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Abstract

For even the most sophisticated models, mathematical reasoning remains incredibly
challenging. Our project investigates whether pre-training on math-related texts can
improve performance of broadly capable models. We test two approaches: single-
epoch pre-training on extremely large domain-specific corpora such as MathPile
and DeepMind Mathematics, and quality-based curriculum-based pre-training
on mathematics textbooks (textbooks from MathPile) using a novel perplexity
ratio score. We find that single-epoch pre-training on massive corpora actually
degrades MMLU performance across the board compared to model baselines.
However, multi-epoch pre-training on high-quality mathematics textbooks signif-
icantly improves performance on MMLU mathematics tasks compared to both
baseline models and models pre-trained on a non-math corpus. Curriculum-based
pre-training, particularly training on documents ordered by quality or even on just
the top 25% highest-quality documents, further improves performance, even when
models are trained on smaller datasets and for less compute time. Our results
suggest that text quality is more important than text volume or compute time for
mathematics-specific pre-training, and that using curriculum pre-training on the
highest-quality documents can be highly effective.
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• TA mentor: Yuan Gao
• Team Contributions: Christine worked on pre-training benchmark evaluation, and writing.

Alexandre worked on qualitative and quantitative comparisons of model performance,
embedding space analysis, and writing.

2 Introduction
As language models rapidly improve their capabilities for problem-solving, abilities of mathematical
reasoning are of keen interest due to their broad applicability both for mathematics in itself, and
applications to any other quantitative problem-solving. One main factor driving improvements in
LLMs’ performance on mathematical reasoning is the data they are pretrained on, and the way in
which this pretraining is structured. Yuan et al. (2023) find that enhanced arithmetic and problem-
solving skills come from including code and LaTeX in pretraining corpora, motivating both math-
specific pretraining and a question of quality and makeup of data included in such corpora.

While many current approaches to pretraining rely on improvements via more data and more param-
eters, we are interested in investigating the question of quality versus quantity in pretraining data;
more specifically, can approaches of curricular pretraining emphasizing quality and order of data used
improve model accuracy on mathematics reasoning as hypothesized? Moreover, can domain-specific
pretraining in general improve LLMs’ performance for mathematical reasoning tasks?
Stanford CS224N Natural Language Processing with Deep Learning



To answer these questions, we aimed to employ mathematically-oriented pretraining to improve
capabilities for mathematical reasoning, with approaches ranging from general pretraining on corpora
centered around mathematics, to curricular pretraining with the idea of simulating progressive skill
math development.

To provide us with insight on quality, our first experiment pretrained GPT-Neo on full math-relevant
corpora including MathPile and DeepMind’s mathematics dataset, and evaluating these pretrained
models on tasks in the MMLU dataset compared to GPT-Neo model baselines of various sizes.

To provide us with insight on quality, our second experiment was pretraining GPT-Neo on various
subsets of these math-relevant corpora based on curricular pretraining selections, using our novel
constructed perplexity ratio metric, which optimizes for comparatively more difficult data for GPT-
Neo, through sorting of the order of data in pretraining based on this score, and selection only of data
with high score values.

In comparing the results of these two experiments, we found notably higher performance for the
quality end of our question, with curricular pretraining on perplexity ratio metric-oriented section of
corpora yielding much high model accuracy. Further qualitative analysis confirms this improvement
anecdotally, with solution generation demonstrating improved capacity for understanding of question
content, and embedding analysis suggesting that improvements came from beyond developments in
arithmetic and numerical understanding.

3 Related Work
3.1 Domain-adaptive pre-training

Models pretrained on large and diverse corpora can be fine-tuned with much greater efficiency than
models trained from scratch Huang et al. (2020). However, the corpora used for pre-training do
not cover the full range of human knowledge domains. As a result, significant work has considered
domain-adaptive pre-training (DAPT), which allows models to continue training on an additional
corpus of in-domain text. For example, Gururangan et al. (2020a) perform domain-adaptive pre-
training on RoBERTa across biomedical publications, CS publications, news, and reviews (10 -
50GB corpora), showing that DAPT consistently improves RoBERTa’s performance on in-domain
tasks. In practice, a number of models trained with DAPT have been highly successful in in-domain
applications, such as Llemma for mathematics and LegalXLMs for law Azerbayev et al. (2024)
Niklaus et al. (2024). Their findings imply that in-domain pretraining for mathematics is a viable
method to improve mathematical understanding of language models, prompting our work.

However, domain-adaptive pre-training can have negative consequences for performance on out-of-
domain tasks, in what is known as catastrophic forgetting (see Kirkpatrick et al. (2016), Riemer
et al. (2018)). In catastrophic forgetting, domain-specific pre-training, especially in multiple stages
or highly specific domains, causes performance deterioration on general-purpose benchmarks like
MMLU. This suggests that the content of domain-specific corpora could significantly impact DAPT
results; even pre-training on higher-order mathematics, for example, could theoretically deteriorate
model understanding of elementary arithmetic.

3.2 Curriculum pretraining

Substantial previous research has also considered whether curriculum pre-training – training models
on documents in a certain order, usually based on difficulty – can improve pre-training efficacy
for a given corpus. For example, Shi et al. (2024) find that pre-training using sequences of related
documents within a context window substantially improves in-context reasoning, especially across
long ranges. Wang et al. (2020) use a difficulty-based curriculum for speech translation, in which
models are sequentially trained on more advanced courses, and also find substantial performance
improvements. However, the BabyLM Challenge, which trained models on small, fixed data budgets,
generally found that curriculum-based approaches showed only modest gains and were less effective
than, say, student-teacher models Warstadt et al. (2023). Thus it is still unclear which tasks do or do
not benefit from curricula; we aim to study if mathematical reasoning, in particular, can benefit.

3.3 Data quality

While today’s highest-performing language models are pre-trained on trillions of tokens, there
has been substantial debate on what kinds of corpora are most effective. On one hand, Warstadt
et al. (2023) and Zhang et al. (2020) find that models learn high-fidelity representations, and can
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even outperform models trained on massive corpora, with just 10M to 100M tokens. Furthermore,
Micheli et al. (2020) find that past a critical training data volume, more pre-training data does
not substantially improve performance on downstream French language QA tasks. On coding and
problem-solving tasks, Microsoft Phi-1 and Phi-2, trained only on ∼ 7B tokens of high-quality
textbooks, outperform models trained for hundreds of billions of tokens, including GPT-3.5. These
findings suggest that high-quality, smaller corpora may be more effective for pre-training.

On the other hand, Komatsuzaki (2019) and Xue et al. (2023) argue that single-epoch pre-training
on a larger corpus is more effective than longer pre-training on smaller corpora – essentially, that
quantity is king. In addition, research into scaling laws for large language model find that loss scales
with parameter count, compute, and dataset size, suggesting larger datasets lead to better performance
Kaplan et al. (2020). Our work tests both sides of this debate, comparing pre-training on large corpora
with small, high-quality curriculum-based corpora.

4 Approach
4.1 Model

For our experiments, we use EleutherAI’s GPT Neo models with 125M parameters Black et al.
(2021), which is based on the architecture of Generative Pre-trained Transformer 2 (GPT-2) decoder
model Radford et al. (2019). We compare the performance of the 125M-parameter model to the
larger GPT-Neo-1.3B, with 1.3 billion parameters. Across these parameter sizes, GPT-Neo typically
ranges from 16 to 32 layers, with a default hidden size of 2048, and a default number of 16 attention
heads per layer, with GeLU activation functions and layer normalization for improved performance
and stability. GPT-Neo is trained on The Pile Gao et al. (2020), which consists of 22 diverse subsets
ranging from PubMed to OpenWebText2. In particular, the Pile includes arXiv papers and the
DeepMind Mathematics dataset, which Gao et al. (2020) find significantly improves model bits-per-
byte on math-focused texts. We utilize the HuggingFace transformers library for our GPT-Neo
implementation and training loop Wolf et al. (2020).

To evaluate the performance of domain-adaptive pretraining for mathematical texts, we utilize two
baseline models: default GPT-Neo and GPT-Neo pretrained on a novel, non-mathematics corpus for
a standardized batch size and number of training steps. Comparing to these baselines will allow us to
understand whether domain-adaptive pretraining can be effective in mathematics.

4.2 Domain-adaptive pretraining on massive corpora

Some previous work has suggested that dataset volume is most important for pre-training, and that
pre-training for few epochs – even just 1 – is the optimal approach for large corpora. Therefore the
first approach we consider is domain-adaptive pretraining on massive corpora, using just 1 training
epoch. We select multiple large (∼ billions of tokens) mathematics-focused corpora to pre-train on,
and utilize a different domain-specific corpus as a control; we compare all outputs to the baseline
125M and 1.3B models. We pretrain on domain-specific corpora using an autoregressive objective, in
which the model trains to causally predict the next token based on previous context.

4.3 Curriculum pre-training approach

We also consider a curriculum-based training approach. For a model with parameters θ, we define the
perplexity P of a document X with T tokens as

P (X) = exp

(
− 1

T

T∑
i

log pθ(xi|x<i)

)

In general, documents with higher perplexity are “more difficult" for the model than documents with
lower perplexity. Extremely difficult documents, such as graduate-level mathematics textbooks in
MathPile, have high perplexity, and would not be particularly useful to pretrain the model on. On
the other hand, documents that are extremely simple may contain lower-quality information, and
may not improve the model’s mathematical understanding. Instead, we aim to preferentially pretrain
on documents with high learning potential, which are currently out-of-domain for the model but of
reasonable difficulty such that pretraining can actually be effective.

To devise a curriculum of high-quality documents with high learning potential, we devise and
implement a novel perplexity ratio metric. In this scheme, perplexities of documents in the pretraining
corpus are computed both with GPT-Neo-125M and some larger, highly mathematically capable
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model, which we choose to be Microsoft Phi-2. We compute the perplexity ratio (PR) between
the model pair, thus assigning higher scores to documents which are difficult for Neo-125M but less
difficult for Phi-2. As illustrated in Figure 1, we find that document perplexity in Neo-125M roughly
correlates with perplexity under Phi-2, as expected. We also find that scores are with a slight right
skew, suggesting there is a long tail of documents with high learning potential.

We then preferentially pretrain models based on perplexity ratio scores using two approaches. Our
first approach, sorting, orders documents by perplexity ratio such that the model trains on high-PR
documents first. Our second approach, top-k, segments the top 25% and 50% of documents, and only
trains the model on this subset. For an equal amount of compute time, we compare performance of
models trained on top-k documents with models trained on the full corpora.

Due to compute constraints, we do not consider multi-stage curricula in which corpora change
between epochs, and we perform all curriculum experiments on the textbooks subset of MathPile.
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Figure 1: Perplexity scores (P ) for MathPile documents

5 Experiments
5.1 Data

For pretraining on massive corpora, we use two large math-specific corpora and one non-math
domain-specific corpus as a control. The first math-specific corpus isMathPile, a billion-token-scale
corpus (∼30GB) designed specifically for math (Wang et al. (2023)). MathPile is deduplicated,
filtered, and includes diverse high-quality mathematics texts from arXiv, Wikipedia, ProofWiki,
StackExchange, and high-quality textbooks.To contrast with the highly abstract content in MathPile,
which includes many graduate-level textbooks and research-level papers, we use the Deepmind
Mathematics Dataset, a synthetic ∼ billion-token high-school mathematics question-answer dataset
Saxton et al. (2019). Finally, as a control corpus, we use the Pile of Law, which has minimal overlap
with both the original Pile and any mathematics-based corpus, and can serve as an out-of-domain
control (Henderson* et al. (2022)). We load and stream datasets using the huggingface datasets
library.

5.2 Evaluation method

For standardized evaluation, we use the Massive Multitask Language Understanding (MMLU)
benchmark Hendrycks et al. (2021), focusing on performance in Formal Logic (N = 145), Elementary
Mathematics (N = 424), and High School Mathematics (N = 304). We evaluate using EleutherAI’s
open-source Language Model Evaluation Harness implementation (Gao et al. (2023)), which uses
zero-shot prompting and evaluates the model on the full multiple-choice answer with the highest
decoder score.

5.3 Experimental details

To pretrain on massive domain-specific corpora, we train GPT-Neo-125M for 1 epoch on each corpus:
MathPile, DeepMind Mathematics, and Pile of Law. For curriculum pre-training, we train on
a subset of MathPile (textbooks) and an equal-sized subset of Pile of Law (us-bills). Since our
curricular approach changes corpus sizes, we standardize our experiments’ compute time to 12.5k
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steps; to account for overfitting on smaller datasets, we also report MMLU evaluation results at 5k
steps. For all experiments, following the experimental setup in Gururangan et al. (2020b), using
mixed-precision training, the Adam optimizer with a weight decay of 0.01, learning rate 1e-5, and
linear learning rate decay. Given computation contraints we use a batch size of 4, and train with
ZeRO Stage-2 (using deepspeed Rasley et al. (2020)).

5.4 Results

As a baseline, regardless of parameter count, GPT-Neo models generally perform only slightly better
than random (25%) on mathematics-relevant baselines, and sometimes worse than random. We
report results from training on MathPile, Pile of Law, and DeepMind Mathematics in Table 1.
Evaluation results from curricular pretraining on textbooks from MathPile are shown in Table 2.
Results are displayed both from the full training, as well as at an earlier checkpoint, to address possible
overfitting, since the top-25 and top-50 subsets are significantly smaller than the full textbooks. We
focus on the following MMLU tasks: EM: elementary mathematics; HSM: high school mathematics;
STEM: all science, technology, engineering, and mathematics tasks; CM: college mathematics; AA:
abstract algebra. We also include HUM (all humanities tasks) as a baseline, which should not be
significantly affected by pretraining.

We find that single-epoch pre-training on large corpora is largely ineffective in improving MMLU
performance. Pre-training on mathematics corpora degrades performance compared to the baseline
model across all domains, from elementary mathematics to humanities. Interestingly, models
pretrained on Pile of Law, a completely different domain, actually out-perform all other models
on college mathematics and abstract algebra. Although models may still see some qualitative
improvement in subject matter understanding, this does not translate to MMLU scores.

However, we find that multi-epoch pre-training on smaller corpora, using a curriculum approach,
does result in performance improvements. While pre-training on our control corpus, us_bills,
mostly degrades performance across MMLU tasks and particularly mathematics tasks, pre-training
on textbooks significantly improves performance on elementary and college mathematics. In
fact, performance on high school mathematics and college mathematics exceeds the GPT-Neo-1.3B
baseline. We find that sorting textbooks by perplexity ratio improves performance over the un-
sorted corpus across all tasks except abstract algebra. Finally, our top-25 and top-50 pre-training
approaches see substantial improvements in certain subject areas. For example, the model trained
on the top 25% of documents for 5k steps beats the 1.3b baseline in both high school mathematics
and abstract algebra. Interestingly, pre-training on textbooks also slightly improves performance on
MMLU-HUM, our control evaluation task; however, the changes in mathematics task performance
are much more substantial.

Table 1: Base and Simple Pretraining Results (Better than 125M Base Bolded, Best Blue)
Model MMLU-EM MMLU-HSM MMLU-STEM
125M Base 0.225± 0.022 0.219± 0.025 0.215± 0.007
Mathpile 0.217± 0.021 0.211± 0.025 0.213± 0.007
Mathpile 10k 0.222± 0.021 0.207± 0.025 0.214± 0.007
Deepmind 0.209± 0.021 0.211± 0.025 0.212± 0.007
Deepmind 10k 0.212± 0.021 0.211± 0.025 0.213± 0.007
Lawpile 0.201± 0.021 0.215± 0.025 0.214± 0.007
Lawpile 10k 0.217± 0.021 0.211± 0.025 0.214± 0.007
1.3B Base 0.283± 0.023 0.259± 0.027 0.280± 0.008

Model MMLU-HUM MMLU-CM MMLU-AA
125M Base 0.244± 0.006 0.240± 0.043 0.190± 0.039
Mathpile 0.241± 0.006 0.220± 0.042 0.210± 0.041
Mathpile 10k 0.240± 0.006 0.240± 0.043 0.210± 0.041
Deepmind 0.242± 0.006 0.210± 0.041 0.210± 0.041
Deepmind 10k 0.242± 0.006 0.210± 0.041 0.210± 0.041
Lawpile 0.241± 0.006 0.260± 0.044 0.230± 0.042
Lawpile 10k 0.243± 0.006 0.220± 0.042 0.210± 0.041
1.3B Base 0.250± 0.006 0.290± 0.046 0.220± 0.042
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Table 2: Curricular Pretraining Results (Better than 125M Base Bolded, Best Blue)
Model MMLU-EM MMLU-HSM MMLU-STEM
125M Base 0.225± 0.022 0.219± 0.025 0.215± 0.007
US Bills 0.212± 0.021 0.211± 0.025 0.217± 0.007
Textbooks 0.259± 0.023 0.226± 0.025 0.237± 0.008
Textbooks 5k 0.243± 0.022 0.237± 0.026 0.229± 0.007
Textbooks Top25 0.217± 0.021 0.241± 0.026 0.251± 0.008
Textbooks Top25 5k 0.241± 0.022 0.263± 0.027 0.248± 0.008
Textbooks Top50 0.254± 0.022 0.256± 0.027 0.233± 0.008
Textbooks Top50 5k 0.241± 0.022 0.230± 0.026 0.236± 0.008
Textbooks Sorted 0.265± 0.023 0.230± 0.026 0.239± 0.008
1.3B Base 0.283± 0.023 0.259± 0.027 0.280± 0.008

Model MMLU-HUM MMLU-CM MMLU-AA
125M Base 0.244± 0.006 0.240± 0.043 0.190± 0.039
US Bills 0.242± 0.006 0.220± 0.042 0.220± 0.042
Textbooks 0.251± 0.006 0.320± 0.047 0.190± 0.039
Textbooks 5k 0.245± 0.006 0.250± 0.044 0.160± 0.037
Textbooks Top25 0.258± 0.006 0.300± 0.046 0.200± 0.040
Textbooks Top25 5k 0.263± 0.006 0.250± 0.044 0.250± 0.044
Textbooks Top50 0.253± 0.006 0.210± 0.041 0.270± 0.045
Textbooks Top50 5k 0.247± 0.006 0.250± 0.044 0.230± 0.042
Textbooks Sorted 0.254± 0.006 0.320± 0.047 0.170± 0.038
1.3B Base 0.250± 0.006 0.290± 0.046 0.220± 0.042

6 Analysis
6.1 Qualitative examples

To qualitatively analyze the impact of our mathematics-specific pre-training approaches, we use the
following prompt and compile responses from each model variant.

Prompt

The fundamental theorem of calculus states

Model Responses

125M:
∫
Rn

dnx
(x−y)n =

∫
Rn

top-25: If X is a real number
Theorem 1.1.1. If X is a real number, then
X is a real number
Proof. Let a be a real number. Then

MathPile: that the set of all functions f on a set X is the set of all functions f on
X such that f(x) = x for all x ∈ X .

LawPile: 1. The function
(a) The function
(b) The function
(c) The function

1.3b: The derivative of a function is the rate of change of the function.

This prompt lies in the domain of high school and college mathematics, so we can compare the
responses from different pretraining strategies which improved vs. did not improve performance
in these domains. We can first notice that none of these responses are correct; however, they are
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incorrect in quite different ways.
The baseline 125M model gives an incomplete equation without a theorem statement—the given
response does contain notation of calculus, but with no coherent meaing or relation to the FTC.
The top-25 curricular model, which had previous improvements over the 125m baseline in college
and high school math accuracy, answers the prompt in a more targeted way (by attempting to state a
mathematical theorem in a way that resembles standard theorem and proof openings at this level of
mathematics), but its answer does not contain any of the content of the FTC, matching the notable
improvement but still relatively low performance seen in the table above.
The model pretrained on MathPile presents a grammatically correct mathematical sentence, but with
no mathematical meaning or relation to the FTC—training on the full corpus could give a strong sense
of mathematical language, but not true understanding of meaning, matching the low performance
above.
The model pretrained on LawPile (negative control) presents an answer with almost no mathematical
meaning and little grammatical cohesion, matching the overall negative performance seen generally.
Finally, the 1.3B-parameter GPT-Neo baseline gives a grammatically coherent and correct sentence
related to the contents of calculus, although it is not the correct FTC—this matches previous higher
accuracy than most other models, but still low accuracy.

6.2 Embedding space structure

Previous work suggests that transformer-based language models perform better on mathematical
tasks, particularly arithmetic, when certain embedding space schemes are enforced for math-related
tokens (McLeish et al. (2024)). In particular, Golkar et al. (2023) created an embedding scheme for
numerical data such that all numbers were represented by a single token, with the embedding vector
scaled by number value, such that the embedding space is continuous for numerical inputs. Motivated
by this work, we seek to understand whether such a continuous vector space structure for number
tokens already exists in pre-trained models, even if not explicitly enforced in the architecture. We
investigate of the vector embeddings of digits 0-9 in both baseline and pretrained 125M models, for
potential consequences in mathematical performance, by looking at pair-wise cosine similarities and
vector norms, to understand whether the vector space of numerical tokens is indeed continuous.

In Figure 2a, we see that all digits have relatively high pairwise cosine similarity in their embeddings.
However, we see a higher cosine similarity between digits with higher values. This can likely be
attributed to higher digits primarily appearing in mathematical contexts, versus lower digits having
more multi-context usage. For instance, more phrases exist in the English language involving "1" and
"2" with unique meanings than for higher digits, which are used in almost exactly equivalent contexts.
Figure 2b, which plots digit vector norms, also suggests a linear relationship between the magnitude
of embeddings and digit values, therefore suggesting largely parallel and numerically scaled vectors.
While the slope of this linear relationship is not 1 (meaning that for instance, summing the vectors
for two numbers will not come close to the vector for their sum), the linear trend suggests digits are
embedded continuously based on value.

(a) Cosine Similarity Heatmap for Digit Embeddings (b) Scatter Plot of Digit Embedding Norm versus Nu-
merical Value

Figure 2: Analysis of Similarity of Digit Embeddings in Direction and Magnitude
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We also find that cosine similarity and norm values were virtually identical for the 125m baseline of
GPT-Neo and all pretrained variants (hence only one of each plot being shown), meaning that the
embeddings for digits largely did not change with pretraining. Thus we claim that changes to digit
embeddings is not a key contributing factor to performance improvements in higher-level mathematics.
Moreover, this either suggests that GPT-Neo already embeds digit values quite effectively, or if there
is another optimum embedding structure to be found, it is not achieved by pretraining on large math
corpora, either normally or curricularly.

7 Conclusion
Overall, we find that while single-epoch pre-training is largely ineffective in improving performance
on math-related tasks, curriculum-based pre-training across multiple epochs does improve model
performance on mathematical benchmarks. This suggests that training on a subset of the highest-
quality data can be more effective than the full corpus. We also find that embeddings for numerical
tokens, in both baseline and pre-trained models, exhibit a continuous vector space structure.

We conjecture that our models trained on large, math-specific corpora may be suffering from catas-
trophic forgetting, leading to benchmark performance deterioration. Although our pre-training
experiments on large corpora see training loss saturation within 1 epoch, suggesting the models are
well-fit, post-training evaluation on MMLU exhibits worse results than our baseline model, even
on relevant topics such as college mathematics and abstract algebra. This true across the board,
regardless of dataset. However, our qualitative analysis does suggest that regardless of MMLU results,
pre-training still moves the model distribution closer to the corpus.

Multi-epoch pre-training on mathematics textbooks without a curriculum approach already produces
significantly better results than baseline or pre-training on large corpora, despite textbooks being
a subset of MathPile. This aligns with previous work ex. Gunasekar et al. (2023) and suggests
that high-quality textbooks are an effective corpus for mathematics pre-training. Using curriculum
approaches based on the perplexity ratio score, we find that for a given corpus and amount of compute,
simply sorting the documents can improve model performance. We also find that training on a smaller,
high-quality subset of the original textbooks corpus provides comparable, if not better, performance
on many tasks. For example, training on just the top 25% highest-perplexity ratio documents actually
exceeds training on the full corpus for abstract algebra, elementary mathematics, and high school
mathematics. This suggests that the majority of pre-training results can actually be achieved with
smaller, high-quality datasets and less compute time. This also suggests that preferentially pre-
training on high learning potential documents might reduce performance degradation or catastrophic
forgetting. In general, our results suggest that quality is more important than quantity for mathematics-
specific DAPT at a given level of compute, or even with less compute time.

We note that our work has several limitations. First, MMLU mathematics tasks are not a perfect
benchmark for language model mathematical ability, as they do not account for factors such as
qualitative model reasoning. In addition, since GPT-Neo’s performance is already only slightly better
than random to begin with, it is difficult to draw strong conclusions about model abilities. Furthermore,
due to compute constraints, our work draws conclusions only on the efficacy of pre-training on large,
domain-specific corpora for a single epoch; it is possible that multiple epochs of training, or other
datasets, could produce improvements above baseline. Finally, our work only considers the effect
of curricular pretraining using a relatively small dataset, and does not fully explore the impact of
different datasets, quality metrics, or training hyperparameters. Avenues for future research could
include varying these factors, particularly the quality metric, or using a staged curricular approach,
where based on this metric, the model would be trained on different subsets in different epochs.

8 Ethics Statement
One potential ethical challenge of our project comes from training on biased data, especially in
mathematics. One well known phenomenon is that names of those from underrepresented back-
grounds are often featured less in math word problems, creating issues of representation for students
of those backgrounds. Day-to-day ramifications could include students feeling less represented in
mathematics courses when they don’t see their cultures and names represented in real-world contexts
of math problems, or even more dangerously, biased narratives being integrated into math word
problems, like stereotypical names being attributed to certain actions in the problems, which can
hurt students’ feelings of inclusion and spread harmful narratives in young minds. For instance, if
problems and solutions generated were to associate women’s names with stereotypically feminine
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activities, this could hurt young girls’ feelings of inclusion in mathematics, lowering participation
and potential in the field later on. In order to mitigate this, we can select and compensate in our
training data for equitable representation of different backgrounds and scenarios, and ensure that the
model is not trained on data that might contain harmful stereotypes in its language.

One negative societal risk of a very competent math problem-solving model is that it could incentivize
overreliance on it, rather than developing your own creative solutions as a student, which could
harm overall educational potential. More specifically, if students no longer learn how to solve math
problems on their own, or only solve problems in one certain way influenced by bias in the model,
potential for mathematical problem-solving in the next generation could be hurt, which would have
wide ramifications for societal potential for progress in mathematics and other quantitative disciplines.
In order to mitigate this, selecting for generation of incomplete information (ex: extra steps in
providing solutions, including developments of hints and general problem-solving strategies) could
temper immediate reliance on full solutions for users. In order to hypothetically implement this from
a technical standpoint, one could use prompt engineering strategies to only have the model engage
with the user in certain ways. For instance, a model accessible to students could be pre-prompted
with the fact that it is working with a student, and should only give hints and partial solutions
to help the student learn. Currently, with available models, if at the beginning of a conversation,
instruction guidelines are given for how to behave in a given conversation, they can be respected
quite rigorously—this could be automatically enforced in models given to students so that they only
engage with them with language appropriate and conducive to learning.
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