
HieroLM: Egyptian Hieroglyph Recovery with
Next Word Prediction Language Model

Stanford CS224N Custom Project

Xuheng Cai
Department of Computer Science

Stanford University
xuheng@stanford.edu

Erica Zhang
Department of Management Science

and Engineering
Stanford University

yz4232@stanford.edu

Abstract

Egyptian hieroglyphs can be found on numerous unearthed ancient Egyp-
tian artifacts, but it is common that they are blurry or even missing due to
natural erosion. Most existing efforts to restore blurry hieroglyphs adopt
computer vision techniques and model hieroglyph recovery as an image
classification task. Unfortunately, the CV-based approaches suffer from
two major limitations: (i) They cannot handle severely damaged or com-
pletely missing hieroglyphs. (ii) They make predictions based on a single
hieroglyph without considering contextual and grammatical information.
This project proposes a novel approach to model hieroglyph recovery as a
next word prediction task and use language models to assist the recovery
process. Leveraging the strong local affinity of semantics in Egyptian hi-
eroglyph texts, we propose a hieroglyph language model HieroLM based on
LSTM-enhanced recurrent neural networks. Extensive experiments show
that HieroLM not only achieves over 44% accuracy on next word predic-
tion, but also maintains notable accuracy on multi-shot predictions. With
its strong language modeling capability, HieroLM is a useful tool to assist
scholars in inferring missing hieroglyphs. It can also complement CV mod-
els to significantly reduce perplexity in recognizing blurry hieroglyphs.

1 Team Information
• TA mentor: Anna Goldie • External collaborators: No
• External mentor: No • Sharing project: No

2 Introduction

As the formal written language and an important medium for religious and funerary practices
in Ancient Egypt, the Egyptian hieroglyphs can be found on numerous ancient Egyptian
artifacts. The process of decoding hieroglyphs involves first converting them into translit-
erations and then translating the transliterations into modern languages (Gardiner, 1927).
Table 1 presents an illustration of this process.
Due to natural erosion, it is common that the hieroglyphs on the surface of the unearthed
artifacts are blurry or even missing. Efforts have been made to assist the process of rec-
ognizing blurry hieroglyphs with computer vision (CV) techniques (Barucci et al., 2021,
2022; Aneesh et al., 2024). Specifically, these works formulate hieroglyph recognition as an
image classification task and use state-of-the-art CV models such as Convolutional Neural
Networks (CNNs) to classify the blurry signs. However, there are two major limitations in
the CV-based approaches: (i) They cannot handle severely damaged or completely missing
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Table 1: Example transliteration and translation of a hieroglyphic sentence.

Hieroglyphs
Transliteration wbn rꜤ m Ꜣḫt
Transliteration (MdC) wbn ra m Axt
English Translation Re (the Sun God) rises in the horizon.

hieroglyphs because they rely on the visual characteristics of the signs. (ii) They make pre-
dictions based on a single hieroglyph, without considering the contextual and grammatical
information contained in surrounding words that could help significantly reduce perplexity.
As an example, the blurry hieroglyph A in the blue box in Figure 1 would confuse a CV
model, because it could be either 𓇑 (nḫb) or 𓇓 (sw) based on its vague shape, but from
the surrounding words we know that this sentence describes an offering by the king to the
god Osiris, so it is likely that this blurry sign is 𓇓 (sw), which means ”the king”. Moreover,
for the red box in Figure 1, the signs are almost entirely missing, and the CV models will
become useless, but from the words before it, we know that it should be a title of Osiris,
which indicates that the missing word is probably 𓊽 𓅱 (ḏdw), because 𓎠 𓊽𓅱 (nb ḏdw; ”lord
of Djedu”) is a common title for Osiris in the offering formula.

Figure 1: A Middle Kingdom tablet at The Metropolitan Museum of Art.† Hieroglyph A in
the blue box is an example of blurry hieroglyphs. Hieroglyph B in the red box is an example
of (nearly) missing hieroglyphs. † Source: https://www.metmuseum.org/art/collection/search/545055.

In light of the abovementioned limitations, we propose a novel approach where we model
hieroglyph recovery as a next word prediction problem, which can be addressed effectively
with language models. Currently, there are two major architectures for language mod-
els: (i) Recurrent architectures. Representative models include Recurrent Neural Network
(RNN) (Medsker and Jain, 1999) and its variants enhanced with Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). These models demonstrate strong ability
in extracting short-range dependencies and are naturally biased towards local information.
Thus, they are often preferred when the sequences are short (Zhao et al., 2024) or when the
process is near-Markov, such as stock price prediction (Bilokon and Qiu, 2023) and climate
forecasting (Buestán-Andrade et al., 2023). (ii) Transformer-based architectures. With self-
attention, Transformers (Vaswani et al., 2017) gain superiority in processing long sequences,
modeling long-range dependencies, and scaling up with parallel computing (Al-Selwi et al.,
2024). However, Transformer models require larger-scale datasets (Ezen-Can, 2020), are
more difficult to train (Popel and Bojar, 2018) and sometimes less robust (Liu et al., 2022).
To select the best architecture for our task, we consider the following characteristics of
Egyptian hieroglyphs (Allen, 2000): (i) Egyptian hieroglyphs is a dead language, and thus
the available data is very limited. (ii) It is mostly used in limited scenarios, such as funerals,
religious rituals, and monumental inscriptions. (iii) Due to its limited scope of usage, its
sentence structure is less diverse and has strong local affinity (e.g., a large portion of a
sentence could be titles following names of gods or kings). Based on these characteristics,
we build our proposed HieroLM based on an LSTM-enhanced RNN architecture. To validate
our choice, we compare the performance of a Transformer-based model with our model in
Section 5.5, and analyze the reasons behind the failure of Transformer in Section 6.4.
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Our contributions can be summarized as follows:

• We introduce a novel approach to hieroglyph recovery by modeling it as a next word
prediction task and addressing it with state-of-the-art language models.

• We build a hieroglyph language model HieroLM based on LSTM, which achieves over
44% prediction accuracy. The trained model is released to benefit the community.

• Extensive experiments show that HieroLM demonstrate notable performance on both
next word and multi-shot predictions, making it a useful tool in inferring missing words
and complementing CV models to reduce perplexity in blurry hieroglyph recognition.

3 Related Work

Most existing works on Egyptian hieroglyph recognition and recovery with machine learning
adopt computer vision techniques like CNNs. To the best of our knowledge, this is the first
attempt to model hieroglyph recovery as a next word prediction task using language models.
For comprehensiveness, we will first review related research in CV for hieroglyph recognition
in Section 3.1, and then we introduce state-of-the-art language models in Section 3.2.

3.1 Hieroglyph Recognition with Computer Vision

Modeling hieroglyph recognition as an image classification task is a well-explored direc-
tion. Franken and van Gemert (2013) proposed to use the Histogram of Oriented Gradients
(HOG) and the Shape-Context (SC) descriptors to extract the shapes of the hieroglyphs
and compare them with labeled data. The HOG method was later enhanced with Region of
Interest (ROI) extraction by Elnabawy et al. (2021). Moustafa et al. (2022) explored the
performance of ShuffleNet, MobileNet, and EfficientNet on hieroglyphs recognition. Aneesh
et al. (2024) evaluated ResNet, VGG, DenseNet, and Inception v3 on the same task. With
an architecture designed specifically for hieroglyph recognition, Glyphnet (Barucci et al.,
2021) achieved the state-of-the-art performance in classification accuracy. However, all of
these computer vision models rely heavily on the visual quality of the signs, and fail to
incorporate contextual and grammatical information from surrounding words.

3.2 Language Models for Next Word Prediction

Next-word prediction involves predicting the subsequent word in a sequence given the pre-
ceding context. Originating from pioneering work on information theory by Shannon (1948,
1951), it is foundational for applications like text generation, auto-completion, and machine
translation. Early approaches use n-gram models that, despite their simplicity, suffer from
data sparsity and limited context understanding.
The introduction of Neural Probabilistic Language Models (NPLM) (Bengio et al., 2000)
addresses the limitations of n-gram models by learning distributed word representations and
using neural networks to model the probability distribution of the next word. Subsequent
enhancements included continuous space language models (CSLM) (Schwenk, 2007), which
incorporates recurrent structures to handle variable-length contexts. This paved the way
for Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997), which improve next-word prediction by maintaining
memory and capturing longer dependencies. The effectiveness of RNNs for next-word pre-
diction is widely demonstrated (Mikolov et al., 2010; Sutskever et al., 2011).
The Transformer architecture (Vaswani et al., 2017) revolutionizes language modeling by
employing self-attention mechanisms, allowing the model to consider the entire input con-
text simultaneously. This leads to substantial improvements in performance and scalability.
Building on the Transformer architecture, large-scale pre-trained models like Generative
Pre-trained Transformer (GPT) (Radford et al., 2018, 2019) demonstrated the power of pre-
training on vast corpora followed by fine-tuning. Due to the restricted data availability for
Egyptian hieroglyphs, we are unable to leverage the large-scale pre-trained models for our
task. Instead, we experiment with state-of-the-art non-pretrained models such as NPLM,
LSTM, RNN, as well as a simple Transformer Encoder model.
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Figure 2: Model structure of HieroLM.

4 Methodology

In this section, we describe in detail our proposed HieroLM model, which adopts a recurrent
architecture enhanced by LSTM. The overall model structure is illustrated in Figure 2.

4.1 Recurrent Structure for Local Affinity Modeling

Assume that the input sentence has T words. Let x(t) ∈ {0, 1}|V | be the one-hot encoding
of the t-th word (1 ≤ t ≤ T ) in the sentence. Then, its embedding e(t) ∈ Rs, where s
is the embedding size, is computed through an embedding layer: e(t) = Ex(t). Following
the common practice of RNN-based models (Medsker and Jain, 1999), the hidden state
h(t) ∈ Rd, where d is the hidden dimension size, at step t is computed as:

h(t) = Fθ(h
(t−1), e(t))

where Fθ is a parameterized transformation, and h(0) is the initial hidden state. Then, the
predicted output is calculated by:

ŷ = NNpred(h
(T ))

where NNpred is a single neural layer plus a softmax layer, which projects the final hidden
state from the hidden dimension d to the size of the vocabulary |V |.

4.2 Long Short-Term Memory for Long-range Perception

Recurrent models are often overly biased towards the last few words. To mitigate this
issue, we incorporate Long Short-Term Memory (Hochreiter and Schmidhuber, 1997) in
our parameterized transformation Fθ. Specifically, given h(t−1) and e(t), we compute the
following interim states with single layer NNs:

f (t) = NNforget(h
(t−1), e(t)) i(t) = NNin(h

(t−1), e(t))

g(t) = NNgate(h
(t−1), e(t)) o(t) = NNout(h

(t−1), e(t))

The cell state c(t) ∈ Rd is computed as:

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ g(t)

where c(0) is the initial cell state. Finally, the hidden state h(t) is calculated as:

h(t) = o(t) ⊙ tanh(c(t))
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5 Experiments

5.1 Baselines

We compare our LSTM-based HieroLM model with the following baselines:

• Neural Probabilistic Language Model (NPLM) (Bengio et al., 2000). We use a trigram
NPLM as the naivest baseline.

• Recurrent Neural Network (RNN) (Medsker and Jain, 1999). We adopt a unidirectional,
single-layer RNN, with the same form of input and output as the above in LSTM.

• Transformer Encoder (TE) (Vaswani et al., 2017). Since our task requires outputting a
single word for a sequence of input, We adopt the encoder part of the Transformer archi-
tecture. Specifically, we employ a single-layer encoder with nheads=16 and dropout = 0.

5.2 Data

We evaluate the language models on three datasets, with statistics summarized in Table 2:

• Ancient Egyptian Sentences (AES) (Jauhiainen and Jauhiainen, 2023): It is a collection
of over 100,000 ancient Egyptian sentences across dynasties.

• The Ramses Transliteration Corpus (Rosmorduc, 2020): It contains transliterations con-
verted from a large corpus of Late Egyptian sentences.

• Mixed: Since AES contains sentences from different eras while texts in Ramses come
from Late Egypt, their distributions are different due to language evolution. To evaluate
cross-distribution modeling ability, we synthesize AES and Ramses into a mixed dataset.

We use MdC transliteration throughout our experiments because it replaces irregular letters
(e.g., ꜥ and ꜣ) in the common transliteration with English letters for convenient processing.
The datasets are processed as follows: Firstly, the MdC transliterations of the sentences are
extracted. Then, sentences with only one word are filtered out because they cannot be used
for next word prediction. Finally, the sentences are split into training, validation, and test
sets by an 8:1:1 ratio. During model training, for each sentence of length n, the first n− 1
words will be used as the source sequence, while the last n−1 words are the target sequence.

Table 2: Dataset statistics.
Dataset Sentence # Vocab # Training # Validation # Test #

AES 98,375 7,058 78,801 9,800 9,774
Ramses 61,069 3,499 48,848 6,116 6,105
Mixed 159,444 8,436 127,649 15,916 15,879

5.3 Evaluation Metrics

We evaluate the models on three metrics:

• Perplexity. It measures the model’s probability of predicting the correct word. A lower
perplexity score indicates better predictive performance.

• Accuracy. It is the ratio between the number of correct predictions and the total predic-
tions. It reflects the practical efficacy of our models in real-world application.

• F1 Score. This metric harmonizes precision and recall, providing a balanced view of
performance across all classes. We use the ”macro” averaging method in calculation.

5.4 Experimental Details

For fair comparison, we adopt embedding size 1024 and hidden dimension size 1024 for
HieroLM and all the baselines, based on the hyperparameter analysis in Section 6.2. The
dropout rate is searched specifically for each dataset. We employ a learning rate decay
and early stopping strategy, such that when the validation perplexity stops decreasing for 5
epochs, the learning rate decays by half, and when the learning rate has been decayed five
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times before the maximum number of epochs, the training will stop early. We utilized the
PyTorch versions of RNN and LSTM, and reused some pipeline code in Assignment 3.

5.5 Results

We summarize the experimental results in Table 3, with the following observations:

• Recurrent architecture dominates. As the table shows, models with recurrent archi-
tecture (RNN and HieroLM) exhibit consistent superiority over the others. This demon-
strates the recurrent models’ ability to capture local affinity of semantics in hieroglyphs.

• Long Short-Term Memory enhances performance. The comparison between Hi-
eroLM and RNN is a natural ablation study. The outperformance of HieroLM w.r.t.
RNN proves that LSTM can enhance the model’s ability by long-range perception.

• Transformer is ill-suited for this task. We can see that TE underperforms both
RNN and HieroLM, which is discussed in more details in Section 6.4.

Table 3: Performance results.

Dataset Metric NPLM TE RNN HieroLM

AES
Perplexity 41.57 52.21 42.25 26.50
Accuracy 0.3075 0.3143 0.3828 0.4525
F1 Score 0.0485 0.0488 0.1201 0.1420

Ramses
Perplexity 28.75 38.59 31.89 21.59
Accuracy 0.3553 0.3727 0.4387 0.4895
F1 Score 0.0775 0.0905 0.1933 0.2074

Mixed
Perplexity 42.14 53.78 43.34 26.48
Accuracy 0.3022 0.3151 0.3801 0.4450
F1 Score 0.0481 0.0466 0.1377 0.1421

6 Analysis

6.1 Multi-shot Prediction Performance

In reality, it is common for a number of contiguous hieroglyphic words to be missing together.
Thus, it is important to evaluate the model’s ability to predict a series of words accurately
without teacher forcing. Figure 3 presents the prediction accuracy of HieroLM for multiple
following words. We can observe a favorable diminishing decrease in accuracy with the
increase of prediction range. The model maintains an accuracy of over 13% on predicting 4
words in a row. This robust multi-shot prediction performance proves the pragmatic value
of HieroLM in assisting the recovery of missing hieroglyphs.

Figure 3: Multi-shot prediction accuracy on three datasets.

6.2 Hyperparameter Analysis

In this section, we present the sensitivity of HieroLM with respect to key hyperparame-
ters including embedding size, hidden dimension size, and dropout rate. The results, as
summarized in Figure 4, also provides ground for our selection of model hyperparameters.
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As expected, larger embedding size and hidden dimension size generally lead to better
performance. However, the performance gain diminishes for embedding size and hidden
dimension larger than 1024. To keep the models in reasonable complexity, we choose 1024
as the final embedding size and hidden dimension. The right column of Figure 4 indicates
that the performance of HieroLM is relatively stable across different dropout rate.

(a) AES

(b) Ramses
Figure 4: Test accuracy w.r.t. embedding size, hidden dim size, and dropout rate.

6.3 Case Study

We demonstrate HieroLM’s ability to learn semantic patterns in hieroglyphs by two cases.
Case 1: Offering formula. Below is the #1563 sentence in the test set of the Mixed dataset.
The different sense groups in the sentence have been highlighted with different colors.

Processed MdC: n kA n wr swn w pnTw mAa xrw
Transliteration: n kꜢ n wr-swn.w pnṯw mꜢꜤ ḫrw
English Translation: For the ka of the great physician Pentu , the true of voice. 1

This sentence is a common component of the offering formula, usually appearing at the
end of the offering inscriptions. It has a fixed format: [n kꜢ n] + [Title and name of the
deceased] + [mꜢꜤ ḫrw], where mꜢꜤ ḫrw (”the true of voice”) is a universal title for the deceased.
Therefore, upon seeing n kꜢ n and the title and name of the deceased, HieroLM is capable of
predicting that the following words should be mꜢꜤ ḫrw. When we input the sequence ”n kA
n wr swn w pnTw”, the model outputs ”mAa”, and when appending ”mAa” to the input,
it outputs ”xrw”. Note that this is also a successful case of 2-shot prediction.
Case 2: Titles of kings. Below are the first few words of #8779 sentence in test set of Mixed.

Processed MdC: nswt bj tj nb tA du wsr mAa t raw stp n jmn zA ra ...

Transliteration: nswt-bity nb tꜣ.du wsr-mꜢꜤt-rꜤ stp.n-imn sꜢ rꜤ ...

English Translation: King of Upper and Lower Egypt, Lord of the Two Lands, Ramesses IV, Son of Re ...

This part of the sentence is the name and titles of the king Ramesses IV. Titles of kings in
ancient Egypt have rigorous formats. nswt-bity (”King of Upper and Lower Egypt”) is the
title preceding the coronation name of the king, and sꜢ rꜤ (”Son of Re”) is a title commonly
following the king’s name. After seeing nswt-bity and the name of the king, HieroLM can
infer that the following words are likely to be sꜢ rꜤ. When we feed in the sequence ”nswt bj

1In ancient Egypt, ka refers to a part of human soul that leaves the body upon death.
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tj nb tA du wsr mAa t raw stp n jmn”, the model responds with ”zA”, and when appending
”zA” to the input, it outputs ”ra”, which is again a 2-shot prediction example.

6.4 Limitations of Transformer-based Models with Small-scale Dataset

In this section, We analyze the surprising under-performance of Transformer-based models
in our use case, which can be ascribed to three factors: (i) underfitting due to the mismatch
between model size and data; (ii) lack of locality biases; and (iii) instability of gradient flow.
Transformers often suffer from underfitting on small-scale datasets. Kaplan et al. (2020)
show that the number N of non-embedding parameters in a Transformer is approximately:

N ∝ nlayerd
2
model,

where nlayer is the number of layers and dmodel is the dimension of the residual stream. This
quadratic dependence on the dimension of the residual stream means that even a moderately
sized Transformer can have numerous parameters, leading to significant model complexity.
On small datasets, this complexity results in insufficient learning of the underlying data
distribution. To mitigate this issue, we set n_layer = 1 and dropout = 0 in the Transformer
Encoder (TE) model we adopt. While this improves the performance, TE still exhibits more
signs of underfitting than recurrent models. With close inspections at the predictions given
by TE, we find that it tends to predict words with frequent occurrence in training data
(i.e., prepositions such as n and m), which is apparently a sub-optimal solution. This blind
preference towards prepositions also results in the low F1 score for TE in Table 3.
Transformers’ limitations on small datasets are widely discussed, especially on visual Trans-
formers (ViT’s) (Shao and Bi, 2022; Li et al., 2021; Dai et al., 2021). While having su-
perior global connectivity, Transformers lack locality biases, which are crucial for captur-
ing local patterns in small datasets. The self-attention in Transformer is calculated as
Z = softmax(QKT /

√
d)V , where Q,K, V are the projected query, key, and value matrices.

Since Z is a weighted sum of value vectors in V , the self-attention mechanism inherently
captures information from all tokens. Even with positional encoding, this mechanism does
not prioritize local information, which is important in hieroglyphs due to local semantic
affinity. This is in contrast with CNNs or RNNs whose architectures naturally incorporate
local context. The convolution operation for a 1D CNN can be represented as:

yi =

k∑
j=1

wjxi+j−1.

Here, CNNs admit local context through the convolution operation by focusing on a small
window of input data. Shao and Bi (2022) show that integrating convolutional layers can
improves Transformer’s ability to learn from limited data by local feature extraction.
The instability of gradient flow in deep models is also a significant factor for Transformers’
poor performance on small datasets (Xu et al., 2021). For a transformer with L layers, let
δL be the gradient at layer l, and the gradient at the input layer δ0 can be expressed as:

δ0 = δLΠ
L
i=1Wi.

where δL is the gradients at the final layer, and Wi is the weight matrix of the i-th layer.
Hence, the magnitudes of the gradients can grow or shrink exponentially with the number
of layers, causing significant instability in learning, especially on small-scale datasets.

7 Conclusion

In this project, we propose to model Egyptian hieroglyph recovery as a next word predic-
tion task that can addressed by language models. Specifically, we construct a hieroglyph
language model with recurrent architecture enhanced with LSTM. Extensive experiments
show that our model can achieve remarkable performance on both next word and multi-shot
predictions, which makes it useful in archaeological practices to infer missing hieroglyphs
and complement CV models to reduce perplexity in blurry hieroglyph recognition. However,
the effective way of integrating CV models and language models into a unified hieroglyph
recovery system remains largely unexplored, which is left for future work.
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8 Ethics Statement

Our next-word prediction language model for ancient Egyptian hieroglyphs presents unique
ethical challenges and societal implications. We discuss potential concerns and propose
strategies for mitigation.

• Cultural Sensitivity and Appropriation. The interpretation and use of cultural heritage
data, such as hieroglyphic texts, must be handled with sensitivity. There is a risk of
cultural appropriation or misrepresentation when modern technologies are applied to
ancient artifacts. To mitigate this, our project respects cultural significance and historical
accuracy by testing our model in real-time on its predictions, monitoring its behavior to
ensure that no culturally inappropriate misinterpretations are made.

• Accuracy and Misinterpretation. Given the ancient and often sacred nature of the texts
being analyzed, inaccuracies in translation or prediction could lead to misinterpretations
of historical facts. Currently, we mitigate this by monitoring evaluation metrics like
accuracy rate, perplexity, and F1 score. Furthermore, we clearly communicate the prob-
abilistic nature of our model’s predictions, emphasizing that they should be verified by
human experts. In the future, as we make our model more robust and effective, we will
implement rigorous validation of our model outputs with expert reviewers in the field of
Egyptology to more properly address this concern. As Stanford does not have an Egyp-
tology lab, we hope to reach out to Egyptomologists such as Professor Carol Redmount
and Dr. Rita Lucarelli at Berkeley’s Archaeological Research Facility (ARF). 2

• Impact on Archaeological and Linguistic Communities. The automation of text prediction
could impact traditional roles in archaeology and linguistics, possibly reducing opportuni-
ties for manual translation and analysis. While our project aims to support and enhance
scholarly work, we recognize the importance of maintaining a balanced relationship with
these fields. For current work, we plan to release a playground for the archaeological
community to experiment with our language model and also for us to collect critical feed-
backs. In the future, we will explore ways our technology can complement rather than
replace traditional methods. This includes, for instance, providing tools for preliminary
analysis that must be refined and verified by human experts. We will do this by engaging
with the egyptomologists mentioned in the bullet point above.
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