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Abstract

In this project, we focus on adapting the BERT model specifically for mathemat-
ical text by incorporating domain-specific finetuning and advanced optimization
techniques. Our aim is to enhance the model’s performance in understanding
and generating mathematical content, through learning of mathematical reasoning.
We conduct extensive finetuning on mathematical corpora, including datasets like
MATH and number_word_std, to fine-tune the model’s ability to process math-
ematical language. Additionally, we implement Low-Rank Adaptation (LoRA)
to improve model robustness and generalization. Our experiments demonstrate
significant improvements in performance on tasks such as mathematical expression
prediction and problem-solving over the baseline BERT model. This approach not
only provides better contextual embeddings for mathematical language but also
highlights the efficacy of targeted finetuning combined with strategic optimization
methods. Our findings underscore the importance of domain-specific adaptations
in enhancing the capabilities of pre-trained language models for specialized tasks.
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2 Introduction

Mathematical language and terminology often present unique challenges in natural language process-
ing (NLP) due to their specialized vocabulary, notation, and contextual dependencies. Traditional
pre-trained language models like BERT have demonstrated exceptional performance across a wide
range of general NLP tasks. However, they tend to underperform in domains requiring deep under-
standing of mathematical content. This discrepancy arises because mathematical texts are significantly
underrepresented in the corpora used for training these models. Consequently, adapting BERT to
better handle mathematical language can provide substantial improvements in applications such as
automated problem solving, educational tools, and mathematical content summarization.

Addressing this problem involves two main strategies: domain-specific finetuning and targeted
optimization methods. Domain-specific finetuning enhances the model’s ability to understand and
generate mathematical language by further training it on specialized mathematical datasets. For our
project, we utilized extensive mathematical corpora, including the MATH and number_word_std
datasets, to refine BERT’s capabilities in this domain. This additional finetuning helps the model
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develop more accurate contextual embeddings for mathematical expressions and terminology, thereby
improving its overall performance on math-related tasks.

Our method involves finetuning BERT on the mathematical datasets and applying advanced opti-
mization techniques from the Low-Rank Adaptation (LoRA) research. LoRA proposes freezing the
pre-trained model weights and injecting trainable rank decomposition matrices into each layer of the
Transformer architecture, significantly reducing the number of trainable parameters for downstream
tasks. This allows for efficient adaptation of the model to the mathematical domain while maintaining
high performance.

Our interest in this area stems from our experiences as students involved in advanced mathematical
classes. Throughout our studies, we noticed a significant disconnect between the explicit mathematical
content we encountered and the general-purpose NLP models used in educational and research tools.
This absence of specialized training data for mathematical texts inspired us to undertake this project.
We believe that enhancing NLP models to better handle mathematical language will not only improve
educational technologies but also support researchers and educators in processing and understanding
complex mathematical literature more effectively.

3 Related Work

The development and fine-tuning of language models for specialized domains, such as mathematics,
is an area of active research. Our work builds on several key studies and resources in this field, which
we discuss below.

Sun et al. (2020) demonstrated significant performance improvements with additional pretraining on
domain-specific data, emphasizing the need for specialized datasets. Inspired by their findings, we
utilized the MATH dataset and the number_word_std dataset from the Microsoft SIGMA project.
These datasets provide comprehensive collections of mathematical problems, crucial for finetuning
and evaluating our model.

Hu et al. (2021) explored Low-Rank Adaptation (LoRA) to improve model robustness and generaliza-
tion, showing that freezing the pre-trained model weights and injecting trainable rank decomposition
matrices into each layer can significantly enhance performance. These methods were integral to our
approach, ensuring that our fine-tuned BERT model could generalize well across various mathematical
tasks.

The Microsoft SIGMA project offers valuable resources for training and evaluating mathematical
language models. The number_word_std dataset includes subsets designed to evaluate AI systems’
ability to solve number word problems, providing a comprehensive benchmark for our finetuning
phase.

Together, these works informed our approach in several key ways. Sun et al.’s findings on the benefits
of domain-specific pretraining guided our decision to utilize mathematical datasets for additional
pretraining. Gao et al.’s work on regularization techniques informed our integration of SMART and
Bregman Proximal Point Optimization to ensure model robustness. The Microsoft SIGMA project’s
datasets provided the specialized content necessary for effective pretraining and evaluation.

By combining these insights, our project aims to address the unique challenges of mathematical
language processing. The specialized finetuning on mathematical datasets helps BERT develop more
accurate contextual embeddings for mathematical expressions, while the advanced optimization
techniques ensure that the model generalizes well across various mathematical tasks. This approach
builds on the strengths of existing methods and addresses their limitations, demonstrating significant
improvements in handling mathematical language.

In summary, our work leverages the insights from these key studies to enhance BERT’s performance
in mathematical language processing. By integrating domain-specific pretraining with advanced
optimization techniques and utilizing valuable datasets from the Microsoft SIGMA project, we
provide a robust foundation for understanding and processing mathematical texts.
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4 Approach

Our approach to enhancing the BERT model for mathematical language processing involves fine-
tuning and advanced optimization techniques. Each stage is designed to address specific challenges
associated with understanding and generating mathematical language.

4.1 Baseline Model

For our baseline model, we used the standard BERT architecture as introduced by Devlin et al. (2019).
The baseline training involved fine-tuning the BERT model on our primary datasets, including the
MATH dataset and the number_word_std dataset from the Microsoft SIGMA project. This stage
established a performance benchmark for evaluating the effectiveness of our additional finetuning
and optimization techniques.

4.2 Domain-Specific Finetuning

To better adapt BERT to the mathematical domain, we performed additional finetuning using the
MATH and number_word_std datasets. The goal of this stage was to expose the model to the
specialized vocabulary and notation used in mathematical texts. The finetuning involved the following
steps:

1. Tokenization: We used a customized tokenizer capable of handling mathematical expressions
and symbols effectively.

2. Finetuning Tasks: We employed masked language modeling (MLM) as our primary finetun-
ing task. This involved randomly masking tokens in the input text and training the model to
predict the masked tokens.

3. Finetuning Parameters: We used the AdamW optimizer with a learning rate of 5e-5, a batch
size of 32, and trained for 10 epochs.

The diagram below, adapted from the article "How to Fine-Tune BERT for Text Classification?",
illustrates the overall process of further finetuning and optimization:

Figure 1: Diagram illustrating the process of further finetuning and optimization.

This diagram benefits our project by clearly demonstrating the stages of weight initialization from the
original BERT, further finetuning on mathematical datasets, and the transition to optimization. While
the original diagram includes single-task and multi-task finetuning, our approach focuses on applying
advanced optimization techniques to enhance model robustness and performance during finetuning.

Following the further finetuning stage, we apply advanced optimization techniques, as shown in the
following diagram adapted from the research on MathBERT.

4.2.1 Low-Rank Adaptation (LoRA)

Low-Rank Adaptation (LoRA) introduces trainable rank decomposition matrices into each layer
of the Transformer architecture, which are used to update the model’s weights during finetuning.
The main idea is to freeze the pre-trained model weights and only train the low-rank matrices. This
approach significantly reduces the number of trainable parameters and improves the efficiency of the
finetuning process.
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In more detail, LoRA decomposes the weight updates into low-rank matrices, A and B, such that the
weight update W is approximated as W = A×B, where A and B are of lower rank compared to W .
This decomposition helps in reducing the computational complexity and memory footprint of the
model during training.

The optimization function for LoRA is given by:

θt+1 = argmin
θ

F (θ) + µDBreg(θ, θt) (1)

where F (θ) is the loss function, DBreg(θ, θt) is the Bregman divergence between the updated parame-
ters θt+1 and the original parameters θt, and µ is a tuning parameter that controls the strength of the
regularization.

The benefits of using LoRA in our project include:

• Efficiency: By reducing the number of trainable parameters, LoRA allows us to fine-tune
large models like BERT with less computational resources and memory.

• Regularization: The low-rank constraint acts as a form of regularization, preventing overfit-
ting and improving generalization, especially important for specialized tasks like mathemat-
ical language processing.

• Scalability: LoRA makes it feasible to apply BERT to larger and more complex mathematical
datasets without the need for extensive computational infrastructure.

• Flexibility: The ability to freeze the main model weights while only training the low-rank
matrices provides a flexible framework for adapting pre-trained models to new domains and
tasks.

Overall, LoRA contributes to the optimization of our model by enhancing its efficiency and general-
ization capabilities, allowing us to effectively fine-tune BERT for mathematical language tasks.

4.2.2 Mean Squared Error (MSE)

In addition to LoRA, we used Mean Squared Error (MSE) as a loss function when training on the
math domain datasets. MSE is widely used due to its simplicity and effectiveness in measuring the
average squared difference between predicted and actual values, helping in minimizing errors during
training. The MSE loss function is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

where yi represents the actual values and ŷi represents the predicted values. Utilizing MSE as a
loss function ensures that our model focuses on minimizing the error between predicted and actual
mathematical expressions, leading to better performance.

We found that there were many benefits to using MSE:

• Interpretability: MSE provides a clear and interpretable metric for model performance,
allowing us to easily track and compare the effectiveness of different training runs.

• Error Penalization: Because MSE penalizes larger errors more heavily, it encourages the
model to achieve more accurate predictions, which is critical for complex mathematical
expressions where small errors can significantly impact the overall solution.

• Gradient-Based Optimization: MSE’s continuous nature makes it well-suited for gradient-
based optimization techniques, facilitating smooth convergence during training.

By using MSE, our model can better focus on minimizing prediction errors in mathematical tasks,
thereby improving its overall accuracy and reliability.
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4.3 Overall Architecture

Figure 2 illustrates the overall architecture of our enhanced BERT model for mathematical language
processing. The architecture demonstrates the additional finetuning layers and the application of
LoRA.

Figure 2: Additional LoRa finetune layers used for our BERT model.

In our approach, the base BERT model is fine-tuned on the mathematical datasets using the masked
language modeling (MLM) task. LoRA is applied to introduce trainable rank decomposition matrices
into each layer, significantly reducing the number of trainable parameters and improving efficiency.
MSE is used as the loss function to measure the average squared difference between predicted and
actual values, encouraging the model to achieve accurate predictions.

The machine outputs a solution to a problem and compares the provided solution to the expected
solution using cosine similarity, which measures the similarity between two vectors by calculating the
cosine of the angle between them. This approach ensures that the model not only generates accurate
mathematical expressions but also produces solutions that are semantically similar to the expected
outcomes.

4.4 Implementation Details

The implementation of LoRA and MSE as a loss function was based on standard methods and
literature. We used the Hugging Face Transformers library for model implementation and training.
The customized tokenizer and finetuning scripts were developed in-house, ensuring that our approach
could effectively handle mathematical expressions and symbols.

All code and configurations used for our experiments are available at [link to your code repository].
This transparency ensures that our work can be reproduced and validated by other researchers in the
field.

In summary, our approach leverages domain-specific finetuning and advanced optimization techniques,
including the use of LoRA and MSE, to enhance the BERT model’s ability to process and understand
mathematical language. By combining these methods, we aim to address the unique challenges of
mathematical NLP and demonstrate significant improvements in performance.

5 Experiments

5.1 Data

Our project utilizes several datasets to enhance the BERT model’s understanding and generation of
mathematical language. The primary datasets include MATH and the number_word_std dataset, both
of which are crucial for training and evaluating our model.
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The MATH dataset consists of a large collection of mathematical problems and their solutions,
covering various topics such as algebra, calculus, and geometry. This dataset provides a rich source
of mathematical expressions and terminologies, essential for finetuning BERT on mathematical
language.

We also incorporate the number_word_std dataset into our training data. This dataset is a problem
collection containing 1,878 number word problems, which were used as evaluation data in an
EMNLP’15 paper.

The combination of these datasets ensures a comprehensive finetuning and evaluation process. Each
dataset provides unique challenges and opportunities for the model to learn and adapt to various
forms of mathematical language. The input to our model consists of mathematical expressions and
problems, while the output is the corresponding solutions or mathematical reasoning required to
solve the problems. By training on these datasets, we aim to improve BERT’s performance on tasks
involving mathematical language and reasoning.

5.2 Evaluation Method

To evaluate the performance of our fine-tuned BERT model on mathematical language tasks, we
employed a combination of quantitative and qualitative metrics, ensuring a comprehensive assessment
of the model’s capabilities.

5.2.1 Quantitative Metrics

We used the following quantitative metrics for evaluation:

• Accuracy: Measures the percentage of correctly predicted mathematical expressions and
solutions out of the total number of predictions. This metric provides a direct indication of
the model’s correctness.

• Mean Squared Error (MSE): Given its use as a loss function during training, MSE remains
a critical evaluation metric. It measures the average squared difference between the predicted
and actual values, offering insight into the model’s precision in generating mathematical
expressions.

• Cosine Similarity: This metric measures the cosine of the angle between the predicted
solution vector and the expected solution vector. Cosine similarity evaluates the semantic
similarity between the predicted and actual mathematical expressions, ensuring that the
generated solutions are not only numerically accurate but also contextually appropriate.

5.2.2 Evaluation Process

The evaluation process involved the following steps:

1. Baseline Comparison: The performance of our fine-tuned model was compared against the
baseline BERT model to measure the improvements brought by domain-specific finetuning
and optimization techniques.

2. Metric Calculation: Accuracy, MSE, and cosine similarity were calculated for the predic-
tions made on the test set.

3. Cosine Similarity: For mathematical problem-solving tasks, cosine similarity was computed
between predicted and actual solution embeddings to assess the closeness of the generated
outputs to the ground truth.

4. Hyperparameter Tuning: Various hyperparameters such as learning rate, batch size, and
dropout probability were tuned to optimize model performance.

5. Resource Utilization: Evaluation of training and inference times, as well as GPU memory
usage, was conducted to assess the efficiency of the model.

5.3 Experimental details

Report how you ran your experiments (e.g., model configurations, learning rate, training time, etc.)
The BERT-base-uncased model was augmented with an intermediate linear layer with a hidden size
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of 768. We set the learning rate to 1 · 104, which balanced convergence speed and performance.
The model was trained for 5 epochs to ensure convergence without overfitting. Parameter-efficient
fine-tuning was applied using the Low-Rank Adaptation (LoRA) technique. The AdamW optimizer
was used for parameter updates, suitable for fine-tuning transformer models. Training time varied,
with mathematical problem-solving tasks taking longer due to dataset complexity. A batch size of 8
was used, fitting the available GPU memory and maintaining efficient training dynamics. Evaluation
metrics included accuracy and F1 score for sentiment classification, binary cross-entropy loss for
paraphrase detection, and mean squared error (MSE) for semantic textual similarity. For mathematical
problem-solving, we evaluated cosine similarity between predicted and actual solutions.

6 Results

In this section, we report the quantitative results of our fine-tuned BERT model on various evalu-
ation metrics. We compare the performance of our model against baseline results to highlight the
improvements achieved through domain-specific finetuning and advanced optimization techniques.

6.1 Quantitative Results

The table below summarizes the results from our most recent tests, compared to our previous
development submission:

Task Metric Previous Dev Current Dev Test
Sentiment Classification Accuracy 0.459 0.262 0.262
Paraphrase Detection Accuracy 0.620 0.599 0.599
Semantic Textual Similarity Correlation 0.015 0.273 0.273
Number Word Dataset Mean Similarity N/A 0.811 0.811
MATH Dataset Mean Similarity N/A 0.533 0.533

Table 1: Comparison of quantitative results from previous development submission and current tests.

6.2 Analysis of Results

The results indicate that our model achieves notable improvements in Semantic Textual Similarity,
with a significant increase in correlation from 0.015 to 0.273. However, there is a slight decrease in
performance for sentiment classification and paraphrase detection when compared to the previous
development submission. The current results for the Number Word and MATH datasets show mean
similarities of 0.811 and 0.533, respectively, which provide a strong baseline for these tasks. It
is important to note that our finetuning was specifically oriented on the number_words dev set, as
opposed to the mean of all dev data. This focused approach allowed the model to better adapt to
the specific characteristics of mathematical language, resulting in higher performance on domain-
specific tasks. The decline in sentiment classification and paraphrase detection accuracy suggests that
while our fine-tuned model performs well on domain-specific tasks, there may be trade-offs when
generalizing to broader NLP tasks. This highlights the need for further optimization and potentially
more balanced training datasets.

7 Analysis

To understand the behavior and performance of our fine-tuned BERT model, we conducted a qualita-
tive evaluation by inspecting key characteristics and outputs. This analysis includes error analysis,
selected examples, and performance metrics for specific data subsets.

7.1 Error Analysis

By examining incorrect predictions, we identified several common types of errors:

• Complex Expressions: The model occasionally struggled with highly complex mathe-
matical expressions involving nested functions and multiple variables. These errors often
resulted in significant deviations from the expected solutions.
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• Symbol Misinterpretation: Misinterpretation of mathematical symbols (e.g., mistaking a
lowercase "l" for the number "1") led to incorrect predictions. This highlights the need for
better handling of mathematical notation.

7.2 Performance on Data Subsets

We analyzed the model’s performance across different subsets of the data to identify patterns and
areas for improvement:

• Number Word Problems: The model showed strong performance on the number_word_std
dataset, with a mean similarity score of 0.811. This indicates that the model is well-tuned to
the specific language and structure of these problems.

• Mathematical Expressions: On the MATH dataset, the model achieved a mean similarity
score of 0.533. While this is a solid baseline, it reveals that more complex expressions
require further optimization.

8 Conclusion

In this project, we successfully adapted the BERT model for mathematical language processing
through domain-specific finetuning and advanced optimization techniques, including Low-Rank
Adaptation (LoRA) and Mean Squared Error (MSE) as a loss function. Our model demonstrated
significant improvements in tasks such as Semantic Textual Similarity and number word problem
solving, highlighting the effectiveness of our approach.

Key achievements include a substantial increase in correlation for Semantic Textual Similarity and
high mean similarity scores for both the number_word_std and MATH datasets. These results
underscore the value of targeted finetuning and specialized optimization methods in enhancing model
performance for domain-specific tasks.

However, our work also revealed some limitations. The model’s performance on general NLP tasks
such as sentiment classification and paraphrase detection declined, suggesting a trade-off between
domain-specific optimization and generalizability. Additionally, handling complex mathematical
expressions and ensuring contextual understanding remain challenging areas.

9 Ethics Statement

While adapting the BERT model for mathematical language processing offers significant benefits, it
also raises several ethical challenges and societal risks. One major concern is the potential impact
on mathematical education. Training models on extensive mathematical datasets and providing
automated solutions can jeopardize the future of mathematical learning. Students might become
overly reliant on these models for solving problems, which can hinder their fundamental understanding
of mathematical concepts. Mathematics requires deep comprehension and critical thinking skills,
which could be undermined if students use these models as a crutch rather than a learning aid.

Another ethical issue is the potential for bias and inaccuracies in the datasets used for finetuning. If
the datasets contain errors or reflect certain biases, the model may produce incorrect or skewed results.
This can lead to the propagation of misinformation and reinforce existing biases in mathematical
problem-solving and educational tools. Ensuring the accuracy and fairness of the data is crucial to
prevent these adverse outcomes.

To mitigate these risks, one possible strategy is to integrate these models into educational systems as
supplementary tools rather than replacements for traditional learning methods. Educators can use the
models to enhance their teaching, providing additional resources and explanations while ensuring
that students still engage with the material and develop their problem-solving skills. Additionally,
rigorous validation and regular updates of the datasets can help maintain the accuracy and fairness of
the models. Implementing policies that require transparency about the sources and limitations of the
data used can further ensure responsible deployment and use of these advanced models.
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