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Abstract

This paper presents an approach to fine-tuning pre-trained minBERT models
through regularized optimization techniques, specifically focusing on the use of
Smoothness-inducing Adversarial Regularization and Bregman Proximal point
optimization (SMART), Multitask loss, and Hyper-parameter fine tuning. The
primary goal is to address the issue of over fitting that commonly occurs during
the transfer learning process when pre-trained language models are fine-tuned on
smaller, domain-specific datasets. By implementing these regularization techniques,
we aimed to achieve improved generalization and robustness in fine-tuned models.
However, our experimental results exhibited signs of over-regularization despite
achieving some "smoothness" in training. We provide insights into the performance
of our SMART model and discuss potential avenues for future research. Notably,
our findings highlight the sensitivity of various tasks to different learning rates and
the challenges in balancing regularization to achieve optimal model performance.
We also discuss the ethical considerations surrounding bias, fairness, and safety
in fine-tuning language models, emphasizing the need for careful monitoring and
mitigation strategies throughout the training process.
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2 Introduction

Training language models often requires a large amount of labeled data and this is often expensive
to achieve. A work-around that researchers have come up with is to take resources from a domain
that has abundant resources and train language models in that domain and then do further training
on limited data in the domain that we care aboutDodge et al. (2020); this is referred to as transfer
learning. Existing large pre-trained language models include embeddings from Language Mod-
els(ELMo), Generative Pre-trained Transformer(GPT), Bidirectional Encoder Representations from
Transformers(BERT) and Text-To-Text Transfer Transformer(T5). These models can have as much as
11 billion parameters(T5), about 110 million for original BERT. Given this vast number of parameters,
the extremely high complexity means that in transfer learning the model is highly susceptible to
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over-fitting. There are several methods trying to get around over-fitting namely: heuristic learning
rate, freeze/unfreeze layers or adding additional parameters which are fewer than the original ones
and only tuning the new parameters. The paper claims that these require significantly more effort to
achieve and proposes a different technique called Smoothness-inducing Adversarial Regularization
and Bregman Proximal point optimization (SMART) that reduces over-fitting and requires less effort
than the aforementioned alternatives. In most cases, we want to apply these fine-tuned models not only
to one tasks but to multiple related tasks. In many cases, we want to apply these fine-tuned models
not just to one task but to multiple related tasks. To address this, multitask learning can be employed,
which involves optimizing the model to perform well across various tasks simultaneously. A critical
component of multitask learning is effectively balancing the losses from each task. In our work, we
experimented with several strategies for combining multitask losses to enhance model performance.
Hyper-parameter optimization plays a crucial role in fine-tuning language models. We utilized a
combination of grid search and random search methods to find the optimal hyper-parameters. Initially,
grid search allowed us to systematically explore a predefined set of hyper-parameters, ensuring
thorough coverage of the potential parameter space.

3 Related Work

Several explorations are undertaken as part of a larger research initiative on ways to optimally and
efficiently fine-tune pre-trained models. Aggressive fine-tuning of pre-trained models can lead to over
fitting of the downstream examples due to the relatively large number of parameters that are being
tuned. The resultant over-fitting phenomenon is not only limited to language models but even the
simplest logistic regression models can exhibit over-fitting when the number of parameters is larger
than the training data. This scenario usually result in models that are highly complex and as has been
concluded in various settings, our findings also conclude that a simpler models generalizes well on
unseen data. The SMART framework explored in our work generalize to other machine learning
tasks like computer vision which also have a vast number of parameters and thus prone to over-fit
during fine-tuning. We also explore various strategies for combining multitask losses to improve
the model’s generalization capabilities. This is tied to the area of multi-task fine-tuning and more
generally, multi-task training. Researchers are always looking to find better generalizations, this is
still gaining momentum, a good example is the training of models for tasks related to coding. Liu
et al. Hyper-parameter optimization plays a crucial role in fine-tuning pre-trained models effectively.
Various methods such as grid search, random search, and more advanced techniques like Bayesian
optimization are employed to identify the optimal set of hyper-parameters. These methods help in
exploring the parameter space efficiently to find configurations that enhance model performance and
generalization. In our work, we utilized a combination of grid search and random search methods to
find the optimal hyper-parameters. ?. Our approach of integrating hyper parameter optimization with
multitask loss strategies is designed to address the specific challenges of fine-tuning large pre-trained
models, such as susceptibility to over fitting and the need for efficient training processes. This
combination not only enhances model performance on individual tasks but also contributes to the
broader field of NLP and AI by providing insights into better optimization practices for pre-trained
models.

4 Approach

We first implemented the default minBERT model from the default project handout. We then
extended model based on the following main improvements: 1) Multitask Fine-tuning: we added
the MultiTask layer for multitask classification(used inspiration from multiplicative attention in
dealing with sentence pairs), 2) Smoothness Inducing Regularization, Bregman Proximal Point
Optimization which are based on the SMART framework Jiang et al. (2020). We extensively explored
hyper-parameter fine tuning mainly applying the grid-search approach in order to cover the diverse
configurations of our model. Yu and Zhu (2020)
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Figure 1: Architecture for our minBERT + SMART implementation

Multitask Fine-tuning: Instead of fine-tuning minBERT on individual tasks, we made use of
multi-task learning to update BERT.

Ltotal = CombinationLossFunction(L1,L2,L3)

In this project we explore 4 variants of CombinationLossFunction:

• Addition: This is the simplest method where we sum the loss functions of all tasks.

Ltotal = L1 + L2 + L3 (1)

• Dynamic Loss Balancing: This method adjusts the weights dynamically during training
based on the magnitude of the losses. This ensures that no single loss dominates the training
process. The total loss is computed as:

Ltotal = w1L1 + w2L2 + w3L3

where
wi =

Ltotal

3Li

for i ∈ {1, 2, 3}.
• Automatic Loss Weighting: This method uses learnable parameters for each loss weight,

allowing the model to automatically balance the losses during training. The total loss is
computed as:

Ltotal = w1L1 + w2L2 + w3L3

where w1, w2, and w3 are learnable parameters.
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• Uncertainty-based Weighting Loss: This approach uses uncertainty as a measure to weight
each loss, as suggested in "Multi-Task Learning Using Uncertainty to Weigh Losses for
Scene Geometry and Semantics" Kendall et al. (2018). The total loss is computed as:

Ltotal =
1

2σ2
1

L1 +
1

2σ2
2

L2 +
1

2σ2
3

L3 + log σ1 + log σ2 + log σ3

where σ1, σ2, and σ3 represent the uncertainty associated with each task.

Smoothness Inducing Regularization: This is a form of adversarial training which instead of
generating adversarial examples and training on them for a smoother model it virtualizes the process
and has the same effect as adversarial training. Given the model f(·; θ) and n data points {xi, yi}
where xi is the embedding of the input sentences and yi is the label of the associated task. The overall
loss function is:

Fθ = L(θ) + λs(θ)Rs(θ)

where L(θ) = 1
n

∑
ℓ(f(xi; θ), yi) and ℓ(·, ·) is the loss function of given task and λs is the tuning

parameters. To induce smoothness, we define the regularization term

Rs(θ) =
1

n

∑
max||x̃i−xi||≤ϵ ℓs(f(x̃i, θ), f(xi, θ)

where ϵ is a tuning parameter and ℓs is chosen as symmetric KL divergence for models that output
probability distributions and a square loss for scalar producing model.

Breggman Point Optimization: This momentum accelerated optimization method is proposed to
offer stable updates by penalization aggressive updates at each iteration. This ensures that fine-tuning
does not result in parameters that are further from the pre-trained weights. Let f(·; θ) denote the
weights from pre-trained model.

θt+1 = argminθF(θ) + µDBreg(θ, θt)

where µ is a tuning parameter and the Bregman divergence:

DBreg(θ, θt) =
1

n

∑
ℓ(f(xi; θ), f(xi; θ̃t))

for exponentially moving average θ̃t = (1− B)θt + Bθ̃t−1.

MultiplicativeDotProduct: This is inspired by multiplicative attention. Given two vectors u and v.
We perform multiplicative dot product by inserting weights in-between them to perform the operation
uTWv; the matrix W can be learned.

5 Experiments

5.1 Data

Quora Dataset which consists of 404,298 question pairs with labels indicating whether particular
instances are paraphrases of one another. The data is provided in the following splits: train (283,010
examples), dev (40,429 examples), test (80,859 examples). SemEval STS Benchmark Dataset which
consists of 8,628 different sentence pairs of varying similarity on a scale from 0 (unrelated) to 5
(equivalent meaning). The provided data is in the following splits: train (6,040 examples), dev (863
examples), test (1,725 examples).

5.2 Evaluation method

To evaluate the models we used accuracy for Paraphrase Detection task on the Quora Dataset and
on the Sentiment Analysis task on the SST Dataset. For Semantic Textual Analysis task on the STS
Dataset we used Pearson Correlation of the true similarity values against the predicted values. To put
all these scores together into a multi-task score we used the formular:

MultiTaskScore =
sst_acc+ sts_corr+1

2

3
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5.3 Experimental details

To improve on the base minBERT model, we first investigated how best to train on the 3 given down-
stream tasks. We explored 3 various approaches, sequential training, zipped datasets training(will
default to the smallest) and cycle zipped datasets(default to length of the largest) and repeat the
smaller ones. We faced some implementation challenges with our SMART implementation that used
up most of the time that would have been otherwise devoted to running experiments. To mitigate this,
we introduced shrinking of the training datasets for faster training using a shrinking factor M . This
essentially selects 1

M random examples from each training dataset and then uses those for training.
Having this hyper-parameter M helped us to balance between being fast and also being accurate in
terms of the training datasets.

Our first experiment was to determine the best layers to have on top of the pre-trained BERT model
for the three tasks that we have. We evaluated 3 different layers: linear layer on sentiment plus simple
dot product on embeddings, multiplicative dot product on paired tasks, we did this for both fine
tuning last layer and full model. Then we investigated if we were still experiencing the over fitting
phenomenon even with the shrinking of the training sets. Then we investigated what loss function to
use between Simple Add, Dynamic Loss Balancing, Automatic Loss Weighting, Uncertainty-based
Weighting Loss.

To optimize our model’s hyper-parameters, we employed a combination of grid search and random
search methods. Initially, we used grid search to systematically explore a predefined set of hyper-
parameters, ensuring thorough coverage of the potential parameter space. Towards the end of our
experimentation, we switched to random search to explore a broader range of hyper-parameter
values more efficiently. This dual approach allowed us to balance between thorough exploration and
computational efficiency.

We used ADAM as our optimizer with learning rate of 1× 10−5. A batch size of 8. The maximum
number of epochs was set to 5. We used a dropout rate of 0.1. For SMART, we set the purtubation
size ϵ = 10−5 and σ = 10−5. We set η = 10−3. We use β = 0.99 for the first 10% of the updates
t ≤ 0.T and β = 0.999 for the rest of the training. Our SMART models use these configurations
unless stated otherwise.

5.4 Results

Table 1: Results from using different batch iterator structures

Training Setting Fine-Tune Mode Best Dev Accuracy
Sequential Training Last Linear Layer 0.413
Sequential Training Full Model 0.371
Zipped Datasets without Cycling Last Linear Layer 0.408
Zipped Datasets without Cycling Full Model 0.430
Zipped Datasets with Cycling Last Linear Layer 0.421
Zipped Datasets with Cycling Full Model 0.525

Table 2: Choosing the last layer to use for Paraphrase Detection and Semantic Textual Similarity

Model M Dev Accuracy
Base Model 50 0.400

100 0.403

Multiplicative Attention Dot Product 50 0.472
100 0.511
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Table 3: Performance of Various Loss Structures

Fine-Tune Mode M Multi-Task Loss Dev Accuracy
Full-Model 100 Simple Add 0.523

100 Dynamic Loss Balancing 0.508
100 Combined Loss 0.506
100 Uncertainty Loss 0.506

Full-Model 50 Simple Add 0.528
50 Dynamic Loss Balancing 0.473
50 Combined Loss 0.457
50 Uncertainty Loss 0.457

6 Analysis

Figure 2: This figure shows the time series of training accuracy for the train and dev datasets for
the Base Model against our SMART model. The scores are based on 1

Figure 3: This figure shows the time series of training loss for the train and dev datasets for the
Base Model against our SMART model

Our SMART model seems incapacitated in terms of expressive power. Though the training loss is
decreases for all the configurations, the non-SMART model seems to have a sharper decrease in
loss. We noted that the training with SMART, though constrained in terms of gradient, is relatively
more stable. We suspect this would be the smoothness induced by the Bregman Proximal Point
optimization.
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Figure 4: The figure shows the performance in terms of best accuracy for Base Model with no
MultiplicativeDotProduct(direct dot product of embeddings) and with MultiplicativeDotProduct

We tried different values of η = {0.001, 0.1, 1, 10, 100} and these did not change the train or dev
accuracy. This is likely because were were using clamping as the projection Π for the expression
x̃i ← Π||x̃i−xi||∞≤ϵ(x̃i + ηg̃i)Jiang et al. (2019). For this reason its possible that the updates were
being clamped in all the experiments resulting in very similar adversarial examples x̃is thus giving
the same outcome.

Figure 5: Figure showing the relative sources of the training loss across different learning rates on the
SMART implementation default smart parameters except for the learning rate and M = 100

Across the different learning rates, the learning rate 1e− 5 and 1e− 3 seem to be stable under the
given configurations of other hyper-parameters. Its also interesting to note that Semantic Textual
Similarity task is more sensitive to very low learning rates and the Paraphrase Detection task is more
sensitive to high learning rate. The Sentiment Analysis task remains stable across various learning
rates.

7 Conclusion

In conclusion, our study presents an approach to fine-tuning pre-trained minBERT models, lever-
aging Smoothness-inducing Adversarial Regularization and Bregman Proximal point optimization
(SMART), multitask learning, and hyper-parameter optimization. Despite encountering challenges
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such as over-regularization, our experiments demonstrate the potential of SMART in inducing smooth-
ness during training, albeit with some limitations on model expressiveness. Our findings underscore
the importance of dynamically balancing losses in multitask learning and systematically exploring
hyper-parameter configurations for optimal model performance. While there is room for improvement,
particularly in refining the SMART framework and addressing implementation challenges, our work
provides valuable insights into optimizing fine-tuning processes for pre-trained language models.
Future research should focus on refining regularization techniques, exploring novel multitask learning
strategies, and developing efficient hyper-parameter optimization methods tailored for large-scale
language models.

8 Ethics Statement

Bias and fairness: Large pre-trained models like minBERT models may inherit biases present in the
training data, leading to biased predictions in sentiment analysis, paraphrase detection, and semantic
textual similarity tasks. These biases could manifest themselves in word embeddings and trickle down
to downstream tasks and perpetuate stereotypes or discrimination, especially if the datasets used for
fine-tuning contain biased or skewed samples. Compromised Safety during fine-tuning: Pre-trained
models sometimes have guardrails that control for strong language and potentially harmful content.
During fine-tuning, there is a chance that the safety alignments can be compromised especially if
done aggressively. Qi et al. (2022) Several studies have shown that adversarial training partially deals
with bias of the model output. By extension since SMART is a variant of adversarial training, it
potentially has the capacity to deal with bias due to reducing sensitivity in perturbations of the input.
Han and Baldwin (2024)

Targeted manipulations in fine-tuning: Careful manipulations during fine-tuning can sometimes
correct for biases.Wang and Russakovsky (2022). This can be done through minor manipulations to
the proportion of the dataset from underrepresented subcategories. Regular safety audits: To mitigate
harmful content from the language model, one can conduct regular safety audits throughout the
fine-tuning process to evaluate the model’s performance and identify any instances of compromised
safety. These audits can involve both automated checks for safety violations and manual inspections
by domain experts to ensure compliance with safety standards.
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