BEES: Bi-Encoder Ensembles with Simple Contrastive
Learning and Smoothness Induced Adversarial
Regularization

Stanford CS224N Default Project

Nithish Kaviyan Dhayananda Ganesh
Stanford Center for Professional Development
Stanford University
nithish@stanford.edu

Abstract

This project aims to improve the performance of vanilla BERT on the following
downstream tasks: sentiment analysis, paraphrase detection and similarity detec-
tion. Bi-Encoder architecture is used to overcome the computational overhead
of cross-encoders especially during inference, for tasks that involve comparing
two sentences. A Siamese network with pooling layer is built on top of BERT
and trained on single-task and multi-task settings. This architecture improved the
performance of baseline for all the downstream tasks. It is also empirically shown
that introducing gradient surgery improves the performance of multi-task models.
Further pre-training of the BERT model with contrastive learning and smoothness
induced adversarial regularization improved the generalization of the model. An
ensemble of the single and multi-task models pushed the overall performance to
79% on the development set and obtained a test set performance of 78.6%.

1 Key Information to include

* Mentor: Arvind Mahankali ; External Collaborators, Sharing project : No

2 Introduction

BERT (Devlin et al.| (2019)) transformed the LLM suite of models by setting new state-of-the-art
fine-tuning performance on different classification and similarity detection tasks. However, the
BERT model which uses a cross-encoder architecture (both sentences are passed together to the
BERT encoder for similarity detection tasks) suffers from very high computational overhead during
inference, for similarity detection and other tasks that involve comparison of a pair of sentences.
For a sample of n sentences, the output embeddings from the BERT model has to be estimated for
n(n-1)/2 sentences which involves each possible combination of the sentences. For example, when
n = 10000, the task requires 499,500 outputs from the BERT model which makes the cross-encoder
architecture computationally challenging for tasks that involve comparing two sentences.

The objective of this project is to improve the downstream performance of minBERT (also referred
as BERT in this report) on the following tasks: sentiment classification, paraphrase detection and
similarity detection. A bi-encoder architecture based on Reimers and Gurevych|(2019) is applied to
mitigate the above mentioned shortcomings of cross-encoders. The Siamese network with pooling
layer improves the performance of pre-trained BERT on all three downstream tasks. This architecture
also offers a computational benefit where each sentence can be passed once through the BERT network
to obtain the contextual embeddings i.e. a sample of n sentences would require only n passes through
the BERT encoder. Contrastive learning framework |Gao et al.|(2021)), which improves the sentence
embeddings of similarity tasks, was experimented by pre-training the BERT network with the training

Stanford CS224N Natural Language Processing with Deep Learning

input sentences of the downstream tasks and it was observed that the task performances improved
further. Since fine-tuning on smaller datasets are prone to overfitting, smoothness induced adversarial
regularization (Haoming et al.| (2019)) was applied to improve the generalization performance of
the fine-tuned models. Multi-task learning are known to improve the performance of the tasks by
facilitating parameter sharing among different tasks, allowing them to learn from one another. In the
multi-task setting, sampling strategies such as min-size Round Robin (RR), hybrid-sampling (HS)
and Annealed sanpling (AS) were experimented along with complex-task-first, joint and individual
task training methods. Gradient surgery (Yu et al. (2020)) was also experimented with joint training
to reduce the gradient conflicts between different tasks. Unlike in the literature where multi-task
learning are shown to improve the performance of the fine-tuning tasks, in this case, the experiments
yielded comparable performance only for the paraphrase detection task. Finally, an ensemble of the
different approaches was aggregated and it gave the best performance among all other configurations.

3 Related Work

BERT (Devlin et al.|(2019)) uses a stack of bi-directional encoders from transformers (Vaswani et al.
(2017)) and is pre-trained with unlabelled data on two unsupervised tasks: Masked Language Model
and Next Sentence Prediction. The architecture of BERT is designed to create deep bidirectional
representations by conditioning on both left and right context on all layers during pre-training. The
BERT model obtained state-of-the-art performance on natural language inference and question-
answering tasks by fine-tuning with just one additional task specific layer on top of the BERT
embeddings. BERT can handle a pair of sentences by separating them with another special token
[SEP], however, this cross-encoder architecture involves passing every possible sentence-pair through
all the encoder layers during inference.

SentenceBERT (Reimers and Gurevych|(2019)) presents a modified variant of pre-trained BERT
network by introducing a siamese network architecture (bi-encoders) to derive meaningful sentence
embeddings. For tasks that involve comparing a pair of sentences, the proposed architecture passes
each sentence through the siamese network, and concatenates the embeddings for a classification task
or passes it through a cosine similarity layer for a similarity detection task. The paper also introduces
a pooling layer over the output embeddings of all tokens in the final layer of the BERT network. The
bi-encoder architecture proposed in this paper not only reduces the computational complexity of the
BERT model but also shows comparable performance on sentence similarity tasks.

More recent work such as (Gao et al.[(2021))) has shown that superior sentence embeddings can be
obtained by further pre-training a BERT model with a contrastive loss function. This contrastive
pre-training method aligns the embeddings of the pre-trained BERT model in such a way that the
embeddings of tokens that appear together in the input sentences move close to each other in the
embedding space. This paper has also shown empirically that contrastive pre-training improves the
performance of BERT model on similarity detection tasks.

While all the previous work in this section discussed architectural changes and training methodology to
improve the fine-tuning performance of the pretrained BERT model, [Haoming et al.{(2019)) discusses a
regularization method to reduce the overfitting on the downstream tasks and improve generalization on
the unseen data. The method proposed in this work, Smoothness Induced Adversarial Regularization
causes the pre-trained model to stay robust to aggressive fine-tuning on the training data of the
downstream tasks. This efficient fine-tuning helps the pre-trained models attain better generalization.

Several multi-task learning methods were also developed to improve the downstream performance of
the pre-trained BERT model. Bi et al.| (2022) introduced a multi-task architecture by adding together
the individual loss functions of category classification and named entity recognition tasks. Since the
size of training data of each individual task may vary, [Stickland and Murray| (2019) experimented
different sampling strategies including proportional sampling, square root sampling and annealed
sampling where the latter technique samples more from the larger dataset in the initial epochs. The
later epochs are more uniformly trained among each individual task to avoid interference between
tasks. [Liu et al.|(2019) proposed an individual task training strategy where for each iteration, a batch
of training data are sampled from a single task and the multi-task network is trained for the sampled
task. To further improve the performance of multi-task models, [Yu et al.|(2020) proposed a method,
Gradient Surgery, to reduce the gradient interference among different tasks by projecting the gradient
of the i*" task onto the normal plane of another task’s gradient.

Bi-encoder architecture for paraphrase detection

Bi-encoder architecture for similarity detection

Cross Entropy Loss (only while
training)
T Mean Squared Error Loss (only
Softmax classifier "”""“{"“‘“3’
5* Cosine similarity (u, v)
Dropout + Hidden layer 5%(1..1)
(ur v, |LI-V|) Dropout + Dropout +
Hidden Layer Hidden Layer
[v
[o]
Sentence A Sentence B
Sentence A Sentence B

Figure 1: Illustration of single task bi-encoder architecture for paraphrase (left) and similarity (right)
detection tasks. u and v are sentence embeddings from Sentences A and B respectively. For similarity
detection task, Cosine similarity of u and v will be used to compute similarity score, which is then
scaled by 5 to match the possible range of target values. Cross Entropy Loss is used for other
classification tasks.

While all the existing work (except SentenceBERT) in this section uses a cross-encoder architecture,
this project uses the bi-encoders as the main building blocks of the neural network.

4 Approach

4.1 Baseline

The baseline is chosen as the pre-trained minBERT model (implemented in part 1 of the project)
with task-specific layers on top of the embeddings from its final layer. For sentiment classification
task, the task-head contains a softmax layer over the context embedding (embedding of [CLS] token).
Since the paraphrase detection task has more training datapoints, the task-head contains a binary
classifier with one hidden layer. For similarity detection task, a cosine similarity layer over the
context embeddings is used as the baseline. For both paraphrase and similarity tasks, each sentence
is passed separately through the pre-trained minBERT model (bi-encoders) to obtain the context
embeddings. The code for baseline models are developed by the student with the help of starter code
provided for this project.

4.2 SentenceBERT (SBERT)

The main architecture is a Siamese network [Reimers and Gurevych|(2019) where each sentence
is passed separately through a pre-trained BERT network and pooling is applied to the dropped
out embeddings from the final hidden layer. Figure 1 shows the architecture for the paraphrase
and similarity detection tasks. The task-head of the paraphrase detection network consists of a
concatenation step that combines the sentence embeddings of the input sentences along with a
difference vector between the embeddings. This step is followed by a dropout and a hidden layer with
activation before passing the output through a linear layer. For similarity detection, the task-head
consists of a pooling layer for the sentence embeddings obtained from the BERT encoder which are
then passed through a cosine similarity layer. The task-head for the sentiment classification consists
of softmax classifier following a hidden fully connected layer, dropout and activation. The code for
the SBERT architecture is developed by the student.

4.3 SimCSE

Further pre-training of BERT is performed with the downstream task’s training data using simple
contrastive learning (SimCSE) framework (Gao et al.[(2021)). Contrastive learning aims to learn
effective representation by pulling semantically close neighbors together and pushing apart non-
neighbors. In an unsupervised SimCSE architecture, the input sentence is passed through the
pre-trained BERT network twice and the contextual embeddings (embedding of CLS token) are
trained with a cross entropy loss function that uses the other in-batch sentences as the negatives for
training. Mathematically, for N sentences

esim(hfi hf’)/ T

l; = —log (D

. z‘.
nN lesim(hfl,hjj /T
=

where h? = fy(z;, z) is the contextual embedding for sentence ¢ with random mask z for dropout.
For single-task fine-tuning, contrastive learning is applied for each task’s training data. In the multi-
task setting, contrastive learning is applied to the training data for all three downstream tasks. The
SimCSE training is implemented by the student.

4.4 Smoothness Inducing Adversarial Regularization

When fine-tuning a large pre-trained language model on a smaller downstream dataset, aggressive fine-
tuning causes overfitting of the fine-tuned model to the training data of downstream tasks. To control
the model complexity at the fine-tuning stage and and to improve the generalization performance
of the fine-tuned model, a smoothness-inducing adversarial regularization method (Haoming et al.
(2019)) was applied to the training loss function. For a model f(. :) with n data points of the target
task denoted by (z;, y;);—,, the regularization method solved the following optimization:

mingF(0) = L(0) + A\;Ry(6) @)

where L(6) is the loss function defined as L(6) = 13, I(f(z;;6),y;) and [(.; 0) is the loss function

of the target task, A\ > 0 is a tuning parameter to weigh the contribution of the adversarial loss R(6)
and R, (0) is the smoothness-inducing adversarial regularizer. R, is defined as

1
Rs(e) = ﬁzzlzlmatz;fo\pgels(f(‘r;\/7 9), f(l‘u 9)) (3)

For sentiment classification and paraphrase detection tasks, /s is choosen as the symmetric KL-
divergence, I5(P,(Q)) = Dg1(P||Q) + Dk r(Q||P). For similarity detection task [, is defined as,
Is(P,Q) = (P — Q)* where P = f(27°;60) and Q = f(z;;6). The implementation of SMART loss
is adapted from |sma which is implemented for a cross-encoder or single sentence architecture. The
code is modified to handle the bi-encoder architecture applied in this project.

4.5 Multi-task Learning

Multi-task learning is employed to leverage useful information from related tasks and achieve
simultaneous performance improvement on the downstream tasks. Siamese Architecture with Mean
Pooling is used as the shared layer among all 3 subtasks and the losses for sentiment classification
(Lsentiment), paraphrase identification (Lyqraphrase) and similarity detection (Limiiarity) are added
together to obtain the total loss (Bi et al.|(2022)):

Lmultitask = Lsentiment + Lparaphrase + Lsimilarity (4)

4.5.1 Sampling Strategy

Since the training data size is different among all the downstream tasks, different sampling techniques
were experimented: 1) minimum-size round-robin (RR) cycle, which randomly samples from each
task until the smallest training dataset is exhausted; 2) hybrid-sampling (HS) cycle which samples
from the largest training dataset (paraphrase identification) until exhausted for the first n epochs
and performs minimum-size round-robin cycle for rest of the training epochs; 3) annealed sampling

(Stickland and Murray| (2019)) which samples a batch from a task ¢ with a probability p; where
pi < N{*. o is computed for each epoch e with a total of £ epochs as follows:
e—1

—1-08
@ E—1

&)

4.5.2 Training Schedule

Task scheduling determines the order of tasks on which an MTL model is trained. Different training
methods including joint training where all three downstream tasks are trained together, was experi-
mented. Other schedules experimented were individual-task training (Liu et al.[|(2019)) combined
with annealed sampling, and max-data-task-first training where the task with largest training samples
(paraphrase detection) are trained for the first n epochs and rest of the epochs are jointly trained with
other tasks. The code for all sampling strategies, training schedules and the multi-task architecture
were developed by the student.

4.5.3 Gradient Surgery

To reduce the gradient interference among different tasks (which happens when the gradients of
different tasks are larger than 90°), Gradient Surgery (GS) as proposed in|Yu et al.|(2020) is performed
to project the gradient of i-th task g; onto the normal plane of another task’s gradient g; that has

conflicting gradient: g; = g; — %. g;. The code to perform gradient surgery was adopted from an
J

existing implementation in pytorch (pcg).

4.6 Ensemble

To leverage the benefits of different single-task and multi-task modeling approaches, a model
consisting of the best performing models on each task is ensembled. For the sentiment classification
and paraphrase detection tasks, the predicted class from the ensemble is based on the absolute majority
of the individual models’ outputs. For similarity detection task, the ensemble prediction is taken as
the average of the predicted similarity of the individual models.

S Experiments

5.1 Data

For sentiment analysis, SST dataset consists of 8,544 samples for training, 1,101 for development
and 2,210 for testing. Quora question pair dataset consists of 283,010 examples for training, 40,429
for development and 80,859 for testing and is used in the paraphrase detection task. SemEval STS
benchmark dataset (consists of 6,040, 863, 1,725 examples for train, dev and test sets respectively) is
used for similarity detection task.

5.2 [Evaluation method

Sentiment classification and paraphrase detection tasks are evaluated on their dev set and test set
using accuracy to measure the proportion of samples the models have predicted correctly. Pearson
correlation coefficient measures the linear correlation between true similarity and predicted similarity
and is used to evaluate the similarity detection task. For the project leader board, the overall score is
computed as follows:

similarity_pearson_correlation+1

sentiment_accuracy + paraphrase_accuracy +

Ovwerall_score = 3

(6)

5.3 Experimental details

All the model variants are trained on Google Colab Pro with a T4 GPU. Batch size of 8 was used
for multi-task training to fit the model and the training data into the GPU memory while for other
tasks the training batch size was 16. Adam is the optimization algorithm used to update the model

parameters with a learning rate of 2e-5, and weight decay of 0.01 used in multi-task training. A
dropout of p = 0.3 is used in the task-head layers. The table below lists the model configurations,
training type, training epochs and their training times.

Model Id | Model Type Architecture Training Type Training Epochs | Epoch train time (min)
MI Baseline (Sentiment) BERT + Softmax Layer Last layer 10 1.05
M2 Baseline (Paraphrase) BERT + 2-layer classifier Full model 10 50.85
M3 Baseline (Similarity) BERT + Cosine similarity Full model 10 2.94
M4 BERT + MeanPool (Sentiment) BERT + Pool + 1-Hidden Layer Full model 10 1.23
M5 Bi-Encoder (Paraphrase) BERT + Pool + Concat + 1-Hidden Layer Full model 5 56
M6 Bi-Encoder (Similarity) BERT + Pool + 1-Hidden Layer + Cosine similarity | Full model 10 32
M7 MTL: Bi-Encoder - RR - JT BERT + Pool + Task Specific Layers RR +JT 10 35.1
M8 MTL: Bi-Encoder + HS BERT + Pool + Task Specific Layers HS + Max-data-first | 7 (3 max data) 71.6
M9 MTL: Bi-Encoder + MTSimCSE + HS BERT + MTSimCSE + Pool + Task Specific Hybrid-sampling 10 (4 max data) | 70.6
MI10 MTL: Bi-Encoder + MTSimCSE + AS BERT + Pool + Task Sepcific AS + Individual Task | 3 56.3
MI1 BERT + MeanPool + SimCSE (Sentiment) BERT + Pool + I-Hidden Layer Full model 10 22
Mi2 Bi-Encoder + SimCSE (Paraphrase) BERT + Pool + Concat + 1-Hidden Layer Full model 6 60.6
MI13 Bi-Encoder + SimCSE (Similarity) BERT + Pool + 1-Hidden Layer + Cosine similarity | Full model 25 5.02
MI14 Bi-Encoder + SimCSE + SMART (Sentiment) BERT + Pool + I-Hidden Layer Full model 5 2.07
MI15 Bi-Encoder + SimCSE + SMART (Paraphrase) BERT + Pool + Concat + 1-Hidden Layer Full model 6 58.1
Mi6 Bi-Encoder + SimCSE + SMART (wt=1) (Similarity) | BERT + Pool + 1-Hidden Layer + Cosine similarity | Full model 10 4.1
M17 Bi-Encoder + SimCSE + SMART (wt=3) (Similarity) | BERT + Pool + 1-Hidden Layer + Cosine similarity | Full model 10 4.1
MI8 Bi-Encoder + MTSimCSE + SMART (Sentiment) BERT + Pool + 1-Hidden Layer Full model 5 2.07
5.4 Results

Table 1 lists the results of each model variant on their development set. The bi-encoder architecture
clearly improves the baseline performance, on all tasks for both single-task and multi-task settings.
Additional pre-training based on contrastive learning framework improves the model performance for
single-task models and with adversarial regularization, the generalization improves. The adversarial
loss adds more value to the tasks that had smaller training samples, improving the accuracy by 1.9
percentage points for sentiment classification task, and correlation by 1.3 points for the similarity
detection task. For multi-task models, training max-data-first strategy leads to better overall perfor-
mance than joint and individual training schedules. Based on the experimental results, the bi-encoder
network is a good architecture to improve the performance of BERT on downstream tasks.

Model Id SST Accuracy | QQP Accuracy | STS Correlation | Overall Score
Ml 414 - - -
M2 - 66.3 - -
M3 - - 63.5 -
M1, M2, M3 - - - 62.7
M4 51.3 - - -
M5 - 88.5 - -
M6 - - 75.4 -
M4, M5, M6 - - - 75.8
M7 50.7 81.6 71.7 72.7
M8 472 88.1 76.1 74.5
M9 46.4 88.1 77.2 74.4
M10 49.0 84.8 71.0 73.1
Ml11 51.7 - - -
MI12 - 88.8 - -
MI13 - - 81.0 -
MIl11, M12, M13 - - - 77.0
Ml14 53.3 - - -
M15 - 88.9 - -
M17 - - 82.3 -
M14, M15, M17 - - - 77.8
Ml6 - - 81.5 -
MI18 53.6 - - -
Ensemble 54.2 90.2 84.8 79.0

Table 1: Performance on development set for the model variants. Adding contrastive pre-training and
adversarial regularization improves the performance on all 3 tasks. Single-task models outperform
multi-task models on all the downstream tasks. Ensemble model performs better than other variants
in the development set

STS task: Pearson correlation vs Lambda SST task: Accuracy vs Lambda

B2.5

BL5

Accuracy

BLO -

Pearson correlation

BO.5

Figure 2: Dev set performance of STS task Figure 3: Dev set performance of SST task
for different Adversarial loss weights A for different Adversarial loss weights A

The ensemble model for each task consists of the following models: Sentiment - M11, M14, M18;
Paraphrase - M5, M8, M12, M15; Similarity - M13, M16, M17. The ensemble pushes the overall score
by 1.2 points for the development set and it is the final model submitted to the test set leaderboard.
The test set scores for each task and the overall score are shown in Table 2.

\ Task | Score |
Sentiment 55.0
Paraphrase 90.1
Similarity 81.5

Overall score | 78.6

Table 2: Test set performance of the ensemble model. The final prediction in the sentiment and
paraphrase tasks are based on the majority of predicted classes of the individual models. For similarity
detection, the ensemble prediction is the average of predictions of the individual models.

6 Analysis

Single-Task vs Multi-Task Learning: Single-task models performed better than multi-task models
in all three tasks. Especially for SST and STS tasks, performance of the multi-task models dropped
significantly. One reason for this is the imbalance in the training dataset among the tasks. The training
data for QQP is over 45 times more than that of the smallest training dataset (STS) and using the
smallest dataset size underfits the QQP task while utilizing all QQP data overfits the other two tasks.

SimCSE and Adversarial Regularization: Pretraining the bi-encoders with SimCSE acts as a
form of regularization as the contrastive learning objective eases the anisotropy problem in the
pre-trained embeddings by pushing the negative instances apart. Adversarial regularization also
reduces the aggressive updation of the model during the fine-tuning stage by injecting a perturbation
to each training cycle. Figures 2 and 3 show the dev set performance for different weights (\) of the
adversarial loss. The behavior of the model performance is not monotonic with A for STS task and
based on grid-search, A = 3 yielded the best result.

Pooling and Activation Ablation: As recommended in [Reimers and Gurevych| (2019), MEAN
pooling was used for all the model variants. However, CLS pooling was also evaluated for all three
tasks in a SImCSE pre-trained single-task setting and their performances are shown in Table 3. From
the results, it is observed that MEAN pooling clearly improves the performance of the bi-encoder
model for STS and QQP tasks while the type of pooling do not have large effect on SST task. For
STS task, the ReLLU activation at the last layer was replaced with sigmoid (also removes negative
values) and from the results in Table 4, using sigmoid causes huge performance drop on the STS task.

Error Analysis: Like any other model, the models discussed in this work is not perfect and has its
limitations. Figure 4 shows the confusion matrix for SST task. From the matrix, it is observed that the
model does not distinguish very well between negative and somewhat negative sentences, and positive
and somewhat positive sentences. For example, the model is more likely to predict a sentence as
negative if it only sees words that are used in the negative context such as the example unflinchingly
bleak and desperate (actual: somewhat negative, model: negative). Also, the model does not handle
the negation well and tends to predict a class higher when a negation prepends a positive word such

Table 3: Dev set performance for CLS pool- Table 4: Dev set performance for STS task

ng with sigmoid activation
Task Performance 3
| Sentiment (SST) ‘ 519 | | Model | Correlation |
’ SimCSE 59.2

Paraphrase (QQP) | 77.2

Similarity (STS) 70.9 724

SimCSE + Adversarial Reg.

STS task - Distribution of similarity: Target vs Predicted

Sentiment Classification: Confusion Matrix

7 === Target mean similarity: 2.72
[Target similarity

7| —=—- Predicted mean similarity: 3.32
[Predicted similarity

True label

» Similarity
o]
Predicted label Figure 5: STS distribution. Predicted similarity
are skewed towards higher similarity values. Aver-
Figure 4: SST Confusion matrix age predicted similarity is higher than the average

target similarity

as the humor is n’t as sharp , the effects not as innovative , nor the story as imaginative as in the
original (actual: negative, model: somewhat negative). For STS task, the main difference in the
model behavior is the that the predicted similarites are a little skewed towards higher similarity values,
as shown in Figure 5. One reason for this could be the constant (value of 5) multiplied to the output
of the final layer of the STS neural network.

7 Conclusion

The bi-encoder architecture applied in this project improves the performance of the vanilla BERT
model on sentiment, paraphrase and similarity detection downstream tasks. It is also learnt from
the experiments that pre-training the BERT model via contrastive learning and adding adversarial
regularization improves the overall model performance. An ensemble of the methods gave the best
performance and yielded a score of 78.6% on the test set. The primary limitation of the sentiment
detection models are their ability to differentiate sentences that contains multiple negations, and
the skewness of the similarity detection model towards a higher similarity. The immediate scope
for future work would be to apply a different optimization technique such as Bergman proximal
point optimization to optimize adversarial loss, to compare the unsupervised SimCSE applied in this
project with a negative ranking loss function in a supervised setting (using non-sample sentences as
negatives) and to use a triplet network with out-of-sample negatives and triplet loss for similarity
detection models.

8 [Ethics Statement

The project uses pre-trained weights of the BERT model to fine tune on the downstream tasks. Hence,
any bias in the BERT model will get carried over to the fine-tuned model which might pose a risk
of giving different outputs for the same sentence based on a protected characteristic such as gender
(say if the model exhibits gender bias and is deployed for a sentiment analysis, then the model’s
predictions might differ based on the genders used in the sentences). Another societal issue is that the
model does not refrain from giving an output for sensitive input sentences (eg. sentences containing
sensitive comments towards protected classes like race, gender, ethnicity etc.). To overcome the latter
issue, sentences containing sensitive tokens can be blocked before feeding them into the model. Bias

in the pre-trained models can be reduced by training on diverse set of examples during fine-tuning.
Examples that contain sensitive information or any forms of bias can be removed from the fine-tuning
training data to avoid further increasing the bias in the final model. Also, the model needs to be tested
rigorously for bias and fairness before being deployed for real-world consumption.

References
https://github.com/archinetai/smart-pytorch/tree/main.
https://github.com/weichengtseng/pytorch-pcgrad/blob/master/pcgrad.py.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. MTRec: Multi-task
learning over BERT for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume I (Long and Short Papers).

Tianyu Gao, Xingcheng Yao, and Danqgi Chen. 2021. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing.

Jiang Haoming, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019. Ro-
bust and efficient fine-tuning for pre-trained natural language models through principled regularized
optimization. In arXiv preprint arXiv:1911.03437.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings of the 36th International Conference on Machine
Learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems 33 (NeurIPS 2020).

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline
	SentenceBERT (SBERT)
	SimCSE
	Smoothness Inducing Adversarial Regularization
	Multi-task Learning
	Sampling Strategy
	Training Schedule
	Gradient Surgery

	Ensemble

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement

