probability pi(y|x) for each class y. The soft voting ensemble predicts the class ŷ as:

ŷ =y

n∑
i=1

wi · pi(y|x) (1)

where wi is the weight assigned to classifier mi.

Our model incorporates a heterogeneous ensemble of classifiers with tailored weights optimized through
Bayesian Optimization and Optuna. We employ the AUC-ROC as our primary metric to gauge the model’s
proficiency in distinguishing between human and AI-generated texts across varied decision thresholds. The
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weights for the soft voting ensemble mechanism are determined by Bayesian Optimization to maximize the
overall AUC-ROC score. AUC-ROC is the area under the curve plotted with TPR on the y-axis and FPR on
the x-axis at different classification thresholds. To obtain the score, the True Positive Rate (TPR) and False
Positive Rate (FPR) are calculated as:

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
(2)

Let w = (w1, w2, . . . , wn) be the weights of the classifiers in the ensemble. The objective function f(w) to
be optimized is the AUC-ROC score of the ensemble on a validation set.

f(w) = AUC-ROC(Ensemble(w)) (3)

Bayesian optimization aims to find the optimal weights w′ that maximize the objective function f(w). It
builds a probabilistic model (e.g., Gaussian Process) of the objective function and uses an acquisition function
(e.g., Expected Improvement) to guide the search for optimal weights.

w′ = argmaxwf(w) (4)

Evaluation & Model Interpretation (Original) Our evaluation framework utilizes multiple metrics to
assess the efficacy of our AI-generated text detection models, including AUC-ROC, accuracy, F1 score,
precision, and recall. We employ Stratified K-Fold and Leave-One-Out cross-validation techniques for robust
validation and benchmark our approach against a gold-standard baseline from the Kaggle competition. To
further interpret our model’s predictions and gain insights into the features that contribute to the detection of
AI-generated text, we employ SHAP (SHapley Additive exPlanations)[22] and LIME (Local Interpretable
Model-Agnostic Explanations)[23]. SHAP is used to generate summary plots that visualize the impact of each
feature on the model’s predictions, while LIME is employed to explain the model’s predictions for specific
instances by highlighting the most important words or phrases that contribute to the model’s decision.

In summary, our approach introduces several original contributions, including the custom TextPreprocessor,
HybridFeatureExtractor, and the heterogeneous ensemble architecture with optimized soft voting. We also
leverage established techniques and libraries, such as BERT, RoBERTa, and SHAP, providing appropriate refer-
ences and acknowledgments. The combination of these novel and existing components forms a comprehensive
and effective framework for detecting AI-generated text across various types.

4 Experiments

Data Our project utilizes two distinct datasets: the original dataset that comes with the Kaggle competition
(around 10,000 essays). The Kaggle dataset comprises about 10,000 essays, sourced from a competition and
used primarily for training and testing. We apply preprocessing techniques such as duplicate removal, text
correction, and Byte Pair Encoding (BPE) tokenization to improve data quality. Based on that, we further
conducted on a diverse and comprehensive developed dataset from various sources, consisting of 11,580 text
entries. The dataset sources include a variety of repositories and collections: HPPT [24], IDMGSP [25],
Med-MMHL [26], OpenGPTText [27], HC-Var [28], fakenews machine data [29], Deepfake bot submissions
[30], Human ChatGPT Comparison Corpus (HC3) [31], MGTBench [32], and Alpaca [33]. This results in a
balanced dataset of 5790 human-written and 5790 AI-generated texts. The task associated with this dataset is
binary classification, where the input is a text excerpt, and the output is a label indicating whether the text is
human-written (0) or AI-generated (1). The dataset provides a diverse range of text types and styles, enabling
the evaluation of AI-generated text detection models across various domains.

Both datasets are employed for binary classification tasks, where models discern if a text is human-written (0)
or AI-generated (1). The extensive variety in our developed datasets allows our models to be tested across
different text types and styles, ensuring robustness and generalizability in detecting AI-generated content. This
combination of datasets, with precise preprocessing and a clear task definition, forms a solid foundation for
our AI-generated text detection framework.
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(a) Developed Dataset Flow Chart (b) Developed Dataset Composition

Figure 2: The proposed method learns a latent space representation of social interactions.

Evaluation Method The evaluation criteria for the results are accuracy and F1 score, in which accuracy
measures the overall correctness of the model across all categories and F1 score is the harmonic mean of
precision and recall, providing a single metric that balances both the precision and recall of a classifier.

F1 Score = 2× Precision × Recall
Precision + Recall

where Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(5)

For robust validation, we employ Stratified K-Fold and Leave-One-Out cross-validation techniques. Stratified
K-Fold maintains a consistent distribution of classes in each fold, ensuring that the model is evaluated on
representative subsets of the data. Leave-One-Out provides a stringent test by training on all instances but
one in each iteration, assessing the model’s ability to generalize to unseen data points. We benchmark our
approach against a gold-standard baseline from the Kaggle competition, which achieved an accuracy of 0.83,
to demonstrate our method’s superior performance.

Experimental Details and Evaluation Methods. Our experiments were primarily conducted on an NVIDIA
L4 GPU, which provided the necessary computational power to handle the complexity and scale of the
training process. In the feature extraction stage, our HybridFeatureExtractor implemented a novel approach by
integrating RoBERTa-generated embeddings with traditional TF-IDF n-grams. We utilized the roberta-base
model to derive contextual embeddings, which were then scaled using a MinMaxScaler to enhance model
training and evaluation phases. Concurrently, TF-IDF features were meticulously crafted, capturing unigrams
to trigrams, which provided a granular linguistic analysis capable of identifying nuanced patterns in the text.

The experiments commenced with the preprocessing of text data, carefully handled by our custom TextPrepro-
cessor class. This class provided options for varying levels of text cleaning. This class provided options for
varying levels of text cleaning; for this particular set of experiments, we selected the ’light’ cleaning option.
This moderate approach was chosen to balance between retaining meaningful content and removing noise
from the data. The light preprocessing included converting all text to ASCII format, removing non-ASCII
characters, and eliminating extraneous whitespaces and punctuation, which helped standardize the text input
without stripping away contextually important features.

Following preprocessing, our feature extraction phase employed the HybridFeatureExtractor to fuse the
capabilities of RoBERTa-generated embeddings with TF-IDF n-grams. This extractor utilized the roberta-base
model to generate embeddings, which were then normalized using a MinMaxScaler to maintain numerical
stability. Concurrently, TF-IDF features were crafted using the TfidfVectorizer, configured to analyze n-grams
ranging from 1 to 3 and capped at 10,000 features to optimize computational efficiency and focus on the most
impactful textual elements.

The core of our experimental approach involved training a heterogeneous ensemble of classifiers. Each classifier
was carefully configured to suit its strengths and the peculiarities of our dataset. In the hyperparameter tuning
phase, we utilized Optuna[21] to optimize the key parameters for each model in the ensemble. For the SGD

5



classifier, we explored learning rates in the range [0.001, 0.1] and l2 regularization strengths in the range [1e-5,
1e-2]. The optimal values were found to be a learning rate of 0.01 and an l2 regularization strength of 1e-4.
For LightGBM, we tuned the number of leaves in the range [31, 127], the learning rate in the range [0.01, 0.3],
and the number of estimators in the range [50, 500]. The best-performing configuration consisted of 63 leaves,
a learning rate of 0.1, and 200 estimators. CatBoost’s key parameters, such as the learning rate and the depth
of trees, were also optimized using Optuna, with the optimal values being a learning rate of 0.03 and a tree
depth of 8.

Training each model within our ensemble required approximately two hours per fold in a 5-fold stratified
cross-validation setup, ensuring each model was robustly validated against different subsets of our data. This
validation strategy was crucial in assessing the generalizability and effectiveness of our ensemble across varied
text samples. Our ensemble approach culminated in the integration of these models using a VotingClassifier,
which combined their predictive powers with weights optimized through Bayesian Optimization. This
optimization focused on enhancing the ensemble’s overall AUC-ROC score, thereby tailoring the ensemble’s
decision-making to achieve the highest possible efficacy in classifying texts as human-written or AI-generated.

Results Our hybrid ensemble method, integrating advanced models like BERT and RoBERTa with algorithms
such as MNB, SGD, LightGBM, and CatBoost, has proven highly effective. This success underscores the
potential of our approach for real-world applications, motivating further advancements in AI-generated text
detection.

Models Original Kaggle Dataset(6̃,700) Developed Dataset (1̃0,000)

AUC-ROC Accuracy F-1 Score AUC-ROC Accuracy F-1 Score

Baseline 0.8215 0.7834 0.6856 0.6291 0.6743 0.6801
Milestone Ensembling Methods 0.9178 0.9092 0.9084 0.7639 0.6944 0.7578
SENTINEL 0.9685 0.9498 0.9539 0.7673 0.7705 0.7978

Table 1: Comparative quantitative results highlighting the improvements of our hybrid ensemble model over
the baseline and previous models.

The results in Table 1 affirm the superior performance of our hybrid ensemble model over baseline and previous
methods. On the original Kaggle dataset, our model achieved an AUC-ROC score of 0.9685, substantially
higher than the baseline’s 0.8215 and prior ensembles’ 0.9178. This represents an improvement of 0.147
and 0.0507 respectively, demonstrating our method’s efficacy in distinguishing between human-written and
AI-generated texts. Similarly, the model recorded an accuracy of 0.9498 and an F1 score of 0.9539, marking
significant advances over both the baseline and milestone ensembles. On our developed dataset, tailored with
a diverse range of text types, our model consistently outperformed other methods, achieving an AUC-ROC
score of 0.7673, accuracy of 0.7705, and an F1 score of 0.7978. These results highlight the robustness and
adaptability of our approach, even with varied text complexities.

5 Analysis

Commenting on Selected Examples To gauge our hybrid ensemble model’s accuracy more accurately, we
perused examples of the test set whose results we could assess in more detail. Overall, we found that our model
classified texts into the AI category with a good deal of confidence across most of the different genres and
styles. For instance, in a technical academic abstract discussing "Quantum Entanglement and Its Applications
in Cryptography," our model accurately identified it as AI-generated with a high confidence score of 0.92. This
showcases the model’s capability to recognize AI-generated text even when embedded in complex terminology
and domain-specific language. However, we also encountered challenges with AI-generated text that exhibited
exceptional coherence and stylistic sophistication. A notable example was a short story excerpt that our
model incorrectly classified as human-written, with a confidence score of 0.68. This highlights the increasing
difficulty in distinguishing high-quality AI-generated creative writing from human-authored content.

Error Analysis To identify potential areas for improvement, we conducted an in-depth error analysis of
the misclassified instances from the test set. Among the false positives (human-written texts misclassified
as AI-generated), we observed that 35% contained highly technical or domain-specific language, such as
legal jargon or medical terminology. This suggests that the model might be overly sensitive to specialized
vocabulary, mistaking it for machine-generated text. To address this issue, we propose incorporating domain-
specific pretraining or fine-tuning techniques to enhance the model’s understanding of specialized language.
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Conversely, false negatives (AI-generated texts misclassified as human-written) often showcased a high degree
of coherence, contextual relevance, and stylistic diversity. Notably, 28% of the false negatives contained
creative elements like figurative language, sarcasm, or storytelling techniques, making them challenging to
distinguish from human writing. This underscores the need for further research into capturing and modeling
the nuances of creative expression in AI-generated text detection.

Performance Metrics for Data Subsets Our model’s performance varied significantly across different text
categories. It excelled in structured environments, achieving high metrics in News (accuracy: 0.96, precision:
0.97, F1 score: 0.95) and Opinion (accuracy: 0.98, precision: 0.94, F1 score: 0.96), demonstrating robustness
in factual and assertive contexts. However, performance dipped in more informal settings such as Open
Web (accuracy: 0.75, precision: 0.77, F1 score: 0.73) and Blogs (accuracy: 0.82, precision: 0.84, F1 score:
0.80), where diverse styles and less structured content present challenges. The academic category showed
moderate performance (accuracy: 0.81, precision: 0.83, F1 score: 0.79), indicating potential for improvement
in handling complex scholarly texts. In contrast, Q&A texts (accuracy: 0.90, precision: 0.92, F1 score: 0.88)
underscored the model’s effectiveness in direct, concise language formats. These results highlight the necessity
for adaptive strategies tailored to the unique demands of each text type, particularly in creatively rich and
dynamically informal domains.

Figure 3: Overview of the proposed method. Our proposed model architecture aims to fine-tune pre-trained
language models for machine-generated text classification tasks.

Ablation Studies To understand the importance of each part in the hybrid ensemble model, we did some
ablation studies. If we remove RoBERTa embeddings, accuracy decreased from 0.9498 to 0.9092, F1 score
from 0.9539 to 0.9084 on our original Kaggle dataset. This demonstrates the vital importance of capturing deep
contextual information from pre-trained language model such as RoBERTa. The contextual embeddings allow
the model to not only capture the surface-level semantic relation (e.g., word-to-word dependency) but also
capture deeper semantic dependencies and relations in the text. Likewise, according to the accuracies on the
Kaggle original dataset, removing TF-IDF n-gram features caused the overall accuracy to drop from 0.9498 to
0.9178, and the F1 score to reduce from 0.9539 to 0.9084, reflecting the synergistic effects produced by surface
features in strengthening the model’s discriminative capability. The model benefits from TF-IDF features by
detecting statistically important lexical and syntactic patterns specific to human-sounding or machine-sounding
text, which helps in its decision-making process.

Comparing Behaviors of Different Models When comparing our hybrid ensemble model against the
baseline Keras model, we can clearly see how the two performed differently. The baseline Keras model
performed with an accuracy of 0.7834 and an F1 score of 0.6856 on our original Kaggle dataset. However,
it began to fail when applying it to our developed dataset. What went wrong? The baseline Keras model’s
accuracy plummeted to 0.6743 and the F1 score tanked to 0.6801 on our developed dataset. On the other hand,
our final ensembling method held its own and retained a fairly robust 0.7705 accuracy and 0.7978 F1 score
on our developed dataset – despite the fact that we pulled text from all over the domain. This difference in
performance is due to our project’s superior generalisation capability.

Further, the interpretability of SHAP and LIME also allowed us to better understand both: what features
might be important; and what patterns might be important for differentiating between the kinds of ways
that the model is making its predictions about human authorship. SHAP analysis revealed that if the text
contained certain linguistic cues – particularly coherence markers such as ‘moreover’, ‘furthermore’ and
transitional phrases such as ‘in conclusion’, ‘to summarise’ – the model was more likely to classify the text
as human-authored. Conversely, the absence of these cues and their presence contributed to the model’s
classification of the text as AI-authored, as was the case for the sample above. LIME analysis allowed us to
interpret individual predictions by highlighting the most important words or phrases in the text that contributed
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to the model’s decision. For example, in a product review classified as AI-authored, the same LIME analysis
highlighted phrases such as ‘highly recommended’ and ‘exceeded my expectations’, which are used with great
frequency in machine-generated reviews. This interpretability contributes to the model’s trustworthiness and
generates a kind of transparency about how our model makes the predictions that it does.

6 Conclusion

In this project, we developed SENTINEL, a robust heterogeneous ensemble framework for detecting AI-
generated text in the era of advanced language models like GPT-4 and GPT-4o. Our model combines
state-of-the-art deep learning techniques with classical machine learning algorithms and introduces novel
components such as the TextPreprocessor and HybridFeatureExtractor. We ensure the adaptability and
effectiveness of SENTINEL in detecting AI-produced content across multiple disciplines by training and
testing it on a diverse dataset that includes language generated by state-of-the-art LLMs.

Our project’s primary conclusions demonstrate how well SENTINEL performs in comparison to the baseline
model, as evidenced by its AUC-ROC of 0.9685, accuracy of 0.9498, and F1 score of 0.9539 on the original
Kaggle dataset. Our created dataset, which includes text from GPT-4 and GPT-4o, shows the model performs
well, indicating that it can keep up with the quickly changing field of AI text synthesis. The incorporation of
SHAP and LIME into the model interpretation process improves SENTINEL’s explainability and transparency
while offering important insights into the fundamental characteristics that inform its predictions.

This project has taught us how crucial it is to combine cutting-edge deep learning methods with conventional
machine learning algorithms in order to develop a reliable and flexible AI-generated text identification system.
We have also learned more about the difficulties brought forth by the growing complexity of LLMs and the
requirement for ongoing updates and improvements to detection frameworks.

SENTINEL has limits even if it is a major advancement in AI-generated text detection. The model’s
generalisation to languages other than English has not been thoroughly investigated, and its performance
on extremely subjective and creative writing continues to be problematic. Subsequent research endeavours
may centre on enhancing the architecture of the model, integrating domain-specific expertise, expanding
the methodology to multilingual environments, and exploring few-shot learning methodologies for domain
adaption.

7 Ethical Considerations

A number of ethical issues and possible social dangers are brought up by the creation and application of
AI-generated text detection systems like SENTINEL. The possibility for these systems to be manipulated or
misused by bad actors to produce AI-generated text meant to avoid detection raises serious ethical concerns and
might result in the dissemination of false information and the decline of public confidence. Given SENTINEL’s
excellent detection accuracy, it’s possible that adversaries would use it as a model to create more complex
AI-generated text that evades detection. Maintaining the privacy of the model’s architecture, training set, and
particular detection methods is essential for reducing this risk, as is putting safe deployment procedures in
place.

Besides, the possibility that biases in the training data would cause AI-generated text detection systems to
discriminate against specific groups or people or reinforce existing prejudices is a cause for worry. The
SENTINEL model may incorrectly identify text authored by certain groups as AI-generated, resulting in
discrimination and censorship, if the dataset used to train the model has biases, such as underrepresentation of
particular demographics or overemphasis on particular writing styles. Making sure that the training data is
inclusive, varied, and reflective of a range of writing styles and demographic backgrounds is crucial in order to
overcome this problem. To find and address any biases in the model, routine audits and evaluations of bias
should be carried out. Furthermore, lowering the possibility of discriminating results during model training
may be accomplished by implementing fairness restrictions and bias mitigation strategies.

In addition to these technical mitigating techniques, cultivating a culture of responsible AI development and
application is essential as well. This entails defining precise rules and moral precepts for the use of AI-
generated text recognition systems, guaranteeing openness regarding the model’s capabilities and constraints,
and maintaining constant communication with stakeholders to resolve issues and take input into account.
We may strive toward developing reliable and socially conscious AI-generated text recognition systems that
enhance society while limiting possible risks by proactively addressing these ethical issues and putting suitable
mitigation measures in place.
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8 Contribution

Natalie Cao Natalie Cao mainly contributed by building up the foundational framework and fine-tuning the
model to optimize its performance. She also helped in drafting both the milestone and final reports.

Haocheng Fan Haocheng Fan focused on the dataset categorization and collection, the refinement and
completion of the model, achieving project milestones, and compiling the final report.
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