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Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities in var-
ious NLP tasks. However, they are still somewhat limited in terms of accessing and
logically employing precise knowledge, and are hence prone to hallucination. The
performance of LLMs in this regard can be improved by incorporating knowledge
from external sources. As methods for doing so are often focused on individu-
ally and in isolation, our project aims to explore and compare various methods
to achieve this enhancement. Specifically, we investigate Retrieval-Augmented
Generation (RAG) with constructed knowledge graphs on a domain-adapted BERT
base model. As an alternative method, we additionally explore the KnowBERT
architecture which encodes knowledge directly into a language model. Our baseline
is a domain-adapted BERT large model without any knowledge graph assistance.
Evaluation metrics we employ include accuracy, precision, recall, F1 score, per-
plexity, and a factual recall test. We find that in general injecting knowledge
into large language models improves accuracy. Between the two frameworks we
examined, KnowBERT outperformed RAG-BERT on all metrics except absolute
accuracy in the factual recall test. Thus, we show that enhancing language models
by embedding knowledge can be a viable solution to the general problem of hallu-
cination. Future work involves combining various architectural choices from RAG,
KnowBERT, and other methods for further model improvement and accuracy.

1 Key Information to include

• Mentor: Aditya Agrawal

• External Collaborators: N/A

• Sharing project: N/A

• Contributions: The authors chose to go alphabetical with author ordering. The two team
members contributed equally to the final project. Adarsh contributed the implementation of
the RAG method and KnowBERT methods and performed the evaluations for the models.
Nikash contributed the extraction of the Wiki dataset and the evaluation of the baseline
methods. Both members contributed equally to the final report.

2 Introduction

Large Language Models (LLMs) have revolutionized the field of natural language processing (NLP),
especially with the addition of transformer architectures (Vaswani et al., 2017) in recent years,
such as with BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). These models excel in
understanding and generating human-like text, which has opened up applications in numerous areas
including machine translation, question answering, and sentiment analysis. However, despite their
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significant advancements, LLMs face challenges when it comes to accessing and employing precise,
factual knowledge. This limitation often leads to the notion of “hallucination,” where models generate
plausible-sounding yet factually incorrect or illogical information.

In particular, hallucination arises from the inherent design of LLMs, which relies on patterns learned
from large text corpora, where knowledge is often long-tailed and not always easy to recall upon
inference. These models can mimic language fluently, but do not have a natural mechanism to verify
the factual accuracy of the information they generate (Kandpal et al., 2023). This is an important
issue, as the generation of false or misleading information can potentially have serious consequences
in applications to fields such as healthcare, law, and education. Addressing this problem is hence
essential to ensure the reliability and trustworthiness of these AI systems.

Currently, methods to mitigate hallucination in LLMs can be classified into two categories: prompt
engineering and developing novel models (Tonmoy et al., 2024). The former, prompt engineering,
involves structuring the prompt to an LLM in particular ways to obtain a more desirable output. It
can help provide necessary context or specific instructions to guide a model to the expected answer
without hallucination. The latter, developing novel models, simply entails the creation of new model
architectures and data representations to improve outputs and reduce hallucinations. Some examples
may involve modifying a model’s decoding process to guide generation more toward authentic
context, or altering a model’s loss function to better incorporate how close outputs are to ground truth.

While prompt engineering and model development methods have been explored to address hallucina-
tion, there still exists some gap in directly comparing and measuring their effectiveness. Existing
research often focuses on one method in isolation, making it difficult to determine which approach
yields the most significant reductions in hallucination and under what specific circumstances. This is
where our project aims to contribute. Specifically, we investigate the popular prompt engineering
method of Retrieval-Augmented Generation (RAG), where factual information is retrieved from
Knowledge Graphs (KGs) and incorporated into the query to guide the LLM towards a more accurate
response. We will also explore a novel model development method, KnowBERT, designed specifically
to enhance factual language understanding in LLMs at the embedding layer.

By directly comparing these various approaches alongside a baseline absent of any knowledge
enhancement methods, our project aims to shed light on which methods are most effective at
mitigating hallucination in LLMs and under what conditions. With this objective, we aim to provide
valuable insights for researchers and developers working to improve the reliability and trustworthiness
of LLMs.

As for our results, we found that these knowledge-injected large language models can serve as viable
solutions to the growing problem of hallucinations. Both methods (prompt engineering and novel
architectures) at a high level demonstrated marked improvements in terms of accuracy and semantic
understanding compared to the baseline models. Between the two, we would say that the novel model
architecture that we implemented, KnowBERT, was more successful that the prompt-engineering
representative, Retrieval-Augmented Generation.

3 Related Work

The landscape of research in knowledge enhancement for language models is diverse and evolving,
with multiple approaches contributing to the development and improvement of natural language
understanding and generation. This section reviews key works that serve as a basis for our work.

BERT. Bidirectional Encoder Representations from Transformers, or BERT, is a language model
introduced in 2018 by Google AI research (Devlin et al., 2019), popularized for its significant
improvement over previous SOTA language models. BERT uses a transformer architecture to
understand the context of words in a sentence by looking at both the left and right context, unlike
traditional models that read text sequentially. It employs a two-step training process: unsupervised
pre-training on a large text corpus to learn general language representations, followed by supervised
fine-tuning on specific tasks, making it highly adaptable. BERT-large, in particular, is renowned
for its deep, 24-layer architecture that provides a rich understanding of language nuances. We’ve
selected BERT-large as our baseline, as its robust contextual embedding capabilities have set SOTA
performance benchmarks across a wide range of NLP tasks.
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Retrieval-Augmented Generation. One of the most prominent approaches to enhance the knowl-
edge capability of language models is the integration of external knowledge sources, such as Knowl-
edge Graphs (KGs). Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) is the most notable
method in this domain, as it combines the strengths of retrieval-based and generative models, enabling
the model to retrieve relevant documents from a large corpus and generate coherent responses using
the retrieved information. Typically, when a query is made to a language model, a RAG system will
first search for and retrieve relevant information from a large dataset or knowledge base, and then use
that information information to prompt engineer the original query and guide the generation of the
model’s response. This process is displayed in Figure 1. The use of KGs instead of simpler vector
databases for RAG further enriches the contextual understanding by providing structured and factual
information.

Figure 1: Retrieval-Augmented Generation (RAG)

KnowBERT. The knowledge enhanced BERT model (Peters et al., 2019), or KnowBERT, is
an extension of BERT that, unlike RAG, integrates structured knowledge directly into the model,
enhancing its ability to handle tasks requiring entity-level understanding. It uses the large-scale
knowledge bases Wikipedia to gather this structured knowledge, and involves two-step process:
first, it links entities to their corresponding entities in the knowledge bases to retrieve relevant
entity embeddings, and second, it integrates the entity embeddings with the BERT architecture
using a word-to-entity attention mechanism, as displayed in Figure 2. This integration allows
KnowBERT to leverage structured knowledge, improving its performance on tasks involving named
entities and factual information. Evaluating KnowBERT in our comparison is hence beneficial
because it exemplifies how embedding external knowledge directly into language models can enhance
understanding and mitigate issues like hallucination. As a further benefit, the outer layers of
KnowBERT and BERT are the same, so KnowBERT can serve as a clean replacement for BERT in
most BERT-based models. This is what allows us to train KnowBERT in both the masked language
learning and the next sentence prediction models.

Figure 2: Visualization of the KnowBERT architecture’s recontextualization of words with a word-to-
entity-span attention mechanism.
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By drawing on the strengths and addressing the limitations of existing methods such as RAG and
KnowBERT, and establishing a solid baseline with BERT-large, our work aims to illuminate and
advance the understanding and application of knowledge-enhanced language models. The systematic
comparison of hallucination mitigation methods and the practical re-implementation of Knowledge
Graph-based RAG are contributions that we believe will drive and encourage further innovations in
this significant area.

4 Methodology

4.1 RAG Approach

Our first approach involves implementing RAG with KGs, for which we’ve coded our own RAG
system. We initially planned on using existing KGs, but part of our considerations was the efficiency
of the model. Thus, we determined that most existing KGs are either too large to make a tractable
query or do not have useful API for the model to use quickly, and decided to construct our own KG.
This KG construction process is outlined as follows:

1. Data Collection: We scrape data from a curated set of scientific Wikipedia articles using
the Wikipedia Python library.

2. Entity Extraction: Using Spacy’s “en_core_web_sm” tool, we extract subjects, verbs,
and objects from the collected Wikipedia data.

3. Graph Database: The extracted entities and relationships are imported into NetworkX’s
DiGraph libraries (Hagberg et al.). We utilize NetworkX’s capabilities to manage and store
the graph data efficiently. The Knowledge Graph is then saved in a JSON file format to be
later utilized by the model.

Our constructed KG using NetworkX and the top science Wikipedia articles is shown in Figure 3.

Figure 3: Visualization of Constructed Knowledge Graph

Then, for given user prompts, we implement RAG as follows:

1. Tokenization: The prompt is tokenized to extract keywords.

2. Subject-Verb-Object (SVO) Triplets: Using Spacy’s NLP, the primary subject is extracted
from the prompt. An exhaustive search of the knowledge graphs links is performed creating
a number of SVOs.

3. Response Generation: The SVOs are appended to the original prompt as context, which
is then fed into a language model to generate an answer. This takes advantage of BERT’s
bidirectional attention and transformer architecture to comprehend and apply simple appends
to the query.
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For the language model, we use the BERT-base-uncased model, sourced from the Hugging Face
transformers library, to generate responses. The process integrates the structured knowledge from the
graph into the prompt, enhancing the model’s response accuracy.

4.2 Knowledge Embedding Approach

In addition to RAG, we incorporate the KnowBERT architecture as an alternative method that instead
directly embeds structured knowledge into BERT. We utilized existing code to load the model
(Peters et al., 2019) but wrote our own code using PyTorch (Paszke et al., 2019) to finetune and
evaluate it with our Wikipedia data. As for the model construction, after extracting the text from
the Wikipedia articles, we formatted the text into files where each line contained two full sentences
either randomly paired together or two sentences with one following the other. This created the setup
for pretaining KnowBERT for the next sentence prediction problem described later. (Peters et al.,
2019)’s implementation contained a number of helpful scripts to accomplish this task. Using the
AIDA-CoNLL dataset (Hoffart et al., 2011) as instructed by the KnowBERT authors, we pretrained
the entity linkers. Finally, using our supervised Wikipedia Data and the now-trained entity linkers,
we fine-tuned BERT into KnowBERT, specifically for answering science-based questions.

4.3 Baseline

Our baseline for comparison is a BERT-large model that does not utilize any knowledge graph
assistance, but uses domain adaptation on our data. We further pretrain this model on the Wikipedia
articles we pulled previously to construct knowledge graphs, and evaluate using our score metrics.
This baseline serves to establish a performance benchmark, allowing us to evaluate whether the
smaller BERT-base model, augmented with knowledge graphs through RAG or KnowBERT, can
outperform the larger BERT model. This comparison is crucial to determine the effectiveness
and efficiency of integrating knowledge graphs into smaller models, potentially offering a more
resource-efficient solution without compromising performance.

5 Experiments

5.1 Data

Our primary data consists of a collection of Wikipedia articles, which were the top 85 results from
the natural science and physical science subcategories. We use these articles to generate our RAG
knowledge graph, as well as to evaluate our models with BERT next sentence prediction and a
specially designed factual recall test. A selection of some of these articles are displayed in Table 1.

“Astronomy” “Glossary of astronomy” “Outline of astronomy”

“Portal:Astronomy” “Advanced Scientific Data Format” “Alignments of random points”

“Aperture Photometry Tool” “Astroinformatics” “Astrology and astronomy”

“Astrology and science” “Astronomer” “Astronomical coordinate systems”

“Astronomy and spirituality” “Astrophysical fluid dynamics” “Baade-Wesselink method”

“Barcelona astrolabe” “Blanketing effect” “Burning plasma”

“Coincidence method” “Constellation” “Cosmic wind”

Table 1: Assortment of some of the science Wikipedia articles used in our dataset.

5.2 Evaluation Method

Next Sentence Prediction Test: To comprehensively evaluate the actual knowledge comprehension
performance of our models, we employ accuracy, precision, recall, and F1 score metrics using the
Scikit-learn (Pedregosa et al., 2018) implementation. With each of our models, we use our evaluation
data and compute these metrics for the next sentence prediction task, where a model predicts the
sentence most likely to follow the given one. In addition, we compute model perplexity, which
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measures how well or how confidently a language model makes its predictions by quantifying the
average uncertainty or surprise of the model in predicting the next sentence. The metrics we employ
are defined as follows:

Accuracy =
true positives + true negatives

true positives + true negatives + false positives + false negatives

Precision =
true positives

true positives + false positives
Recall =

true positives
true positives + false negatives

F1 = 2× Precision × Recall
Precision + Recall

Perplexity = exp

(
−1

t

t∑
i

log pθ(xi|x<i)

)

Factual Recall Test: In addition to the next sentence prediction evaluation metrics. We have specially
designed a factual recall test to compare the various model performances at parsing and relaying
ground truths. This test takes advantage of the fact that both models are BERT-based; BERT is
fundamentally a Masked Language Modelling. The factual recall test is as follows:

1. Using GPT-4, we generated 100 fill-in-the-blank questions and answers based on our 30
Wikipedia articles

2. Models were asked to fill in the [MASK] with their predictions, but most importantly the
probability they assigned to each word in their entire vocabulary was examined.

3. The rank in which the ground-truth appears in the probability-vocab vector is used to
calculate the following metrics.

4. We evaluate absolute accuracy, mean reciprocal rank, and average cosine similarity.

Absolute Accuracy measures the percentage of queries where the ground truth word is exactly
returned. Mean Reciprocal Rank (MRR) measures the average of the reciprocal ranks of the ground
truth word in the probability distribution for each query. Average Cosine Similarity measures the
average of the cosine similarities between the returned word vector and the ground truth word vector
for all queries. These three metrics are defined below for evaluation on N queries where ri and gi

are the predicted word and ground truth word for query i, respectively:

Absolute Accuracy =
# of correct predictions

N
MRR =

1

N

N∑
i=1

1

rankgi

Avg. Cosine Similarity =
1

N

N∑
i=1

pi · gi

∥pi∥∥gi∥

5.3 Experimental Details

For our RAG approach, we utilized NetworkX graph database system to import nodes and relations we
scraped from our Wikipedia data as previously described. This process of generating the knowledge
graphs took approximately 3 hours for our set of articles. For the BERT-large baseline, we pretrained
further on our Wikipedia data with a consisent learning rate of 5e-5 for a duration of 3 epochs, which
required around an hour on a single NVIDIA A100 Tensor Core GPU. For the KnowBERT model, in
total training was about 6 hours with 1 NVIDIA T4 for 1 epoch of 10000 steps and the same learning
rate. Importantly, however, 24 GB RAM was necessary to perform the training.

5.4 Results

Our quantitative results for the next sentence prediction and factual recall tasks are presented in
Tables 2 and 3, and are analyzed in Section 6.
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Model Accuracy Precision Recall F1-Score Perplexity

BERT-large 0.55 0.72 0.04 0.07 268.74

BERT-large Adapted (Baseline) 0.60 0.65 0.32 0.43 2.02

RAG BERT-base 0.61 0.66 0.33 0.44 2.00

KnowBERT 0.88 0.88 0.89 0.89 1.50

Table 2: Comparison of Next Sentence Prediction Model Performance

Model Absolute Accuracy MRR Avg. Cosine Sim

BERT-large 0.39 0.0023 0.85

BERT-large Adapted (Baseline) 0.39 0.0023 0.85

RAG BERT-base 0.43 0.0013 0.87

KnowBERT 0.37 0.79 0.87

Table 3: Comparison of Factual Recall Model Performance

6 Analysis and Discussion

For next sentence prediction, fine-tuning BERT-large on our Wikipedia data resulted in improved
scores for accuracy, recall, and F1 score, which was expected since the model is able to better learn
domain-specific patterns and nuances in the data even with minimal fine-tuning. RAG, however,
was almost identical in performance to adapted BERT, with just very slight improvements in scores.
KnowBERT, on the other hand, does significantly better with all scores, with an impressive 47%
improvement in accuracy over the baseline. This disparity between the two knowledge enhancement
methods was relatively unanticipated, but may be attributed to a couple different reasons. KnowBERT
embeds knowledge directly into the model during pre-training, allowing it to understand semantics
and meanings more deeply, whereas RAG retrieves knowledge on-the-fly during inference, resulting in
a less integrated understanding. This deep integration in KnowBERT should lead to more substantial
performance improvements because the model can truly understand the semantics and meaning of
the language. Additionally, RAG’s retrieval mechanism risks introducing noise or irrelevant context,
as the retrieved information might not always perfectly align with the task at hand, leading to only
slight improvements.

The perplexity results from this task also offer a compelling insight into model knowledge enhance-
ment. As perplexity is a measure of how well a probability distribution or model predicts a sample, it
is exceedingly high for BERT-large at 268.74, indicating significant uncertainty and inefficiency in its
predictions. Fine-tuning on the Wikipedia dataset, however, reduces perplexity dramatically to 2.02,
showcasing how task-specific training can enhance model confidence and predictive coherence. RAG
again had similar results to BERT adapted, with just a 0.02 improvement in perplexity. KnowBERT,
though, achieves an even lower perplexity of 1.5, again suggesting that embedding the structured
knowledge can further reduce prediction uncertainty and improve the model’s overall linguistic and
contextual understanding.

For factual recall, the absolute accuracy, MRR, and average cosine similarity metrics were exactly
the same between BERT-large and BERT-large Adapted. This tells us that fine-tuning on this smaller
dataset does not modify the underlying model weights enough to alter recall outputs. In contrast,
KnowBERT exhibits slightly lower absolute accuracy, but significantly higher MRR, indicating that
while it misses the exact match on a few more occasions (absolute accuracy), it ranks the correct
answer much higher or with much more confidence on average (MRR). This supports the idea that
directly embedded knowledge performs better in ranking relevant information, but when it errs, it
does so more confidently, resulting in larger deviations from the ground truth.

RAG’s performance, characterized by the highest absolute accuracy but lowest MRR, indicates a
different set of challenges, opposing that of KnowBERT’s. The high absolute accuracy suggests that
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RAG’s retrieval-augmented approach is effective at attaining the information necessary to identifying
correct answers frequently. However, the low MRR points to potential issues with hallucination, where
the model might confidently propose incorrect answers when it does fail to get such information, due
to its reliance on external context without any actual semantic understanding. The results consistently
emphasize the strengths and limitations of the two different model adaptations, particularly that
knowledge embedding makes for a model that can genuinely understand and interpret the semantics
of given text, but cannot always retrieve the additional contextual information that RAG can.

Some qualitative test results are displayed in Table 4 alongside the following prompts:
• Prompt 12: The Aperture Photometry Tool is used in the field of [MASK] astronomy.
• Prompt 94: Burning plasma is studied in the context of nuclear fusion in stars and [MASK].
• Prompt 100: DGSAT I is an example of a faint ultra-diffuse [MASK] galaxy.

Prompt # Ground Truth BERT BERT Adapted RAG-BERT KnowBERT
12 “optical” “radio” “radio” “infrared” “optical”
94 “reactors” “planets” “planets” “planets” “galaxies”

100 “dwarf” “spiral” “spiral” “spiral” “dwarf”

Table 4: Qualitative Examples

For prompt 94, it appears that BERT, BERT adapted, and RAG all predict the masked word as “planets”
due to its relation to “stars.” However, KnowBERT interestingly responds with the word “galaxies,”
which is more closely related to the notions of burning plasma and nuclear fusion in addition to stars
than “planets,” as galaxies contain all of these elements. Even more interestingly, prompts 12 and
100 showcase KnowBERT’s stellar factual recall abilities. The terms "optical astronomy" and "dwarf
galaxy" are not terms with common co-occurence in the English language; however, they are the only
right answers in this scenario. KnowBERT having this information built into its encoding layers is
able to pull this information and generate the right answers. The other BERT models have to rely on
the words most commonly associated with the following word. Thus, we see "radio astronomy" and
"spiral galaxy"; both of which are more likely than their KnowBERT response counterparts.

While purely qualitative, this form of testing builds further evidence that embedding knowledge into
the model allows semantic information to be better extracted and utilized during generation. Even
though all the models tended to get the result wrong, it is clear to us as humans, that KnowBERT’s
responses were more accurate than the others, and at the end of the day, it is that human intuition that
we hope to emulate through models.

7 Conclusion

Our project results and findings consistently highlight the strengths and limitations of different model
adaptations. They indicate that KnowBERT generally outperforms RAG and baselines, which can be
attributed to KnowBERT’s method of embedding knowledge directly within the model, which allows
for a deeper understanding and interpretation of text semantics. On the other hand, RAG’s ability to
retrieve additional contextual information on-the-fly offers flexibility and access to a wider range of
information, though it comes with the risk of introducing potential noise. Our achievements from this
work include constructing our own knowledge graph full of scientific information, re-implementing
RAG from scratch, and conducting a comprehensive range of evaluation metrics that showcase the
capability to enhance model performance through various innovative approaches.

The primary limitations of our work include not testing other existing methods for knowledge enhance-
ment and not exploring the full range of use cases for knowledge graphs, such as improving synonym
detection and other linguistic tasks beyond factual reasoning. Future work could involve testing
additional prompt engineering techniques and developing novel models for knowledge enhancement.
For example, in our research we encountered the model SenseBERT (Leviant et al., 2019), which
uses a knowledge graph not to just inject factual information but rather to disambiguate between
word senses. Additionally, future research into combining the strengths of multiple architectures,
such as integrating retrieval mechanisms with deeply embedded knowledge, may further improve
model performance and accuracy, opening new avenues for advancing NLP capabilities.
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8 Ethics Statement

One significant ethical challenge that comes with this project involves the potential for these enhanced
language models to reinforce existing biases. Since the project relies on a curated set of Wikipedia
articles, any existing biases in these articles, whether related to gender, race, socioeconomic status, or
other, could be inadvertently amplified by the model. This issue is critical as knowledge-enhanced
models are likely to be perceived as more authoritative, leading users to trust their outputs without
questioning potential biases. This can contribute to the perpetuation of stereotypes and unequal treat-
ment of various groups. To mitigate this risk of reinforcing societal biases, we can employ a couple of
different strategies. First, diversifying the dataset by incorporating articles from various perspectives,
cultures, and languages (though still credible) can help ensure a more balanced representation of
knowledge, thus reducing biases that come with using a limited set of data. Second, incorporating
bias detection and mitigation algorithms into the model’s training process or generation process can
help identify and correct biased outputs.

Another ethical challenge is that there could be an over-reliance on these models’ accuracies. Given
the project’s goal of creating a model that is highly accurate, there is a risk that users may over-rely
on their outputs without cross-verifying with original sources or additional evidence. This can
be especially problematic in academic, professional, and policy-making contexts where rigorous
validation of information is necessary, and it could potentially contribute to the spread of misin-
formation. To mitigate this risk of over-reliance, we can make sure to continuously expand and
update the knowledge base used for model training. Another strategy is to integrate functionality
that cross-references the model’s outputs with multiple authoritative sources, and if discrepancies
are detected, the model can flag the output for further review. Finally, having transparency in data
sourcing and providing users with information on the origin of the model’s knowledge can help users
critically evaluate outputs to make sure they are not trusting them more than they should be.
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