
minBERT Multi-Extended: Fine Tuning minBERT for
Downstream Tasks

CS224N Default Project

Jayna Huang
Department of Symbolic Systems

Stanford University
jhuang23@stanford.edu

Isabella Lee
Department of Computer Science

Stanford University
leeij@stanford.edu

Sophie Zhang
Department of Computer Science

Stanford University
spzhang@stanford.edu

Abstract

In this paper, we explore multitask fine-tuning strategies to further enhance the
capabilities of BERT across three distinct downstream tasks: sentiment analysis,
binary paraphrase detection, and textual similarity scoring. Our approach leverages
several key techniques: cross-encoding of sentence pairs, additional pretraining on
domain-specific data, LLM-aided data augmentation, and SMART loss (Jiang et al.
(2019)). Additionally, we explore the tradeoffs between training time, number of
parameters updated, and performance through a deep-dive of Low-Rank Adapters
as proposed by Hu et al. (2021). Through this comprehensive multi-task learning
framework, we obtain a robust model that integrates knowledge from all three tasks,
achieving an overall score of 79.1% on the dev set and 78.3% on the withheld test
set for the three downstream tasks.

1 Key Information

Mentor: Arvind Mahankali | External collaborators: No | External mentor: No | Sharing project: No

Contributions: Jayna implemented default minBERT, as well as the Multi-task fine tuning, cross-
encoding, additional pretraining, and data augmentation extensions. Sophie implemented SMART
regularization and conducted its hyperparameter grid search. Isabella implemented the low-rank
adaptation extension and conducted the deep-dive into its effectiveness. Isabella and Sophie worked
on the milestone paper. All team members contributed to the writing of this report and the final poster.

2 Introduction

The rapid advancement in natural language processing (NLP) has been significantly propelled by the
development of models such as BERT (Bidirectional Encoder Representations from Transformers)
(Devlin et al. (2018)). BERT’s bidirectional training approach enables it to understand the context
of words by considering both preceding and following words. Fine-tuning the model’s robust
pretrained embeddings by leveraging its powerful transformer architecture has led to substantial
improvements across multiple performance benchmarks. In this paper, we investigate the performance
of a minimally-implemented BERT model on three tasks: sentiment analysis, binary paraphrase
detection, and semantic textual similarity.

Traditional fine-tuning is often done for a single task at a time and requires updating a large number
of parameters, which can be computationally expensive and resource-intensive. To address these

Stanford CS224N Natural Language Processing with Deep Learning

limitations, we explore multitask learning and methods of adapting, which aim to fine-tune the
model simultaneously on multiple tasks while requiring a fewer number of parameters to be updated.
This approach not only reduces the computational overhead but also enhances the model’s ability
to generalize across different tasks, leading to improved performance and more efficient resource
utilization. Additionally, we explore additional approaches for improving fine-tuning including
cross-encoding, additional pre-training, data augmentation, and SMART regularization.

3 Related Work

With the widespread adoption of pre-trained language models like BERT (Devlin et al. (2018)), there
has been a spark in research on BERT’s effectiveness as a multi-task learning model. In Bi et al.
(2022), researchers explore the effectiveness of a multi-task learning framework for BERT for news
recommendation tasks and demonstrate performance gains.

One limitation of BERT is that it is pretrained in a general domain that has a different distribution
from the target domain for text classification tasks. In (Sun et al. (2020)), researchers perform
further pre-training through within-task pre-training and in-domain pre-training and achieve improved
performance on all datasets.

An additional challenge in large-scale pretraining and adaptation to downstream tasks is operational
inefficiency during full fine-tuning. In Hu et al. (2021), researchers develop LoRA to freeze the
pre-trained model weights and inject trainable rank decomposition matrices into each layer of the
Transformer architecture. They found that in comparison to GPT-3, LoRA can reduce the number of
trainable parameters by 10,000 times and the GPU memory requirement by 3 times.

Another area of research addresses overfitting in the fine-tuning phase. Researchers have explored
text data augmentation techniques in the context of adversarial attack and adversarial training. Wei
and Zou (2019) propose EDA (easy data augmentation) to boost performance on text classification
tasks. Given a sentence in the training set, they randomly choose and perform one of the following
operations: synonym replacement, random insertion, random swap, and random deletion.

To reduce overfitting and aggressive updating issues, researchers also propose regularization tech-
niques like SMART (Jiang et al. (2019)) which combines smoothness-inducing adversarial regu-
larization with Bregman proximal point optimization to improve model generalization in multitask
domain. They find that SMART consistently outperforms BERT on all GLUE tasks and improves the
generalization of multi-task learning.

4 Approach

We first complete a minimally-implemented BERT (Devlin et al. (2018)) according to the default
project handout. The BERT architecture consists of embedding layers and 12 encoder transformer
layers; we implement the multi-head self-attention, additive and normalization layer, feed forward
layer, and the Adam Optimizer step function. We utilize the [CLS] token embedding for our
downstream tasks.

Baseline. To establish our first baseline, we fine-tune only the last linear layers. The SST task uses a
dropout and linear layer with cross-entropy loss. The paraphrase task stacks embeddings vertically,
before passing them through a dropout and linear layer; binary cross-entropy loss is used. The STS
task passes embeddings through a linear layer and then uses cosine similarity, and mean squared error
loss (Figure 1). Since only the gradients of these final layers are updating, this provides an idea of the
performance capabilities of a minimally-trained BERT on the downstream tasks.

Our second baseline is three models individually fine-tuned to only a specific dataset according to the
architecture described above. Because the model must only focus on one task instead of three, these
are strong performance scores that we aim to achieve or surpass in just one model by implementing
extensions.

Multi-task Fine Tuning (MFT). For full-model multitask learning, we employ the same general
strategy as Bi et al. (2022): we sample a batch of data from each of the three tasks, calculate and sum
their losses, then update the overall loss at once. Naturally, the uneven sizing of the datasets poses a
problem, as the size of the QQP training dataset is more than thirty times the size of the training sets

2

of each of the other two. We elect to undersample large datasets rather than oversample small ones in
order to reduce the likelihood of overfitting on smaller datasets. We conduct a non-exhaustive grid
search of different batch sizes (scaling losses accordingly), aiming to utilize as much of the given
data as possible while maintaining accuracy. Later, because overfitting is observed for both the SST
and STS tasks, we taper their contributions to the overall loss to decrease with each epoch (E). The
final weight updates are:

L = Lsst ·
0.5

E + 1
+ Lpara + Lsts ·

1

log(E + 1) + 1
(1)

Cross-Encoding. Both QQP and STS are sentence-pair tasks, where one is asked to discern the nature
of the relationship between two sentences. In the default implementation, each of these sentences are
individually fed through BERT and then combined or classified in the last layer. With cross-encoding,
as is done in Devlin et al. (2018), the two sentences are concatenated and the entire new vector is
fed through BERT and classified at the end. This allows for attention to be performed on the entire
sentence pair, instead of just the sentences individually. Because just one [CLS] token is produced,
the head architecture for both QQP and STS is one dropout layer followed by a linear layer.

Figure 1: Architectures for baselines (left) and cross-encoding (right).

Pretraining. We implement additional pre-training with the Multi-Genre Natural Language Inference
(MNLI) dataset by Williams et al. (2017), a collection of 433k sentence pairs from a range of spoken
and written text and annotated with textual entailment information. Some examples include:

You have access to the facts. The facts are accessible to you. entailment
The economy could be still better. The economy has never been better. contradiction

By pretraining on a large annotated corpus of a related task, the BERT embeddings become more
robust: the model becomes not only better at understanding language, but especially better at
understanding relationships between sentence pairs. This is implemented using the same cross-
encoding techniques as above, with lr=5e-6, dropout=0.1, for 5 epochs.

Data Augmentation. Overfitting—as shown by decreasing training loss, increasing train accuracy,
but decreasing dev score—is noticed in the early epochs when evaluating SST. To enhance the
generalizability of the model and mitigate overfitting, we implement data augmentation. To do
so, we iterate through each of the 8,544 SST train examples. In batch sizes of 100, we choose
our data augmentation technique (inspired by Wei and Zou (2019)) with probability p: replacing a
random noun or verb with its synonym (p = 0.3), inserting a random word (p = 0.2), removing a
random word (p = 0.2), choosing two words at random and swapping their positions (p = 0.2), and
translating the sentence into Spanish and back again to English (p = 0.1) . We pass these through a
publicly accessible large language model: Meta’s Llama 3 8b 1. Temperature is randomly sampled
from the range of (0.55, 0.85). Sentiment remains the same and unique IDs are generated. We remove
duplicates both within the augmented dataset and between the existing train dataset. This gives us
8,430 new examples, for a total of 16,974 total SST train examples.

SMART Regularization. To further address the challenge of overfitting in the SST dataset, we
implement SMART as proposed by Jiang et al. (2019). We specifically add Smoothness-inducing

1https://llama.meta.com/llama3/

3

https://llama.meta.com/llama3/

Adversarial Regularization to the model which effectively manages the complexity of the model
through word embeddings with small amounts of noise. The regularization motivates the output of
the model not to change much, enforcing the smoothness and controlling its capacity. It solves the
following optimization problem for fine tuning as defined as:

min
θ
F(θ) = L(θ) + λsRs(θ) (2)

where L(θ) is the loss function for our downstream tasks, λs > 0 is a tuning parameter, and Rs is
defined as:

Rs(θ) =
1

n

n∑
i=1

max
||x̃i−xi||p≤ϵ

ls(f(x̃i; θ), f(xi; θ)). (3)

Following Jiang et al. (2020), ls is chosen as the symmetric KL-divergence loss for classification
tasks and mean-squared loss for regression tasks. SMART also incorporates Bregman Proximal Point
Optimization, but we use the AdamW optimizer to solve the minimization instead. In our model,
we only apply SMART to the SST classification tasks as that dataset had especially pronounced
overfitting compared to the QQP or STS tasks.

Low Rank Adaptation (LoRA). We implement LoRA to address operational inefficiency during
full fine-tuning as proposed by Hu et al. (2021), as it becomes less feasible to fully fine-tune models
as they increase in size. Specifically, we freeze the pre-trained model weights and instead replace
linear layers with trainable rank decomposition matrices with rank r with inspiration from the
implementation by Riggio (2023), decreasing the number of trainable parameters during fine-tuning.
We decompose the linear layer by freezing the weight matrix W in Rd×k and representing the original
update function W +∆W as Wf +BA, where B ∈ Rd×r and A ∈ Rr×k. We note that in order to
effectively decrease the number of trainable parameters, r < min (d, k). In this implementation, Wf

is the frozen weight matrix and does not receive gradient updates while training. Instead, B and A
contain trainable parameters. B and A are initialized with zeros and a random Gaussian distribution
respectively, yielding ∆W = BA as 0 at the onset of training. BA is also scaled by α

r , where α is a
scaling constant equal to 16 or the first r tested. By setting α to a predetermined constant value, we
reduce the need to return the model’s hyperparameters as we change r. As a result, given the initial
forward pass h = Wx, the modified forward pass is described as:

h = Wx = Wfx+∆Wx = Wfx+
α

r
BAx (4)

We adapt attention weights and the last linear layers with the decomposed matrix, leaving the
LayerNorm layers and embedding layers untouched similar to the method proposed by Hu et al.
(2021).

5 Experiments

5.1 Data

We use three datasets for testing, each with an approximate breakdown of 70% train, 10% dev, and
20% test.

• Stanford Sentiment Treebank 2 (SST) dataset – 11,855 sentences, the output for this task
will be one of five sentiment classification labels ranging from negative to positive.

• Quora question pairs 3 (QQP) dataset – 404,298 question pairs, the output for this task is a
binary decision of whether or not question pairs are paraphrases of each other.

• SemEval STS Benchmark 4 (STS) dataset – 8,628 question pairs, the output for this task will
be a number on a scale from 0 to 5 describing how related the meanings of two sentences
are to each other.

2Socher et al. (2013)
3https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
4Agirre et al. (2013)

4

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

5.2 Evaluation method

For the SST and QQP tasks, the model will be assessed on accuracy. For the STS test, its performance
will be calculated via the Pearson correlation coefficient, a measure of linear correlation between two
sets of data. We aim to produce the model with the best overall score, calculated by the following
formula:

overall_score =
sst_acc+ 1+sts_corr

2 + para_acc
3

In addition to accuracy, we also make qualitative judgments on training time and number of parameters
updated in order to explore the effects of tradeoffs between computational efficiency and performance.
In particular, for evaluating LoRA performance, we track training time per epoch, GPU memory
usage, and number of trainable parameters in addition to the individual task scores and Pearson
correlation coefficient.

5.3 Experimental details

All experiments except for LoRA-related trials are conducted on a NVIDIA T-4 GPU. Unless
otherwise noted, experiments are conducted with dropout probabilities of 0.3, a learning rate of 1e−5,
and run for 10 epochs. The optimizer is AdamW, with learning rate 1e−3 and β1 = 0.9, β2 = 0.999.

SMART Regularization. In batch sizes of (SST=3, QQP=32, STS=2), we utilize the
smart_pytorch module to incorporate SMART regularization into our model. We use the following
parameter choices as recommended by Jiang et al. (2019): 1 sampling step, ϵ = 1e− 6, σ = 1e− 5
and η = 1e− 3. For the regularization weight λs, we experiment with different choices of λs to find
the optimal weight that gives us the best results.

LoRA. LoRA experiments are conducted on a NVIDIA L4 GPU. We conduct LoRA experiments
with a dropout probability of 0.1 in LoRA layers due to the low number of trainable parameters in the
decomposed matrices. Experiments are conducted with learning rates of both 1e− 5 and 1e− 3 as
described in the results below. The α is set to a constant value of 16, and the value of rank r varies
across tests.

5.4 Results

In Multi-task Fine Tuning (MFT), we vary the batch size for each task and observe its effect on
overall performance A. We find that a batch size combination of SST=3, QQP=32, STS=2 both
utilizes the most of the given data and is most performant (we could not scale up the batch sizing of
QQP due to memory issues). Smaller batch sizes lead to noisier gradient updates which can increase
generalizability: since SST and STS are prone to overfitting, it seems that smaller batch sizes perform
better.

In testing SMART regularization, we conduct a hyperparameter grid search as seen in Table 2 to
determine the optimal regularization weight.

SMART weight SST Dev SST Train QQP Dev STS Dev Overall Dev
Baseline: 0.0 0.501 0.949 0.752 0.555 0.677

0.5 0.509 0.957 0.770 0.547 0.684
1.0 0.510 0.960 0.766 0.567 0.687
3.0 0.514 0.929 0.7623 0.557 0.685

Table 1: Performance comparison of different SMART regularization weights

Without SMART regularization (weight = 0.0), the model achieves an overall dev score of 0.677 with
the SST task showing signs of overfitting. We find that a weight of λs = 1 leads to the highest overall
dev accuracy of 0.687, with notable improvements in all three tasks. For future experiments using
SMART, we then adopt λs = 1.

For Low-Rank Adaptation, we vary the rank r and note the percentage of original number of trainable
parameters (% TP), the training time per epoch, and the dev score for each run. As shown in Table
2 and 8, we find the best learning rate to be 1e-3. As such, we choose a learning rate of 1e-3 and a
LoRA dropout rate of 0.1 for future experiments. Please see the Appendix for more detail.

5

Hyperparameters Space and Time Dev Score
Rank LR % TP Train Time SST dev QQP dev STS dev Overall

1 1e-3 21.73 2:00 0.350 0.731 0.307 0.578
32 1e-3 26.61 2:02 0.344 0.739 0.347 0.586

128 1e-3 41.74 2:24 0.342 0.745 0.307 0.580
128 1e-5 41.74 2:03 0.150 0.632 0.073 0.440
256 1e-3 61.90 3:08 0.323 0.740 0.308 0.572

Table 2: Effect of selected ranks and learning rates on Low-Rank Adaptation performance

The best performing LoRA trial results from setting r = 32 and the learning rate equal to 1e-3,
despite this model containing only 26.61% of the original number of trainable parameters contained
in minBERT. We do not see a decline in SST task performance as rank decreases, with the best
performing rank being the lowest rank (1). Additionally, the performance across QQP and STS tasks
does not demonstrate a significant decline as rank decreases, with the best performing trials being
r = 128 and r = 32 respectively. Notably, despite LoRA with r = 256 containing the most number
of trainable parameters, it performs worse than all other LoRA trials with the same learning rate and
requires the most training time per epoch. Additionally, the best performing LoRA test has a training
time of 2 minutes and 2 seconds per epoch, comparable to the LoRA test with the smallest possible
rank. This is as expected. As found in Hu et al. (2021), LoRA with lower ranks still demonstrates
robust performance. This indicates that while implementing LoRA, it is more effective to use lower
rank matrices to save on training time, space utilized by the trainable parameters, and GPU utilization
(Figure 3 and Figure 5) while not compromising on performance relative to higher ranks.

In Table 3, we also compare the results from the LoRA trial with the best results against two
additional trials: utilizing LoRA with three models individually fine-tuned to specific datasets (similar
to Baseline 2) and from testing minBERT with no extensions. For the individually-tuned trial, we set
r = 32 and the learning rate equal to 1e− 3 to match the best performing LoRA trial.

Model Description SST Dev QQP Dev STS Dev Overall
LoRA with r = 32, LR = 1e− 3 (from above) 0.344 0.739 0.347 0.586

LoRA (Individually Tuned) 0.381 0.751 0.316 0.597
minBERT 0.262 0.632 0.044 0.472

Table 3: Dev score results from selected LoRA trials.

Next, we record the results from the baselines and other extensions as described above.

Model Description SST Dev QQP Dev STS Dev Overall
Baseline 1: last layers minBERT 0.364 0.676 0.270 0.559
Baseline 2: full model minBERT 0.486 0.808 0.394 0.664
Best LoRA (Baseline 2 Method) 0.381 0.751 0.316 0.597

Best MFT (from above) 0.503 0.764 0.520 0.676
Cross-Encoded MFT 0.499 0.878 0.872 0.771

Pretraining + Cross-Encoded MFT 0.512 0.875 0.887 0.777
Data Aug + Pretraining + Cross-Encoded MFT 0.520 0.869 0.885 0.777
SMART + Data Aug + Pretr + Cross-Enc MFT 0.502 0.882 0.886 0.776

Table 4: Dev score results from implementing extensions.

We observe that MFT yields significant gains over Baseline 1 because all BERT parameters are
being updated instead of just the last linear layers. MFT also yields slight gains over Baseline 2,
demonstrating that knowledge transfer between tasks through shared gradient updates can lead to
more robust embeddings than models trained for just one task. As expected, cross-encoding also
yields significant performance gains for both sentence-pair tasks, as attention is being performed on
the pair of sentences as a whole instead of each individually.

We observe that LoRA (Baseline 2 Method) yields stronger performance than Baseline 1 across
all tasks but weaker performance than full model minBERT. Moreover, LoRA trials described in

6

Table 2 demonstrate worse overall performance than LoRA (Baseline 2 Method). While we are not
surprised to find that LoRA’s performance is worse relative to Baseline 2 as the number of trainable
parameters is significantly lower, we are surprised to find that the performance is not as comparable
as we initially believed based on the findings of Hu et al. (2021). As a result, we separate LoRA trials
from our best performing models with other extensions when testing only for performance.

Interestingly, using cross-encoded pretraining on MNLI does not improve performance on the QQP
task, despite it being a sentence-pair task, but does so for SST and STS. The improvements for SST
and STS are likely due to a more robust understanding of language; for the very slight decrease
in performance on the QQP task, an examination of the graph 6 indicates that the initial boost
performance boost from pretraining wanes after a number of epochs.

Further, we observe that data augmentation does increase STS dev accuracy as expected, though
at the expense of QQP and STS dev accuracy. We also note that SMART loss does not seem to
improve SST accuracy: this is confirmed by the dev accuracy graph, which oscillates.7 Insight from
Mgbahurike et al. (2024) suggests that noise from SMART loss in addition to the dropout layers may
create too much regularization to the point where the model does not fully learn necessary features.

To boost scores, we optimize by tapering the individual task contributions to the loss and increasing
the number of epochs as follows. The best model uses SMART loss, tapered loss contribution, data
augmentation, pretraining, cross-encoded MFT, and is trained for 25 epochs.

Model Description SST Dev QQP Dev STS Dev Overall
Tapered weight contribution, 20 epochs 0.514 0.891 0.893 0.783

Best Model, 25 epochs 0.529 0.902 0.887 0.791
Table 5: Dev score results from optimizing for overall score.

We then use our best model for the test set, and notice a slight decrease in performance, especially for
the SST task.

Model Description SST Test QQP Test STS Test Overall
Best Model, 20 epochs 0.503 0.901 0.888 0.783

Table 6: Test results for our top-performing model on the dev set.

The strong scores on both the dev and test set well exceed both Baseline 1, where only the last layer is
fine-tuned, and Baseline 2, where the model is individually-trained to focus on one specific task. This
confirms the effectiveness of our extensions in fine-tuning minBERT on the three downstream tasks.

6 Analysis

Figure 2: Confusion matrix displaying SST task performance for our best model

Sentiment Classification. We utilize a confusion matrix in Figure 2 to visualize our final model’s
performance on the SST-5 dataset. We see that there is a concentration of scores along the diagonal

7

representing matching predicted and true sentiments, indicating that our model understands the
sentiment analysis task. We notice that there are few scores in the far corners, demonstrating that
there are very few times in which our model is far off from the true sentiment. However, the significant
number of scores in prediction groups adjacent to the true diagonal also indicate that our model can
be close to the true sentiment, but slightly off. This is likely a result of human sentiments being
difficult to discern based on context. For example, the boundary between "negative" and "somewhat
negative" is relative to the human interpreter, making it difficult to exactly classify each of these
sentiments. Our model learns from the sentiment scores determined by a human, and these slight
distinctions in classification scores may make it difficult for our model to accurately complete this
task.

To further examine this, we calculate an "off-by-one" score, in which we determine the number of
correctly classified sentiments and the number of sentiments whose predicted sentiment is off by 1.
We then find that 96.83% of the predicted sentiments are either correct or off by one relative to the
correct sentiment, demonstrating our model’s ability to closely determine the range of the sentiment
score accurately. This indicates that our model may be less able to discern the true boundaries
between exact scores, where the distinction between "negative" and "somewhat negative" is vague.
To address this, we may focus more on polarizing sentiments which are easier to classify and less
dependant on human interpretation.

Paraphrase Detection. While examining our model’s performance on the QQP dataset, we
discovered that our model struggles with sentence pairs that have a high number of the same words
but differ in specific details. For example, the model often inaccurately classifies a sentence pair as
paraphrases of one another if they start and end with the same words. For example, the questions
"How do warm and cold fronts form?" and "How does a cold front form?" are misclassified as
paraphrases of one another when they are not. They both start with "How" and end with "cold front[s]
form" but differ in the inclusion of "warm" which the model fails to pick up on. Conversely, the
model often misclassifies a sentence pair as not paraphrases of one another if one sentence has an
additional phrase. For example, the questions "Do eyebrows grow back after being shaved?" and "Do
eyebrows grow back?" are incorrectly classified as not paraphrases of one another when they are.
They differ in the phrase "after being shaved" which the model then interprets as giving the sentence
another meaning.

Semantic Textual Similarity. To analyze our model’s performance on the STS task, we created a
scatter plot 8 visualizing the relationship between predicted and target similarity scores. Overall, there
is a strong correlation between the scores, but we also highlighted a few notable outliers (calculated
using 4 standard deviations). For instance, consider the sentences "Work into it slowly." and "It seems
to work." Our model predicted a high similarity score of 2.995 while the target similarity score is 0.0.
This suggests that our model relies on surface-level word matching. It struggles to understand deeper
semantic meaning and contextual understanding, especially for shorter sentences.

7 Conclusion

We explore the adaptation and enhancement of BERT for multitask learning on downstream tasks.
Our approach incorporates several key techniques including multi-task fine-tuning, cross-encoding,
additional pre-training, data augmentation, SMART regularization, and LoRA. By carefully tuning
the hyperparameters for each extension, we achieve significant performance improvements across
all three tasks of sentiment analysis, paraphrase detection, and semantic textual similarity, with
our model outperforming baseline results in tasks. We further conclude that while LoRA results in
decreased performance relative to full fine-tuning, decreasing the rank of LoRA implementations
does not significantly degrade performance while improving time and memory usage.

However, the primary limitations of our work include the time and resources necessary to test
variations of minBERT. In the future, we propose expanding on these extensions by further optimizing
hyperparameters, training for more epochs, or implementing modifications applicable to more types
of layers in the case of LoRA. However, extensive additional testing was not feasible for this project
due to the timeline of the class and compute credits necessarily to test a single minBERT variation.

8

8 Ethics Statement

The first broad category of risks include inherent bias or discrimination in the training data, which
can stem from bias in human evaluation or source material. As a result of training on biased datasets,
minBERT may also exhibit biased output and recommendations. For example, if a sentiment reads
“Durian tastes disgusting.”, the overall sentiment could be classified as negative despite a clear
personal bias. However, when trained on this data, the BERT implementation may attribute “durian”
to negative sentiments. Our model may later reveal this bias by classifying a new review as negative
because of the mere presence of the word. While this example may seem innocuous, if the word
was instead replaced by a name or group of people, our model faces a serious ethical challenge by
potentially classifying that name or group in a biased way. To mitigate this ethical challenge, we
could manually review the input data to remove inputs which demonstrate clear personal bias or
discrimination. We could also redact the names of specific people or groups to ensure that the model
is not attributing specific sentiments to individuals or people based on the biases of the training
data, instead relying on the contextual evidence in the rest of the sentiment. Another similar ethical
consideration and societal risk is that historical stereotypes or biases may be present in the training
data, leading minBERT to learn offensive words, phrases, or sentiments. For example, if an offensive
or stereotypical word was used to describe a group of people, our model may determine that those
two phrases are paraphrases of each other. In doing so, our model may perpetuate stereotypes by
outputting that two sentences are indeed paraphrases or have close semantic textual similarity, leading
those reviewing the outputs to equate a highly offensive phrase with certain groups or people when
those phrases should clearly not be paraphrases of each other. To mitigate this risk, we could once
again review the inputs to manually remove offensive words and stereotypes, or we could add in
additional categories of classification for the STS outputs to indicate the presence of problematic
phrases.

A second possible ethical challenge of our minBERT implementation is the usage of a few datasets
which are not representative of all people, dialects, or other populations. For example, British English
can differ from American English in both word usage and intention, and the inclusion of only one
group of speakers can result in the exclusion of a large fraction of language speakers whose sentiments
are not being fully understood by the model. Thus, when our implementation of BERT is tested on
the language of the excluded group, it is more likely to result in incorrect classifications or outputs.
This particularly affects our model due to the limited datasets we are training on, specifically the
three datasets described previously. To mitigate this exclusion risk, we could intentionally train our
model on inputs from many dialects and groups of speakers to broaden the model’s understanding of
language.

9

References
Eneko Agirre, Daniel Matthew Cer, Mona T. Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013.

*sem 2013 shared task: Semantic textual similarity. In International Workshop on Semantic
Evaluation.

Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. MTRec: Multi-task
learning over BERT for news recommendation. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2663–2669, Dublin, Ireland. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
SMART: robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. CoRR, abs/1911.03437.

Chijioke Mgbahurike, Iddah Mlauzi, and Kwame Ocran. 2024. Jack of all trades, master of some:
Improving bert for multitask learning.

Alex Riggio. 2023. Lora: Low-rank adaptation from scratch
— code and theory. https://medium.com/@alexmriggio/
lora-low-rank-adaptation-from-scratch-code-and-theory-f31509106650.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2020. How to fine-tune bert for text classifica-
tion?

Jason Wei and Kai Zou. 2019. Eda: Easy data augmentation techniques for boosting performance on
text classification tasks.

Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. https://arxiv.org/abs/1704.05426. [Accessed
22-05-2024].

10

https://api.semanticscholar.org/CorpusID:10241043
https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/2022.findings-acl.209
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/1911.03437
http://arxiv.org/abs/1911.03437
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/final-projects/ChijiokeMgbahurikeIddahMlauziKwameOcran.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/final-projects/ChijiokeMgbahurikeIddahMlauziKwameOcran.pdf
https://medium.com/@alexmriggio/lora-low-rank-adaptation-from-scratch-code-and-theory-f31509106650
https://medium.com/@alexmriggio/lora-low-rank-adaptation-from-scratch-code-and-theory-f31509106650
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1901.11196
http://arxiv.org/abs/1901.11196
https://arxiv.org/abs/1704.05426

A Appendix

A1. Batch Size

Batch Size Data Utilization Dev Score
SST QQP STS SST QQP STS SST dev QQP dev STS dev Overall
16 16 16 0.71 0.02 1.0 0.501 0.738 0.463 0.657
16 32 16 0.71 0.04 1.0 0.500 0.743 0.491 0.662
8 32 8 0.71 0.09 1.0 0.505 0.721 0.469 0.654
4 32 3 0.94 0.23 1.0 0.492 0.762 0.543 0.675
3 32 2 1.0 0.32 0.94 0.503 0.764 0.520 0.676

Table 7: Effect of batch size on dev score for Multi-task Fine Tuning (MFT)

A2. Additional LoRA Results

We examine two learning rates: 1e− 3 and 1e− 5. Decreasing the learning rate to 1e− 5 drastically
decreases performance. In particular, the trial with 1e− 5 results in a nearly constant accuracy score,
with no learning observed over time. The overall score was lower across all tasks relative to the the
LoRA trial with the same rank (r = 128). Thus, we keep the learning rate at 1e − 3 for all other
trials.

Additionally, we see that higher dropout rates result in significantly worse performance due to the
smaller number of trainable parameters relative to full model fine tuning. In particular, increasing
the LoRA layer dropout probability to 0.3 results in lower performance across all tasks for rank 256
relative to a dropout probability of 0.1. This is further detailed in Table 9.

Hyperparameters Space and Time Dev Score
Rank LR % TP Train Time SST dev QQP dev STS dev Overall

1 1e-3 21.73 2:00 0.350 0.731 0.307 0.578
4 1e-3 22.20 2:00 0.330 0.741 0.300 0.574
8 1e-3 22.83 2:01 0.339 0.729 0.314 0.575
16 1e-3 24.09 2:02 0.348 0.736 0.321 0.582
32 1e-3 26.61 2:02 0.344 0.739 0.347 0.586
64 1e-3 31.65 2:02 0.354 0.735 0.309 0.581

128 1e-3 41.74 2:24 0.342 0.745 0.307 0.580
128 1e-5 41.74 2:03 0.150 0.632 0.073 0.440
256 1e-3 61.90 3:08 0.323 0.740 0.308 0.572

Table 8: Effect of rank and learning rates on Low-Rank Adaptation performance

Model Description SST Dev QQP Dev STS Dev Overall
r=256, dropout=0.01 0.323 0.740 0.308 0.572
r=256, dropout=0.03 0.145 0.392 0.044 0.353

Table 9: Effect of dropout rates on Low-Rank Adaptation performance

In these figures, we observe the benefits of Low-Rank Adaptation on GPU Utilization and GPU
Memory Allocated. In each of the three figures (5, 4, 3), we observe that the LoRA trial with rank 128
utilizes the most memory or percentage of GPU. By the end of the observation period, the trial with
the next largest rank, r = 64, utilizes the second largest amount of memory in 5 and 4. The smallest
LoRA decomposition matrix, with rank 8, consistently utilizes the lowest percentage of GPU and
smallest amount of memory by the end of the observation period. Thus, our implementation of LoRA
demonstrates the benefits of implementing rank decomposition matrices in decreasing the GPU usage
and memory requirements as rank decreases. In conjunction with lower training times, we observe
that lower ranks of LoRA matrices are effective in reducing the time and space requirements for
training extremely large models without sacrificing performance relative to other higher ranks. The
benefits of rank 32 or lower are apparent: we save on memory and GPU utilization while receiving
similar or better performance on the three tasks assigned for minBERT.

11

Figure 3: GPU Usage Percentage for Selected LoRA runs

Figure 4: GPU Memory Usage Percentage for Selected LoRA runs

Figure 5: GPU Memory Allocated for Selected LoRA runs

A3. MNLI Pretraining on QQP

12

Figure 6: Performance boost of MNLI pretraining on QQP task wanes with more epochs

A4. SMART loss on SST

Figure 7: SST task with SMART loss does not indicate learning

A5. Scatter plot for STS Analysis

13

Figure 8: Scatter plot of predicted and target similarities for STS

14

	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Ethics Statement
	Appendix

