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Abstract

This paper proposes several methods to improve miniBERT’s performance on
semantic classification, paraphrase detection, and semantic similarity tasks. Our
primary contribution is a novel weight-sharing scheme that reduces parameter
count while maintaining performance. We find that a triplet of BERT models
sharing half of their layers can match the performance of three separate models
with no weight sharing. This approach substantially outperforms our best single-
BERT models, and we find a comparison of 1-BERT, 3-BERT, and hybrid (weight
sharing) models to be insightful for understanding the nature of multitask training
of a transformer. To further augment performance, we implement a number of
smaller experiments: multitask fine-tuning with gradient surgery, various loss
functions and dropout configurations, various classification head architectures, and
feature transformations.
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2 Introduction

The Bidirectional Encoder Representations from Transformers (BERT) model, described in Devlin
et al. (2018), is a language representation model that pretrains deep bidirectional representations from
unlabeled text using both left and right context in all layers. Because BERT can be fine-tuned with
one additional context layer, it has resulted in a slew of revolutionary state-of-the-art models for tasks
ranging from question answering to named entity recognition.

In this paper, we investigate several methods to improve BERT’s performance on three related
downstream tasks: semantic classification, paraphrase detection, and semantic textual similarity.
Rather than relying on one BERT for each task, we first developed a BERT model (1-bert) that
performed well across all tasks, trained via a multitask approach with a unified loss function. However,
multitask models are prone to issues like conflicting gradients and task interference, even after partial
solutions like gradient surgery. For a comparison, we trained a model which contained 3 separate
BERT transformers, each tuned on a specific task (3-bert). This resulted in markedly better
performance, likely by alleviating the aforementioned issues. However, we remained unsatisfied with
this approach, as it essentially tripled the parameter count and removed possibilities for generalization
between the 3 similar tasks.

Stanford CS224N Natural Language Processing with Deep Learning



In response to the shortcomings of 1-bert and 3-bert, we created a new model that incorporated
what we saw as the best characteristics of each, which we termed hybrid-bert. We hypothesized
that a disproportionate amount of the advantage of 3-bert over 1-bert was caused by the later
layers of the transformers as well as the final pooling layers. Since all three tasks ultimately depend
on similar features of natural language, it seemed unlikely that vastly different embedding and early
transformer layers would be needed for them. However, since they each involve subtly different
properties of sentences, it seemed likely that allowing the final layers of the BERT transformer to
vary for each task would be advantageous. Accordingly, hybrid-bert used shared weights for the
embedding and early transformer layers while allowing the final layers to specialize for each task.

We expected hybrid-bert to strike a balance in performance between 1-bert (parameter-light,
acceptable performance) and 3-bert (parameter-heavy, best performance). So, we were pleasantly
surprised when it matched the performance of 3-bert with half as many parameters.

While the performance of hybrid-bert was the most exciting of our results, we performed a large
variety of other experiments, many of which improved performance across the board. Both 1-bert
and hybrid-bert are based on multitask fine-tuning, which we implemented via a unified weighted
loss function for overall performance, similar to the approach taken by Bi et al. (2022). We attempted
to further optimize multitask training with gradient surgery per Yu et al. (2020a). We experimented
with different loss functions, learning rate schedules, and dropout configurations. Some of our most
substantial gains came from experimenting with different features for the multi-sentence tasks, as well
as different architectures of the classification heads. Finally, we performed a manual hyperparameter
sweep.

3 Related Work

Several authors have improved BERT since it was introduced in 2018. Liu et al. (2019) conducted a
replication study of BERT pretraining and found that BERT was significantly undertrained. They
introduced RoBERTa, A Robustly Optimized BERT Pretraining Approach, where they trained the
model longer, on more data, and with bigger batch sizes. They also dynamically changed the masking
pattern applied to training data. Sanh et al. (2019) adapted BERT for transfer learning, where
operating large pretrained models on edge or with limited computational or inference budgets remains
challenging. They propose DistilBERT, leveraging knowledge distillation during the pretraining
phase to reduce the size of the BERT model by 40%, while increasing speed and retaining language
understanding abilities. Lan et al. (2019) introduced ALBERT to increase the training speed of BERT
through parameter reduction.

While these papers demonstrate effective ways to speed up BERT training on a single task by sharing
weights within the transformer, we considered the parallel case of weight-sharing strategies between
multiple transformers trained on different tasks. However, we found the success of techniques like
ALBERT within a single transformer encouraging. In our paper, we encountered two main challenges
when optimizing a multitask model: gradient interference and parameter optimization.

Gradient interference makes it difficult to infer which direction to move in to minimize multitask
loss. To combat gradient interference, Yu et al. (2020b) propose “Gradient Surgery for Multitask
Learning.” They project a task’s gradient onto the normal plane of another task that has a conflicting
gradient. Therefore, the optimizer can move in one consistent direction. While gradient surgery
was originally proposed for multitask reinforcement learning problems, Yu et al. (2020b) claimed
that it was model agnostic. Therefore, we explore the effectiveness of gradient surgery in multitask
learning with the BERT architecture. See an example of the process to transform conflicting into
non-conflicting gradients in Figure 1.

BERT and PALs, by Stickland and Murray (2019), implemented parameter sharing in multitask
learning. They realized that multitask learning involves conserved functionality between related tasks,
which sometimes reduces the number of parameters required for the final model. Using projected
attention layers (PALs), they augment the BERT architecture for more efficient parameter sharing by
learning task-specific projections. These task-specific layers are interleaved in the main BERT layers,
which are shared between all tasks. This improves the model’s ability to generalize across multiple
tasks with fewer parameters. Our project with hybrid-bert was similar to Stickland and Murray
(2019), in that it identified a path to accelerate training by sharing parameters across BERT models.
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Figure 1: Conflicting gradients and PCGrad

However, we took a different approach, sharing and dividing BERT layers themselves rather than
augmenting them with PAL layers.

4 Approach

4.1 Baseline and Early Approaches

Our baseline approach, described in Staff (2024), is passing frozen BERT embedding into task-
specific linear layers that are trained for SST (per part 1 of the Default Project) and randomized for
the remaining tasks.

The above-described baseline achieves poor performance on the Paraphrase and STS tasks since it is
not trained on these tasks and merely uses the initialized weights. Our next step was to extend the
training code to train on all three objectives. We applied binary cross-entropy loss for paraphrase
detection and mean squared error loss for STS. All reported models were trained end-to-end, allowing
the BERT weights to be tuned in addition to the classification heads.

Our first approach to the multitask training problem was to use these task-specific loss functions to
train repeatedly our model (same architecture as baseline) for one epoch on each of the three tasks
in succession. We experimented with learning rates, dropout rates, weight decay, and learning rate
schedulers. We settled on a default learning rate of 1e-5 and a dropout rate of 0.3. We found that the
OneCycleLR scheduler improved sentiment accuracy but harmed paraphrase accuracy and similarity
correlation. Furthermore, it performed only slightly better than the CosineAnnealingLR scheduler.
Weight decay was ineffective for similarity correlation but improved paraphrase accuracy. Ultimately,
we came up with a more effective way to perform multitask training, described in the 1-bert section,
but these early experiments informed our choices with later models.

4.2 Gradient Surgery, Feature Augmentation, and Architectural Improvements

In all 3 of our final models, we implemented a variety of techniques to improve performance. Gradient
surgery, described in Yu et al. (2020a), was used in 1-bert and hybrid-bert to ameliorate the
problem of conflicting gradients during multitask training. We used PCGrad, the implementation of
Gradient Surgery in the original paper, as a starting point and integrated it into our code using the
AdamW optimizer and our three task-specific loss functions. Qualitatively, gradient surgery mildly
slowed convergence but led to more stable accuracy once convergence was reached. Gradient surgery
did not, however, lead to a noticeable improvement in accuracy.

To add expressiveness at the (task-specific) classification steps, the linear classification heads were
replaced by 3-layer feed-forward networks with ReLU activation after each layer and an intermediate
layer width of 2561. We found shallower classification heads to lead to faster convergence at the
expense of accuracy and deeper heads to result in overfitting, as indicated by falling dev-set accuracy
while training loss continued to decline. For all tasks, a 3-layer network proved to be an effective
compromise.

Initially, we used the BERT transformer to produce embeddings of the two input sentences and fed
those concatenated embeddings into our classification head. We suspected that our low performance
on sentence-pair tasks was due to the difficulty of our shallow classification heads in learning a
similarity measure between the two embedding vectors, so we added the Hadamard product of the

1The width and depth of these networks was determined via hyperparameter sweep.
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sentence embeddings as an additional input of the classification heads. We hoped that the heads would
then learn to use a weighted dot-product of the embeddings as a more expressive version of cosine
similarity, combined with information from the two embeddings themselves. Adding this feature
substantially improved performance on the sentence-pair tasks. However, the best performance was
attained by concatenating paired sentences with a separation token and feeding the combined result
into BERT, as was recommended by Devlin et al. (2018).

4.2.1 1-bert: Unified Multitask Training

In response to the divided model’s underwhelming performance on sentiment classification (compared
with the end-to-end classifier from Part 1), we made major changes, motivated by our interpretation
that training embeddings to simultaneously perform well on multiple tasks was degrading their
performance on individual tasks. To prevent large gradient updates that advantaged one task at the
expense of another, we rewrote our training loop to consider 3-tuples of batches from the 3 tasks at a
time using a loss function calculated as a weighted sum of the 3 task loss functions. We implemented
the changes described in the preceding section with the intention of further reducing the possibility
of the three training objectives interfering. Since the different datasets had wildly different sizes,
random sampling across epochs was required to preserve parity between the different tasks. The
architecture of our final 1-bert model is shown in Figure 2.

4.3 3-bert: Single Task Training

To determine whether our improvements had fully remedied the problem of conflicting optimization
objectives, we tested an alternative approach, 3-bert (compare in Figure 2). Instead of using the
same transformer for all three tasks with multitask fine-tuning, we created 3 identical copies of the
BERT transformer arranged in an ensemble, with one BERT instance dedicated to each task. Then,
we adapted our training techniques from 1-bert to perform simultaneous single-task finetuning
of each instance. As is detailed in our experiments section, 3-bert outperformed 1-bert overall,
indicating that the additional flexibility gained by allowing each transformer instance to specialize to
a task was valuable. However, this came at the cost of tripling the parameter count and removing
opportunities for generalization between tasks.

4.4 hybrid-bert: Layer Sharing with Multitask Training

Our final model, hybrid-bert, addressed the shortcomings of 1-bert and 3-bert with a novel
layer-sharing scheme. The hybrid-bert architecture shares embedding layers and the first 6 out
of 12 BERT layers between all three downstream tasks. However, the final 6 BERT layers and the
pooling layers are duplicated, allowing for task-specific specialization. This architecture is contrasted
with 1-bert and 3-bert in Figure 2. Our choice to share the early layers rather than the final ones
was motivated by our hypothesis that optimal weights in early layers were likely to be conserved
for all 3 similar tasks, while optimal weights in final layers were likely to be task-specific. We
implemented hybrid-bert by adapting the original miniBERT architecture to set its early layers by
reference to a shared object. Finally, the entire architecture was subjected to multitask fine-tuning,
with all of the previously described improvements (gradient surgery, feature augmentation, etc.). We
believed that hybrid-bert would be valuable even if it did not match the performance of 3-bert
due to requiring substantially fewer parameters. In fact, we were surprised by the very competitive
performance of this model, which is described in the Experiments section.

5 Experiments

5.1 Data

BERT is fine-tuned and evaluated on the Stanford Sentiment Treebank SST dataset for sentiment
analysis, the Quora dataset Quo for paraphrase detection, and the SemEval STS dataset Androut-
sopoulos et al. (2013) for semantic similarity tasks. The SST dataset consists of single sentences
with a sentiment label of negative, somewhat negative, neutral, somewhat positive, or positive. The
Quora dataset classifies sentence pairs as paraphrases or not, and the STS dataset scores sentence pair
similarity. See Table 2.
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Figure 2: Schematic architectures of 1-bert, 3-bert, and hybrid-bert

5.2 Evaluation method

To evaluate BERT’s performance, we used accuracy across all tasks. This was determined by the
number of correct classifications using the dev set. We switched to the test set for the final results of
our best model. For semantic similarity, we used the Pearson correlation coefficient. These metrics
are defined in Staff (2024).

5.3 Experimental details

We trained the 1-bert, 3-bert, and hybrid-bert models for 20 epochs and evaluated them on the
dev set. The results from our initial hyperparameter, learning rate scheduler, and weight decay sweep
for the baseline model are reported in Figure 3 in the appendix. Ultimately, the model performed
best with a weight decay of 0.001 and without a learning rate scheduler (linear or cosine). We also
added dropout within the feedforward classification heads in addition to it initially being before
the classification heads. We found that varying dropout beyond 0.3 did not result in a meaningful
improvement in performance. For our final submission, we evaluated our best-performing model,
hybrid-bert, on the test set. We trained hybrid-bert for 40 epochs with a learning rate of
1e-5, dropout of 0.3, weight decay of 0.001, and no learning rate scheduler. Training time took
approximately 60 minutes on an NVIDIA A100.

5.4 Results

Our baseline model had around poor results overall. Similarity correlation especially underperformed
because it wasn’t trained on similarity-specific data. 1-Bert performed significantly better than
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the baseline, and 3-bert performed the best on the dev set. Surprisingly, hybrid-bert performed
as well as 3-bert on the dev set, with an overall score of 0.772. hybrid-bert performed even
better on the test set with scores reported in Table 1. This confirms that layer sharing is an incredibly
effective method for reducing parameters while maintaining the performance of multitask models.

Model Sentiment Acc. Paraphrase Acc. Similarity Corr. Overall Score

Baseline (dev) 0.312 0.369 -0.009 0.392
1-bert (dev) 0.497 0.854 0.863 0.761
3-bert (dev) 0.513 0.868 0.872 0.772
hybrid-bert (dev) 0.510 0.871 0.869 0.772

hybrid-bert (test) 0.526 0.882 0.879 0.782
Table 1: Results for our final models

6 Analysis

To better understand the training dynamics of our three final models, we consider the multitask loss
curves for their final (20-epoch) training runs presented in 3. All three models show asymptotic
convergence to approximately 0 training loss within 20 epochs. While this is difficult to discern
with a linear scale, the hybrid-bert and 3-bert models exhibit faster loss convergence than does
1-bert. We suspect that the additional task-specific expressiveness of these models enabled faster
convergence on individual tasks, in addition to better performance evaluated on the dev set. For
further breakdowns of our training curves, see figures 4, 6, and 5 in the Appendix.

We also considered stability during training. We noticed the unified multitask model 1-bert was
more stable than 3-bert. hybrid-bert was also more stable than 3-bert, comparable to 1-bert.
Furthermore, we noticed that although gradient surgery did not improve accuracy, it increased stability
after convergence.

To better consider the shortcomings of our system, we performed qualitative error analysis by selecting
poorly performing examples from the dev set for our final model. On the sentiment classification
task, our final hybrid model achieved the worst performance on the following sentence from the dev
set: "In a way, the film feels like a breath of fresh air, but only to those that allow it in." Our model
predicted a sentiment of 1 (very negative), while the actual sentiment was 4 (positive). In fact, this
error seems quite reasonable to us, and we expect that many humans would make a similar mistake.
The sentence could easily be perceived as either critical or congratulatory, and determining which
would likely depend on the surrounding context. However, rating it as the most negative sentiment
category was still probably a case of overconfidence on behalf of the model.

For the sake of brevity, similar "worst-case" examples are included in the appendix for the other two
tasks. It is worth noting that they are also marginal cases that would be confusing to human evaluators,
too. The paraphrase detection example in particular seems questionably labeled; we disagreed with
the evaluation included in the dev set and agreed with our model’s prediction.

Given these worst-performing examples, we suspect that while there is still likely room for our model
to improve, it came fairly close to approximating the performance of a human evaluator. Much of
the remaining error may in fact be due to the subjective nature of labelling natural language tasks.
Putting this aside, our hybrid-bert model exhibits the worst performance on sentences with unclear
or debatable meaning, which is not particularly surprising.

7 Conclusions

In sum, we experimented with BERT’s architecture, hyperparameters, data, loss function, additional
adjustments like gradient surgery, and layer sharing. We found that changes in hyperparameters
(including learning rate schedulers) resulted in minimal improvements in performance. Changing
the dropout probability made a marginal difference in accuracy, but adding additional dropout layers
within the feedforward classification heads was more impactful. Learning rate schedulers had mixed
performance, and a small amount of weight decay was helpful. New data was significantly helpful in
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Figure 3: Multitask Loss Training Curves for our Final Models

increasing STS correlation, along with how data was concatenated. Adding the Hadamard product of
sentence embeddings as an additional classification head input significantly improved performance
on sentence-pair tasks.

Gradient surgery was marginally helpful in baseline models. It slowed convergence and led to more
stable accuracy but did not increase accuracy once convergence was reached. It was not helpful in our
final hybrid model. Unified loss, where we considered 3-tuples of batches to avoid moving too far in
either the SST, STS, or paraphrase direction during descent, made a significant difference in overall
performance. Finally, we found that shallower classification heads led to faster convergence but lower
accuracy compared to deeper heads, which overfit. This suggested that we needed a balance between
deep and shallow head size, which was one of the more important architectural choices that impacted
overall accuracy.

Because we were hoping for more substantial increases in accuracy, we implemented 3-bert, which
was trained on each task individually. 3-bert outperformed 1-bert. However, it tripled parameter
size and increased training time. This led to our novel contribution of a layer-sharing architecture
hybrid-bert. hybrid-bert shares 6 embedding layers, but the final 6 layers are duplicated to
allow for task-specific specialization. Surprisingly, hybrid-bert had identical accuracy to 3-bert.
In some cases, hybrid-bert outperformed 3-bert, but we attribute this to model variance.

One limitation of our work was that our ultimate hyperparameter sweep was not as robust as we
would have hoped. Another limitation was that although we implemented gradient surgery, we still
encountered gradient interference during multitask training. This was especially prevalent in the
earlier stages. This suggests that gradient surgery may lose effectiveness with deeper, more robust
models. It would be worth exploring what models and loss functions gradient surgery works best on.
Furthermore, there was an imbalance of data. The Quora dataset had significantly more examples
than the other datasets combined. If there is bias in the Quora dataset or if the Quora dataset is best
suited to certain tasks, this will propagate in our results. A naive extension of this paper would be to
significantly increase training data and ensure limited bias.

We believe layer sharing to be an incredibly effective technique for maintaining multitask model
performance while reducing parameters. This has important downstream applications where com-
putational constraints must be considered. We suggest layer sharing be experimented on a wider
variety of architectures such as RoBERTa and DistilBERT. We also suggest an ablation study where
accuracy is recorded while altering the number of layers shared. Altering layer sharing may change
fundamental model performance and require a reconsideration of other layers like dropout and head
size. Future work may also explore how layer-sharing BERTs benefit from different types of data
augmentation and dynamic task weighting.
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8 Ethics Statement

8.1 Bias

Since a central feature of this paper is the production of semantic embeddings, a major concern is the
potential for biases included in the training data to be included in the word embeddings themselves.
This would be particularly concerning if the embeddings were later used for downstream tasks, as
it could result in societal biases being perpetuated. One way to partially remedy this is to carefully
select our training data to eliminate examples that could introduce bias. This could be done with a
method as simple as a wordlist to screen training examples for harmful content, but it could also be
more sophisticated. For instance, we could pass all training examples through an existing LLM to
identify any examples that encode biases and prune them from the training set.

The multitask nature of our hybrid model introduces additional potential bias issues. Since weights
are shared between three tasks, we cannot rule out the possibility that biases in one dataset might filter
into outputs for the other tasks, which would exacerbate the harm caused by such biases. Ultimately,
it is impossible to do justice to the ethical concerns raised by a language model without better
understanding the areas to which it might be applied, but we would recommend a thorough ethical
review before deployment with attention to these concerns.

8.2 Privacy

Another ethical concern is that this model could be used in a way that violates individual privacy.
Specifically, semantic embeddings could be used by a downstream company to unethically profile
users based on their comments and messages, such as for personalized advertising. This is a difficult
issue to forestall entirely, as once a model is released, it may fall into the hands of nefarious users.
However, one possible approach would be to intentionally limit the usefulness of the embeddings
when the input text appears sensitive. Training examples could be provided of phrases that indicate
the model is being inappropriately applied to user data, such as texting abbreviations. Then, an
additional fine-tuning pass could be used with a destructive loss function to ensure, for instance, that
these inputs result in nonsensical embeddings while normal inputs are unaffected. This approach may
reduce the utility of the embedding model to bad actors.
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A Appendix

This appendix provides information on data and our baseline multitask model with various learning
rate schedulers and weight decays.

The following are the examples for which our predictions were the worst for the STS and Paraphrase
tasks. If multiple examples were tied for worst, we included only one, which was randomly selected.

• Paraphrase Detection

– S1: "Why computer vision is hard?"
– S2: "Why computer vision is computationally hard?"
– Predicted score: 1
– Actual score: 0

• Semantic Textual Similarity

– S1: "Work into it slowly."
– S2: "It seems to work."
– Predicted score: 3.2
– Actual score: 0

Name Train Dev Test
SST 8,544 1,101 2,210
CFIMDB 1,701 245 488
Quora 141,506 20,215 40,431
SemEval STS 6,041 864 1,726

Table 2: Datasets

Model Sentiment Acc. Paraphrase Acc. Similarity Corr.
OneCycleLR, No Weight Decay 0.506 0.701 0.337
CosineAnnealingLR, No Weight Decay 0.505 0.714 0.367
CosineAnnealingLR, 0.001 Weight Decay 0.505 0.714 0.367
No Scheduler, 0.0001 Weight Decay 0.464 0.676 0.404
No Scheduler, 0.001 Weight Decay 0.464 0.676 0.404
No Scheduler, 0.01 Weight Decay 0.467 0.726 0.370
No Scheduler, No Weight Decay 0.464 0.676 0.404

Table 3: Accuracy of the baseline multitask model with various learning rate schedules and weight
decays
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Figure 4: Final Training Curves: Paraphrase Detection

Figure 5: Final Training Curves: STS

Figure 6: Final Training Curves: SST
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